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EDGE OPEN PACKING SETS IN GRAPHS

Gayathri Chelladurai1,*, Karuppasamy Kalimuthu1 and
Saravanakumar Soundararajan2

Abstract. In a graph 𝐺 = (𝑉, 𝐸), two edges 𝑒1 and 𝑒2 are said to have a common edge if there exists
an edge 𝑒 ∈ 𝐸(𝐺) different from 𝑒1 and 𝑒2 such that 𝑒 joins a vertex of 𝑒1 to a vertex of 𝑒2 in 𝐺. That
is, ⟨𝑒1, 𝑒, 𝑒2⟩ is either 𝑃4 or 𝐾3 in 𝐺. A non-empty set 𝐷 ⊆ 𝐸(𝐺) is an edge open packing set of a graph
𝐺 if no two edges of 𝐷 have a common edge in 𝐺. The maximum cardinality of an edge open packing
set is the edge open packing number of 𝐺 and is denoted by 𝜌𝑜

𝑒(𝐺). In this paper, we initiate a study
on this parameter.
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1. Introduction

By a graph 𝐺 = (𝑉,𝐸), we mean a finite, undirected graph with neither loops nor multiple edges. For
graph-theoretic terminology, we refer to [6]. Throughout this paper, graphs are assumed to be connected and
non-trivial.

The open neighborhood 𝑁(𝑒) of an edge 𝑒 ∈ 𝐸 is the set of all edges adjacent to 𝑒 in 𝐺, while the closed
neighborhood of 𝑒 in 𝐺 is 𝑁 [𝑒] = 𝑁(𝑒)∪ {𝑒}. The degree of an edge 𝑒 = 𝑢𝑣 of 𝐺 is deg 𝑒 = deg 𝑢+ deg 𝑣− 2. A
simple bipartite graph with bipartition (𝑋,𝑌 ) is (𝛼, 𝛽)-biregular if every vertex in 𝑋 has degree 𝛼 and every
vertex in 𝑌 has degree 𝛽 [2].

Coloring is one of the most important research areas in graph theory and umpteen number of coloring
parameters have been introduced and well studied by several authors because of its numerous applications
in various fields such as coding theory [13], biological networks [10], neural networks [3] and so on. Of these,
the concept of injective edge coloring was introduced in [4] and obtained several results on it, we may refer
to [5, 11, 12]. In a graph 𝐺, three edges 𝑒1, 𝑒2 and 𝑒3 (in this fixed order) are consecutive if 𝑒1 = 𝑥𝑦, 𝑒2 = 𝑦𝑧
and 𝑒3 = 𝑧𝑢 for some vertices 𝑥, 𝑦, 𝑧, 𝑢 (where 𝑥 = 𝑢 is allowed). In other words, three edges are consecutive if
they form a path or cycle of length three. A coloring, 𝑐 : 𝐸(𝐺) → 𝐶, where 𝐶 is a set of colors, is an injective
edge coloring (𝑖-edge coloring for short) if the edges 𝑒1, 𝑒2 and 𝑒3 are consecutive in 𝐺, then 𝑒1 and 𝑒3 should
receive different colors. The injective edge coloring number or injective edge chromatic index 𝜒′𝑖(𝐺) of graph 𝐺
is the minimum number of colors permitted in an 𝑖-edge coloring. This concept is motivated by the problem of
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Figure 1. The graph 𝐺.

assigning channels between the stations in order to avoid secondary interference in the Packet Radio Network
(PRN).

It is obvious that an 𝑖-edge coloring of 𝐺 partitioning the edge set 𝐸(𝐺) into edge subsets 𝐸𝑖 having the
property that no three edges in 𝐸𝑖 to form a consecutiveness in 𝐺. Of course, studying the nature of these
subsets is more useful. For instance, suppose we have the position to find the maximum number of transmission
lines of the given PRN in which the secondary interference does not occur. This situation can be interpreted by
defining the parameter, we call as edge open packing sets in graphs as follows.

Definition 1.1. An edge 𝑒 of a graph 𝐺 is a common edge of two distinct edges 𝑒1, 𝑒2 different from 𝑒 if 𝑒
joins a vertex of 𝑒1 to a vertex of 𝑒2. That is, ⟨𝑒1, 𝑒, 𝑒2⟩ forms either 𝑃4 or 𝐶3. A non-empty set 𝐷 ⊆ 𝐸(𝐺) is
an edge open packing set if no two edges in 𝐷 have a common edge in 𝐺. The maximum cardinality among all
edge open packings is the edge open packing number of 𝐺 and is denoted by 𝜌𝑜

𝑒(𝐺). An edge open packing set
of cardinality 𝜌𝑜

𝑒(𝐺) is called a 𝜌𝑜
𝑒-set of 𝐺.

Example 1.2. Consider the graph 𝐺 given in Figure 1.
It is easy to observe that the set of pendant edges of 𝐺 forms an edge open packing set with the maximum

cardinality and so 𝜌𝑜
𝑒(𝐺) = 4.

Remark 1.3. It is clear that the induced subgraph ⟨𝐷⟩ induced by an edge open packing set is the union of
stars.

2. Standard graphs

In this section, we determine the value of the edge open packing number for some standard graphs such as
paths, cycles, complete multipartite graphs, wheels and the Petersen graph.

Proposition 2.1. Let 𝑃𝑛 be a path of size 𝑚 ≥ 2. Then

𝜌𝑜
𝑒(𝑃𝑛) =

{︃
𝑚+2

2 if 𝑚 ≡ 2(mod 4)⌈︀
𝑚
2

⌉︀
otherwise.

Proof. Let 𝐸(𝑃𝑛) = {𝑒1, 𝑒2, . . . , 𝑒𝑚} such that 𝑒𝑖𝑒𝑖+1 are adjacent, where 𝑖 = 1, 2, . . . ,𝑚− 1. It is obvious that
any two adjacent edges of the paths 𝑃3 or 𝑃4 form an edge open packing set with maximum cardinality and so
𝜌𝑜

𝑒(𝑃3) = 𝜌𝑜
𝑒(𝑃4) = 2. Now, consider the following cases for 𝑚 ≥ 4.

Case 1. 𝑚 ≡ 2(mod 4).
Let 𝑚 = 4𝑘 + 2, where 𝑘 ≥ 1 is an integer. Consider the set
𝑆 =

{︁
𝑒𝑖+2⌊ 𝑖−1

2 ⌋ : 1 ≤ 𝑖 ≤ 𝑚+2
2

}︁
. Obviously, no two edges of 𝑆 have a common edge and so it forms

an edge open packing set of 𝑃𝑛 and thus 𝜌𝑜
𝑒(𝑃𝑛) ≥ |𝑆| = 𝑚+2

2 . On the other hand, let 𝐷 be a maximal edge
open packing set of 𝑃𝑛. Now, for 1 ≤ 𝑟 ≤ 𝑘, define 𝐸𝑟 = {𝑒𝑖 : 4𝑟 − 3 ≤ 𝑖 ≤ 4𝑟} and 𝐸* = 𝐸(𝑃𝑛) ∖𝐸𝑟. Then,
𝐸𝑟 ∪ 𝐸* = 𝐸(𝑃𝑛) and |𝐸*| = 2. Obviously, 𝐷 can have at most two edges from each 𝐸𝑟 for 1 ≤ 𝑟 ≤ 𝑘 and
all the edges from 𝐸*. Therefore, 𝜌𝑜

𝑒(𝑃𝑛) ≤ |𝐷| = 2𝑘 + 2 = 2
(︀

𝑚−2
4

)︀
+ 2 = 𝑚+2

2 and Case 1 is proved.
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Case 2. 𝑚 ̸≡ 2(mod 4).
Let 𝑚 = 4𝑘+ 𝑡, where 𝑡 ∈ {0, 1, 3} and 𝑘 ≥ 1 is an integer. Consider the set 𝐷 =

{︁
𝑒𝑖+2⌊ 𝑖−1

2 ⌋ : 1 ≤ 𝑖 ≤
⌈︀

𝑚
2

⌉︀}︁
.

Then 𝐷 is an edge open packing set of 𝑃𝑛 so that 𝜌𝑜
𝑒(𝑃𝑛) ≥ |𝐷| =

⌈︀
𝑚
2

⌉︀
. For the other inequality, define

𝐸𝑗 = {𝑒𝑖 : 4𝑗 − 3 ≤ 𝑖 ≤ 4𝑗} for 1 ≤ 𝑗 ≤ 𝑘 and

𝐸*1 = 𝐸(𝑃𝑛)− 𝐸𝑗 =

⎧⎪⎨⎪⎩
𝜑 if 𝑡 = 0

{𝑒𝑚} if 𝑡 = 1

{𝑒𝑚−2, 𝑒𝑚−1, 𝑒𝑚} if 𝑡 = 3.

Now, let 𝐷1 be a maximal edge open packing set of 𝑃𝑛. Then 𝐷1 can contains at most two edges from
each 𝐸𝑗 (1 ≤ 𝑗 ≤ 𝑘) and contains at most

⌈︀
𝑡
2

⌉︀
edges from 𝐸*1 , it follows that 𝜌𝑜

𝑒(𝑃𝑛) ≤ |𝐷1| = 2𝑘 +
⌈︀

𝑡
2

⌉︀
≤

2𝑘 +
⌈︀

𝑚−4𝑘
2

⌉︀
≤

⌈︀
𝑚
2

⌉︀
.

�

In the following proposition, we present the value of 𝜌𝑜
𝑒 for cycles. The proof is similar to that of Proposi-

tion 2.1, so we provide the statement alone.

Proposition 2.2. For the cycles 𝐶𝑛 with size 𝑚 ≥ 3, we have

𝜌𝑜
𝑒(𝐶𝑛) =

{︃
𝑚
2 − 1 if 𝑚 ≡ 2(mod 4)⌊︀
𝑚
2

⌋︀
otherwise.

Proposition 2.3. Let 𝐺 = 𝐺𝑛1,𝑛2,...,𝑛𝑘
be a complete multipartite graph with partition (𝑉1, 𝑉2, . . . , 𝑉𝑘), where

|𝑉𝑖| = 𝑛𝑖, 1 ≤ 𝑖 ≤ 𝑘 and 𝑛1 ≤ 𝑛2 ≤ . . . ≤ 𝑛𝑘. Then 𝜌𝑜
𝑒(𝐺) = 𝑛𝑘.

Proof. Choose an arbitrary vertex 𝑣 ∈ 𝑉𝑖 for some 1 ≤ 𝑖 ≤ 𝑘 − 1. Then the set of edges from the vertex 𝑣 to
the vertices belonging to 𝑉𝑘 forms an edge open packing set of 𝐺 and hence 𝜌𝑜

𝑒(𝐺) ≥ |𝑉𝑘| = 𝑛𝑘. Also, it is clear
that any maximal edge open packing set 𝐷 of 𝐺 can never contains non-adjacent edges of 𝐺 and so |𝐷| ≤ 𝑛𝑘.
Therefore, 𝜌𝑜

𝑒(𝐺) = 𝑛𝑘. �

Proposition 2.4. For wheels 𝑊𝑛 with size 𝑚, we have 𝜌𝑜
𝑒(𝑊𝑛) =

⌊︀
𝑚
4

⌋︀
.

Proof. Let {𝑣1, 𝑣2, . . . , 𝑣𝑛−1} be the set of vertices on the rim and let 𝑣 be the center vertex of 𝑊𝑛. Certainly, the
set 𝐷 = {𝑣𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛− 1 and 𝑖 is odd} is a maximal edge open packing set of 𝑊𝑛, we get 𝜌𝑜

𝑒(𝑊𝑛) ≥ |𝐷| ≥⌊︀
𝑚
4

⌋︀
. Now, consider the sets 𝐸1 = {𝑣𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑛− 1} and 𝐸2 = {𝑣𝑖𝑣𝑖+1 : 1 ≤ 𝑖 ≤ 𝑛− 2} ∪ {𝑣1𝑣𝑛−1}. Then

any edge open packing set 𝐷′ of 𝑊𝑛 consisting the edges from exactly one of the sets 𝐸1 and 𝐸2. If 𝐷′ ⊆ 𝐸1,
then 𝐷′ contains at most

⌊︁
|𝐸1|
2

⌋︁
edges as any two consecutive edges of 𝐸1 have a common edge in 𝑊𝑛. Suppose

𝐷′ ⊆ 𝐸2. Then |𝐷′| = 𝜌𝑜
𝑒(𝐶𝑛−1) =

⌊︀
𝑛−1

2

⌋︀
=

⌊︀
𝑚
4

⌋︀
and this completes the proof. �

Proposition 2.5. Let 𝐺 be the Petersen graph. Then 𝜌𝑜
𝑒(𝐺) = 3.

Proof. Consider the Petersen graph given in Figure 2. It is clear that the set {𝑥1, 𝑥2, 𝑦1} forms an edge open
packing set of 𝐺 and so 𝜌𝑜

𝑒(𝐺) ≥ 3. Also, since any maximal edge open packing set 𝐷 has at most two edges
from exactly one of the two cycles (outer and inner cycles) of 𝐺 and one edge from {𝑦1, 𝑦2, . . . , 𝑦5}. Thus
𝜌𝑜

𝑒(𝐺) ≤ |𝐷| ≤ 3. �
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Figure 2. The Petersen graph.

3. Bounds and characterization results

In this section, we provide some bounds for the edge open packing number in terms of diameter, size, minimum
degree, clique number and girth of a graph. Denote the set of edges incident at the vertex 𝑣 by 𝑁𝑒(𝑣). A graph 𝐺
is 𝐾1,𝑠-free graph if it does not contain 𝐾1,𝑠 as an induced subgraph. If 𝐺 contains 𝐾1,𝑠 as an induced subgraph,
then 𝜌𝑜

𝑒(𝐺) ≥ 𝑠. It is obvious that for any graph 𝐺, we have 1 ≤ 𝜌𝑜
𝑒(𝐺) ≤ 𝑚. Furthermore, 𝜌𝑜

𝑒(𝐺) = 1 if and
only if 𝐺 is complete and 𝜌𝑜

𝑒(𝐺) = 𝑚 if and only if 𝐺 is a star.
Now, we characterize graphs 𝐺 for which 𝜌𝑜

𝑒(𝐺) = 2. Before going to characterize, we prove the following
proposition.

Proposition 3.1. For any graph 𝐺, we have 𝜌𝑜
𝑒(𝐺) ≥

⌈︁
diam(𝐺)

2

⌉︁
.

Proof. Suppose diam(𝐺) = 𝑘. In any diametral path 𝑃 , we can choose at least
⌈︀

𝑘
2

⌉︀
edges with the property

that no two edges have a common edge in 𝑃 and so any maximal edge open packing set of 𝐺 can have at least⌈︀
𝑘
2

⌉︀
edges. Thus 𝜌𝑜

𝑒(𝐺) ≥
⌈︀

𝑘
2

⌉︀
=

⌈︁
diam(𝐺)

2

⌉︁
. �

Theorem 3.2. 𝜌𝑜
𝑒(𝐺) = 2 if and only if the following conditions are true

(i) 2 ≤ diam(𝐺) ≤ 4;
(ii) 𝐺 is 𝐾1,𝑠-free, where 𝑠 ≥ 3 and;

(iii) for any two non-adjacent edges 𝑒1 = 𝑢𝑣 and 𝑒2 = 𝑥𝑦 such that 𝑒1 and 𝑒2 have no common edge in 𝐺,
every vertex in 𝑉 (𝐺) ∖ {𝑢, 𝑣, 𝑥, 𝑦} is adjacent to at least two vertices in the set {𝑢, 𝑣, 𝑥, 𝑦}.

Proof. Assume that 𝜌𝑜
𝑒(𝐺) = 2. Then by Proposition 3.1 that diam(𝐺) ≤ 4. Also, for the graphs of diameter

one, that is for complete graphs, the value of 𝜌𝑜
𝑒 is 1, this implies that here diam(𝐺) ≥ 2. Thus (i) follows. Now,

if 𝐺 contains 𝐻 ∼= 𝐾1,𝑠, (𝑠 ≥ 3) as an induced subgraph, then the edges of 𝐻 forms an edge open packing set of
𝐺 and so 𝜌𝑜

𝑒(𝐺) ≥ 3, which is a contradiction to our assumption. Therefore, condition (ii) is satisfied. Finally,
let 𝑒1 = 𝑢𝑣 and 𝑒2 = 𝑥𝑦 be two non-adjacent edges such that 𝑒1 and 𝑒2 have no common edge in 𝐺 and let
𝐴 = {𝑢, 𝑣, 𝑥, 𝑦}. Consider an arbitrary vertex 𝑤 in 𝑉 (𝐺) ∖𝐴 and assume that 𝑤 has at most one neighbor in 𝐴.
If 𝑤 is adjacent with exactly one vertex in 𝐴, say 𝑢, then the set {𝑒1, 𝑒2, 𝑤𝑢} will become an edge open packing
set of 𝐺, we have 𝜌𝑜

𝑒(𝐺) ≥ 3. Suppose 𝑤 has no neighbor in 𝐴. Let 𝑤′ ∈ 𝑉 (𝐺) ∖ 𝐴 such that 𝑤𝑤′ ∈ 𝐸(𝐺). If
𝑤′ has no neighbor in 𝐴, then the set {𝑒1, 𝑒2, 𝑤𝑤′} is an edge open packing set of 𝐺, we have 𝜌𝑜

𝑒(𝐺) ≥ 3. On
the other hand, the vertex 𝑤′ is adjacent with either exactly one vertex or two adjacent vertices in 𝐴 as 𝐺 is
𝐾1,𝑠-free(𝑠 ≥ 3). Certainly, the set {𝑢𝑤′, 𝑤𝑤′, 𝑥𝑦} will form an edge open packing of 𝐺 and so 𝜌𝑜

𝑒(𝐺) ≥ 3. In all
the cases, we arrive at a contradiction to 𝜌𝑜

𝑒(𝐺) = 2 and this proves condition (iii) is true.
Conversely, a graph 𝐺 satisfies the conditions from (i) to (iii) stated in the theorem. Let 𝐷 be any maximal

edge open packing set of 𝐺. We claim that |𝐷| ≤ 2. Now, by condition (iii), ⟨𝐷⟩ has at most two components.
If ⟨𝐷⟩ has exactly one component 𝐷1, then by condition (ii), either 𝐷1

∼= 𝐾1,1 or 𝐷1
∼= 𝐾1,2. Otherwise, let 𝐷1
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and 𝐷2 be two components of ⟨𝐷⟩. Then both 𝐷1 and 𝐷2 are isomorphic to 𝐾1,1 according to the condition
(iii) and hence our claim. Thus 𝜌𝑜

𝑒(𝐺) = 2 follows from the condition (i). �

In the following theorems, we characterize the graphs 𝐺 for which 𝜌𝑜
𝑒(𝐺) = 𝑚− 1 and 𝜌𝑜

𝑒(𝐺) = 𝑚− 2.

Theorem 3.3. Let 𝐺 be a graph with size 𝑚 ≥ 3. Then 𝜌𝑜
𝑒(𝐺) = 𝑚 − 1 if and only if 𝐺 is a graph obtained

from a star 𝐾1,𝑚−1 by subdividing exactly one edge of 𝐾1,𝑚−1 by once.

Proof. Let 𝐷 be a 𝜌𝑜
𝑒-set of 𝐺 such that |𝐷| = 𝑚−1 and let 𝑒 = 𝑢𝑣 ∈ 𝐸−𝐷. If ⟨𝐷⟩ consists of two components,

say 𝐺1 and 𝐺2, then two vertices 𝑢 and 𝑣 do not lie in the same component. Without loss of generality, assume
that 𝑢 ∈ 𝑉 (𝐺1) and 𝑣 ∈ 𝑉 (𝐺2). Now, let 𝑒1 = 𝑤𝑢 and 𝑒2 = 𝑣𝑥 be two edges in 𝐺1 and 𝐺2 respectively.
Certainly, 𝑒 is a common edge between the edges 𝑒1 and 𝑒2, which is not possible and so ⟨𝐷⟩ has exactly one
component. Let 𝐻 ∼= 𝐾1,𝑚−1 be the component of ⟨𝐷⟩. As 𝐺 is connected, either 𝑢 or 𝑣 should be a pendant
vertex in 𝐻 and thus 𝐺 is isomorphic to a graph obtained from a star 𝐾1,𝑚−1 by subdividing exactly one edge
of 𝐾1,𝑚−1 by once. The converse is obvious. �

Next, we characterize graphs 𝐺 for which 𝜌𝑜
𝑒(𝐺) = 𝑚 − 2. For this, we use the following definitions and

describe new family of graphs as follows.

Definition 3.4. (i) An edge 𝑒 = 𝑢𝑣 has vertices 𝑢 and 𝑣 that are saturated by 𝑒. Given a set of edges 𝐷, denote
the set of vertices saturated by edges of 𝐷 by 𝑉𝐷.

(ii) A non-pendant edge 𝑒 = 𝑢𝑣 is a support edge of 𝐺 if either 𝑢 or 𝑣 is a support vertex in 𝐺.

Observation 3.5. If 𝐺 is a graph of size at least 3 that is not a star and 𝐷 is an edge open packing set of 𝐺
such that ⟨𝐷⟩ contains 𝑘 ≥ 2 components, then 𝐸 −𝐷 contains at least 𝑘 edges.

Let A1, A2 and A3 be the families of graphs obtained from 𝑃5, 𝑃6 and 𝑃7 respectively by attaching 𝑟(≥ 0)
number of pendant edges at each support vertex of 𝑃5, 𝑃6 and 𝑃7.
Let A4 and A5 be the families of graphs obtained from 𝐶3 and 𝐶4 respectively by attaching 𝑡(≥ 0) pendant
edges at exactly one vertex of 𝐶3 and exactly one vertex of 𝐶4.
Let A6 be the family of graphs obtained from a star 𝐾1,𝑠, where 𝑠 ≥ 3 by subdividing exactly two edges of
𝐾1,𝑠 once at a time.
Let A7 be the family of graphs obtained from a star 𝐾1,𝑠, where 𝑠 ≥ 3 by attaching two pendant edges at
exactly one of the pendant vertices of 𝐾1,𝑠.

The seven families of graphs are shown in Figure 3.

Theorem 3.6. Let 𝐺 be a graph with size 𝑚. Then 𝜌𝑜
𝑒(𝐺) = 𝑚− 2 if and only if 𝐺 ∈ ∪7

𝑖=1A𝑖.

Proof. Suppose 𝜌𝑜
𝑒(𝐺) = 𝑚 − 2 and let 𝐷 be a 𝜌𝑜

𝑒-set of 𝐺. Then 𝐸 − 𝐷 has exactly two edges and so ⟨𝐷⟩
contains at most two components follows from Observation 3.5. Let 𝑒1 = 𝑢𝑣 and 𝑒2 = 𝑥𝑦 be the edges in 𝐸−𝐷.
We prove this theorem in the following cases.

Case 1. ⟨𝐷⟩ has exactly one component.
Let ⟨𝐷⟩ = 𝐾1,𝑠, where 𝑠 = 𝑚− 2 and assume that 𝑒1 and 𝑒2 are adjacent in 𝐺. Without loss of generality,
let 𝑣 = 𝑥 and let ⟨𝐸 −𝐷⟩ = 𝑃 : (𝑢, 𝑒1, 𝑥, 𝑒2, 𝑦). As 𝐺 is connected and |𝐸 − 𝐷| = 2, the set 𝑉𝐷 should
contains at least one vertex but at most two vertices of 𝑃 .
If 𝑉𝐷 contains exactly one of the vertices 𝑢, 𝑥 and 𝑦, then none of the vertices 𝑢, 𝑥 and 𝑦 will become the
center vertex of 𝐾1,𝑠. Otherwise, if any one of the vertices 𝑢, 𝑥 and 𝑦 is the center vertex of 𝐾1,𝑠, then the
edge(s) on 𝑃 incident at that center vertex together with 𝐷 forms an edge open packing set of 𝐺, which
produces a contradiction to the maximality of 𝐷. Therefore, if 𝑉𝐷 contains exactly one vertex of 𝑃 , then it is
a pendant vertex of 𝐾1,𝑠. Further, if 𝑠 = 1, then either 𝐺 is 𝑃4 or a star, which implies that 𝜌𝑜

𝑒(𝐺) ≥ 𝑚− 1,
a contradiction and this yields that 𝑠 ≥ 2. Now, if 𝑉𝐷 contains exactly one of 𝑢 and 𝑦, then 𝐺 ∈ A1. Suppose
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Figure 3. Families from A1 to A7.

𝑥 ∈ 𝑉𝐷 and 𝑠 = 2. Then 𝐺 is isomorphic to the graph obtained from the star 𝐾1,3 by subdividing exactly
one edge of 𝐾1,3 by once and so 𝜌𝑜

𝑒(𝐺) = 𝑚− 1 follows from Theorem 3.3. This is a contradiction and hence
𝑠 ≥ 3. Therefore, 𝐺 ∈ A7 when 𝑠 ≥ 3 and 𝑥 ∈ 𝑉𝐷.
Suppose 𝑉𝐷 contains two vertices of 𝑃 . Now, we first claim that 𝑥 /∈ 𝑉𝐷. If not, then either 𝐷 ∪ {𝑥𝑢} or
𝐷 ∪ {𝑥𝑦} forms an edge open packing set according as 𝑢 ∈ 𝑉𝐷 or 𝑦 ∈ 𝑉𝐷. This is a contradiction and hence
𝑢, 𝑦 ∈ 𝑉𝐷. If both 𝑢 and 𝑦 are the pendant vertices of 𝐾1,𝑠, then 𝐺 ∈ A4 and 𝐺 ∈ A5 according as 𝑠 = 1
and 𝑠 ≥ 2. If any one of 𝑢 and 𝑦 is the center vertex of 𝐾1,𝑠, then 𝐺 ∈ A4.
Now, let us consider that the edges 𝑒1 = 𝑢𝑣 and 𝑒2 = 𝑥𝑦 are independent in ⟨𝐸 −𝐷⟩. Since 𝐺 is connected
and 𝐷 is edge open packing, the component 𝐾1,𝑠 of ⟨𝐷⟩ should consist of exactly one vertex from 𝑒1 and
one vertex from 𝑒2, and both which cannot be the center vertex of 𝐾1,𝑠. Certainly, these two vertices are
the pendant vertices of 𝐾1,𝑠 and in which case 𝐺 ∈ A6.

Case 2. ⟨𝐷⟩ has two components.
Let 𝐻1 = 𝐾1,𝑎 and 𝐻2 = 𝐾1,𝑏 be the components of ⟨𝐷⟩, where 𝑎 + 𝑏 = 𝑚 − 2. Since 𝐺 is connected and
no two edges of 𝐷 have a common edge in 𝐸 −𝐷, it follows that 𝑒1 and 𝑒2 should be adjacent in ⟨𝐸 −𝐷⟩.
Without loss of generality, let 𝑥 = 𝑣. Certainly, 𝑥 /∈ 𝑉𝐷 as 𝐷 is an edge open packing set of 𝐺 and so exactly
one of the vertices of 𝑢 and 𝑦 belongs to 𝐻1 and the other vertex in 𝐻2. Suppose 𝑢 ∈ 𝑉 (𝐻1) and 𝑦 ∈ 𝑉 (𝐻2).
Then 𝐺 ∈ A1, when both 𝑢 and 𝑦 are the center vertices of 𝐻1 and 𝐻2 respectively. If both 𝑢 and 𝑦 are the
pendant vertices of 𝐻1 and 𝐻2, then

(i) 𝐺 ∈ A1 when 𝑎 = 𝑏 = 1.
(ii) 𝐺 ∈ A2 when 𝑎 = 1 and 𝑏 > 1 or 𝑎 > 1 and 𝑏 = 1.
(iii) 𝐺 ∈ A3 when 𝑎 > 1 and 𝑏 > 1.
Finally, if 𝑢 is the center vertex of 𝐻1 and 𝑦 is a pendant vertex of 𝐻2, then we have
(i) 𝐺 ∈ A1 when 𝑎 ≥ 1 and 𝑏 = 1.
(ii) 𝐺 ∈ A2 when 𝑎 ≥ 1 and 𝑏 > 1.
Conversely, assume that 𝐺 ∈ ∪7

𝑖=1A𝑖. Since 𝜌𝑜
𝑒(𝐺) = 𝑚 only when 𝐺 is a star and 𝜌𝑜

𝑒(𝐺) = 𝑚− 1 only when
𝐺 is a graph stated in Theorem 3.3, which implies that 𝜌𝑜

𝑒(𝐺) ≤ 𝑚− 2 if 𝐺 ∈ ∪7
𝑖=1A𝑖.

If 𝐺 ∈ A1, then the set of all pendant edges is an edge open packing set of 𝐺 so that 𝜌𝑜
𝑒(𝐺) = 𝑚−2. Suppose

𝐺 ∈ A2 ∪ A4. Then the set of all pendant edges with exactly one of its support edges forms an edge open
packing set of 𝐺 and thus 𝜌𝑜

𝑒(𝐺) = 𝑚 − 2. Suppose 𝐺 ∈ A3 ∪ A5. Then the set of all pendant and support
edges is an edge open packing set of 𝐺 and so 𝜌𝑜

𝑒(𝐺) = 𝑚− 2. If 𝐺 ∈ A6 ∪A7, then the edges in 𝐾1,𝑠 forms
an edge open packing set of 𝐺 and hence 𝜌𝑜

𝑒(𝐺) = 𝑚− 2.

�
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Figure 4. A graph in 𝜓3,18.

In the following proposition, we present an upper bound for 𝜌𝑜
𝑒 in terms of the size and the minimum degree.

Proposition 3.7. Let 𝐺 be a graph of size 𝑚. Then 𝜌𝑜
𝑒(𝐺) ≤ 𝑚

𝛿(𝐺) .

Proof. Let 𝐷 be a 𝜌𝑜
𝑒-set of 𝐺 and let 𝑢𝑣 ∈ 𝐷. Since 𝐷 is an edge open packing set, it follows that 𝐸−𝐷 contains

at least (𝛿−1)-edges incident with 𝑢 or 𝑣 and which holds for every edge in 𝐷. Thus |𝐸(𝐺)−𝐷| ≥ |𝐷|(𝛿(𝐺)−1)
and hence the result follows. �

Next, we characterize 𝑟-regular graphs which attain the bound in the above proposition. For this purpose,
we construct a family of 𝑟-regular graphs 𝜓𝑟,𝑛 as follows.

Let 𝑉 (𝐺) = 𝑋 ∪ 𝑌 ∪𝑍 such that no two vertices of 𝑋 or 𝑌 or 𝑍 are adjacent, where |𝑋| = 𝑛
2 −

𝑛
2𝑟 , |𝑌 | = 𝑛

2
and |𝑍| = 𝑛

2𝑟 . Consider (𝑟, 𝑟 − 1)-biregular graph with the vertex sets 𝑋 and 𝑌 in which the degree of each
vertex in 𝑋 is 𝑟 and the degree of each vertex in 𝑌 is 𝑟 − 1. The existence of a biregular graph is possible by
the condition that |𝑋|𝑟 = |𝑌 |(𝑟 − 1). Now, join each vertex in 𝑍 to 𝑟 vertices of 𝑌 such that 𝑁(𝑢) ∩𝑁(𝑣) = 𝜑
for any two vertices 𝑢, 𝑣 ∈ 𝑍 and let 𝐺 be the resultant graph. It is obvious that 𝐺 is an 𝑟-regular graph with
𝑛 vertices such that 𝑛 ≡ 0(mod 2𝑟) (Fig. 4).

Theorem 3.8. Let 𝐺 be an 𝑟-regular graph. Then 𝜌𝑜
𝑒(𝐺) = 𝑚

𝑟 if and only if 𝐺 ∈ 𝜓𝑟,𝑛.

Proof. Assume that 𝐺 ∈ 𝜓𝑟,𝑛. Obviously, the set of edges connecting the vertices of 𝑌 to the vertices of 𝑍 in
the above construction forms an edge open packing set of 𝐺 so that 𝜌𝑜

𝑒(𝐺) ≥ 𝑛
2𝑟 𝑟 = 𝑚

𝑟 . Thus 𝜌𝑜
𝑒(𝐺) = 𝑚

𝑟 follows
from Proposition 3.7.

Conversely, let 𝐺 be an 𝑟-regular graph of order 𝑛 such that 𝜌𝑜
𝑒(𝐺) = 𝑚

𝑟 . Suppose 𝐷 is a 𝜌𝑜
𝑒-set of 𝐺 with

𝐻 ∼= 𝐾1,𝑡(𝑡 < 𝑟) as one of its component, then |𝐸 − 𝐷| ≥ 𝜌𝑜
𝑒(𝐺)𝑟 − 𝜌𝑜

𝑒(𝐺) + 𝑟 − 𝑡 and which in turns that
𝜌𝑜

𝑒(𝐺) ≤ 𝑚−(𝑟−𝑡)
𝑟 < 𝑚

𝑟 , a contradiction. Therefore, every component of ⟨𝐷⟩ is isomorphic to 𝐾1,𝑟 and there are
𝑛
2𝑟 copies of such components in ⟨𝐷⟩. Let 𝑌 and 𝑍 be two sets of pendant vertices and support vertices of ⟨𝐷⟩
respectively. Then |𝑌 | = 𝑛

2 and |𝑍| = 𝑛
2𝑟 . Since 𝐷 is a 𝜌𝑜

𝑒-set, no two vertices of 𝑌 are adjacent and no two
vertices of 𝑍 are adjacent. Let 𝑋 be the set of vertices in 𝑉 − 𝑉𝐷. Since 𝐺 is 𝑟-regular and every vertex in 𝑍
has degree 𝑟, it follows that each vertex in 𝑋 is adjacent with 𝑟 vertices in 𝑌 alone and thus 𝐺 ∈ 𝜓𝑟,𝑛. �

Theorem 3.9. Let 𝐺 be a graph with the size and the clique number 𝜔. Then 𝜌𝑜
𝑒(𝐺) ≤ 𝑚 − 𝜔(𝜔−1)

2 + 1.
Furthermore, 𝜌𝑜

𝑒(𝐺) = 𝑚− 𝜔(𝜔−1)
2 + 1 if and only if 𝐺 is either 𝐾𝑛 or a graph obtained from 𝐾𝑛 by attaching

any number of pendant edges at exactly one vertex of 𝐾𝑛.

Proof. Let 𝐻 be a maximum clique and 𝐷 be a maximal edge open packing set of 𝐺. Then 𝐷 contains at most
one edge from 𝐻 and hence we achieved the inequality.

Suppose 𝜌𝑜
𝑒(𝐺) = 𝑚 − 𝜔(𝜔−1)

2 + 1. Then 𝐷 contains exactly one edge from 𝐻 and all the edges from 𝐹 =
𝐸(𝐺) ∖ 𝐸(𝐻) (Note that this set may be empty). We first claim that every vertex that lies outside of 𝐻 is
pendant. Suppose not, Let 𝑢, 𝑣, 𝑤 be the vertices of 𝐺 such that 𝑢 ∈ 𝑉 (𝐻), 𝑣, 𝑤 ∈ 𝑉 ∖𝑉 (𝐻) and 𝑢𝑣, 𝑣𝑤 ∈ 𝐸(𝐺).
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As 𝐹 ⊆ 𝐷, the set 𝐷 consists both the edges 𝑢𝑣, 𝑣𝑤, it follows that no edge of 𝐻 belong to 𝐷, which is not
true. Thus, every vertex outside of 𝐻 is pendant. Also, since 𝐹 ⊆ 𝐷, 𝐹 itself is an edge open packing set of 𝐺.
Thus ⟨𝐹 ⟩ is a star and hence either 𝐺 ∼= 𝐾𝑛 or a graph obtained from 𝐾𝑛 by attaching any number of pendant
edges at exactly one vertex of 𝐾𝑛. Conversely, if 𝐺 ∼= 𝐾𝑛, then 𝜌𝑜

𝑒(𝐺) = 1 = 𝑚 − 𝜔(𝜔−1)
2 + 1. Suppose 𝐺 is a

graph obtained from 𝐾𝑛 by attaching any number of pendant edges at exactly one vertex of 𝐾𝑛. Then the set
of pendant edges of 𝐺 together with exactly one edge of 𝐾𝑛, that is, adjacent with these pendant edges forms
an edge open packing set of 𝐺 and thus 𝜌𝑜

𝑒(𝐺) = 𝑚− 𝜔(𝜔−1)
2 + 1. �

Proposition 3.10. If 𝐺 is a graph with 𝑔(𝐺) ≥ 3, then 𝜌𝑜
𝑒(𝐺) ≥

⌈︁
𝑔(𝐺)

2

⌉︁
− 1. Moreover, the equality holds if

and only if 𝐺 is either complete or a cycle of size 𝑚 with 𝑚 ̸≡ 0(mod 4).

Proof. Consider a cycle 𝐶 in 𝐺 such that the length of 𝐶 is equal to 𝑔(𝐺). Then by Proposition 2.2, we have
𝜌𝑜

𝑒(𝐺) ≥ 𝜌𝑜
𝑒(𝐶) ≥

⌈︁
𝑔(𝐺)

2

⌉︁
− 1.

Suppose 𝜌𝑜
𝑒(𝐺) =

⌈︁
𝑔(𝐺)

2

⌉︁
− 1. If 𝑔(𝐺) = 3, then 𝜌𝑜

𝑒(𝐺) = 1 and thus 𝐺 is complete. Assume that 𝑔(𝐺) ≥ 4.
Suppose 𝐺 is not a cycle. Let 𝑒 be an edge incident at the vertex on 𝐶, say 𝑣 and label 𝑒1, 𝑒2, . . . , 𝑒𝑔(𝐺) to the

edges of 𝐶 such that 𝑒1 and 𝑒2 are incident at 𝑣. Then the set 𝐷 =
{︁
𝑒𝑖+2⌊ 𝑖−1

2 ⌋ : 1 ≤ 𝑖 ≤
⌈︁

𝑔(𝐺)
2

⌉︁
− 1

}︁
∪{𝑒} is an

edge open packing of 𝐺 and thus 𝜌𝑜
𝑒(𝐺) ≥ |𝐷| =

⌈︁
𝑔(𝐺)

2

⌉︁
−1+1 =

⌈︁
𝑔(𝐺)

2

⌉︁
, a contradiction and hence 𝐺 is a cycle.

Now, by Proposition 2.2, we have 𝐺 is a cycle with 𝑔(𝐺) ̸≡ 0(mod 4). The converse is just a verification. �

Definition 3.11 ([1]). A subset 𝑆 of 𝐸 is called a 2-edge packing if 𝑁 [𝑒] ∩ 𝑁 [𝑓 ] = 𝜑 for all 𝑒, 𝑓 ∈ 𝑆. The
maximum cardinality of a 2-edge packing in 𝐺 is called the 2-edge packing number of 𝐺 and is denoted by
𝑃 ′2(𝐺).

Theorem 3.12. For any graph 𝐺, we have 𝑃 ′2(𝐺) ≤ 𝜌𝑜
𝑒(𝐺) ≤ ∆(𝐺)𝑃 ′2(𝐺).

Proof. Let 𝐷 be a 2-edge packing set of 𝐺. Since no two edges in 𝐷 have a common edge in 𝐺, the set 𝐷 is
an edge open packing set of 𝐺 so that 𝑃 ′2(𝐺) ≤ 𝜌𝑜

𝑒(𝐺). Further, any maximal edge open packing set 𝐷′ of 𝐺
such that ⟨𝐷′⟩ has at most 𝑃 ′2(𝐺) components and each component has at most ∆(𝐺) edges, it follows that
𝜌𝑜

𝑒(𝐺) ≤ ∆(𝐺)𝑃 ′2(𝐺). �

Definition 3.13 ([14]). For all 1 ≤ 𝑖 ≤ 𝑛− 1,

(i) An alternate triangular snake 𝐴(𝑇𝑛) is obtained from a path 𝑢1, 𝑢2, . . . , 𝑢𝑛 by joining 𝑢𝑖 and 𝑢𝑖+1 (alter-
nately) to a new vertex 𝑣𝑖. That is every alternate edge of a path is replaced by 𝐶3.

(ii) An alternate quadrilateral snake 𝐴(𝑄𝑆𝑛) is obtained from a path 𝑢1, 𝑢2, . . . , 𝑢𝑛 by joining 𝑢𝑖, 𝑢𝑖+1 (alter-
nately) to a new vertex 𝑣𝑖, 𝑤𝑖 respectively and then joining 𝑣𝑖 and 𝑤𝑖. That is every alternate edge of a
path is replaced by 𝐶4.

Theorem 3.14. Given any two positive integers 𝑎, 𝑏 ≥ 1 and an integer 𝑘 ≥ 3 with
⌈︀

𝑏
𝑘

⌉︀
≤ 𝑎 ≤ 𝑏 ≤ 𝑘𝑎, there

exists a graph 𝐺 such that 𝑃 ′2(𝐺) = 𝑎, 𝜌𝑜
𝑒(𝐺) = 𝑏 and ∆(𝐺) = 𝑘.

Proof. If 𝑎 = 𝑏 = 1, then 𝐺 is a complete graph on 𝑘+ 1 vertices. If 𝑎, 𝑏 > 1 and 𝑏 = 𝑘, then 𝐺 is obtained from
𝐾1,𝑏 by subdividing exactly 𝑎 edges in 𝐾1,𝑏. Suppose 𝑎, 𝑏 > 1 and 𝑏 ̸= 𝑘. Then consider the following cases.

Case 1. 𝑏 < 𝑘.
Consider a star 𝐾1,𝑘 with the center vertex 𝑢 and let 𝑣1, 𝑣2, . . . , 𝑣𝑘 be the pendant vertices of 𝐾1,𝑘. Form a
clique by making the adjacency between every pair of vertices of {𝑢, 𝑣1, 𝑣2, . . . , 𝑣𝑘−𝑏+1} and attach exactly
one pendant vertex 𝑤𝑖 to the vertex 𝑣𝑘−𝑏+1+𝑖 for all 1 ≤ 𝑖 ≤ 𝑎 − 1. Let 𝐺 be the resultant graph. For
instance, a graph 𝐺 with 𝑎 = 3, 𝑏 = 5 and 𝑘 = 8 is given in Figure 5.
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Figure 5. A graph 𝐺 with 𝑎 = 3, 𝑏 = 5 and 𝑘 = 8.

Figure 6. A graph 𝐺1 with 𝑎 = 5 and 𝑏 = 9.

Now, consider the sets 𝑆1 =
{︀
𝑤𝑖𝑣(𝑘−𝑏+1+𝑖) : 1 ≤ 𝑖 ≤ 𝑎− 1

}︀
∪ {𝑣1𝑣2} and 𝑆2 =

{︀
𝑢𝑣(𝑘−𝑏+𝑖) : 1 ≤ 𝑖 ≤ 𝑏

}︀
. It is

easy to see that 𝑆1 and 𝑆2 are the 2-edge packing set and edge open packing set of 𝐺 respectively and thus
𝑃 ′2(𝐺) ≥ |𝑆1| = 𝑎− 1 + 1 = 𝑎 and 𝜌𝑜

𝑒(𝐺) ≥ |𝑆2| = 𝑏. Suppose 𝐷 is a maximal 2-edge packing set of 𝐺. If 𝐷
consisting an edge 𝑒 of 𝐺 which is incident at 𝑢, then we cannot add any edge to 𝐷 and so |𝐷| = 1 in this
case. If 𝐷 consisting no edge incident at 𝑢, then 𝐷 can include at most one edge from the clique, say 𝑣1𝑣2,
and all the pendant edges that are not incident at 𝑢. Thus |𝐷| ≤ 1 + (𝑎− 1) = 𝑎. Let 𝐷1 be a maximal edge
open packing set of 𝐺. Then 𝐷1 has at most one edge from the clique. If 𝐷1 has no edge from the clique,
then 𝐷1 has exactly two edges, one from the set of pendant edges not incident at 𝑢 and the other one is
adjacent to the chosen pendant edge. Suppose 𝐷1 has one edge from the clique, say 𝑒. If 𝑒 is not incident
at 𝑢, then 𝐷1 should contains all the pendant edges that are not incident at 𝑢, and in this case, we have
|𝐷1| = 1 + (𝑎− 1) = 𝑎. On the other hand, if 𝑒 is incident at 𝑢, then 𝐷1 can contains all the edges incident
at 𝑢 not belonging in the clique and so |𝐷1| = 1 + (𝑏− 1) = 𝑏.

Case 2. 𝑏 > 𝑘.
Now, we construct a graph 𝐺 in the following subcases based on the values of 𝑘 as follows.
Subcase 2.1. 𝑘 = 3.

If 𝑎 ≤ 𝑏 ≤ 2𝑎, then construct an alternate triangular snake 𝐴(𝑇2𝑎) and name the vertices in 𝑖th triangle
by 𝐶𝑖

3 : (𝑟𝑖, 𝑠𝑖, 𝑡𝑖) for all 1 ≤ 𝑖 ≤ 𝑎. Introduce the set of vertices {𝑧𝑗 : 1 ≤ 𝑗 ≤ 𝑏− 𝑎} and join 𝑧𝑗 to 𝑠𝑗 for
all 1 ≤ 𝑗 ≤ 𝑏− 𝑎. Let 𝐺1 be the resultant graph. Figure 6. shows a graph 𝐺1 with 𝑎 = 5 and 𝑏 = 9.
Define the sets 𝑅1 = {𝑠𝑖𝑡𝑖 : 1 ≤ 𝑖 ≤ 𝑎} and 𝑅2 = {𝑧𝑗𝑠𝑗 : 1 ≤ 𝑗 ≤ 𝑏− 𝑎}. Now, the sets 𝑅1 and 𝑅1∪𝑅2 are
2-edge packing and edge open packing of 𝐺1 respectively so that 𝑃 ′2(𝐺1) ≥ 𝑎 and 𝜌𝑜

𝑒(𝐺1) ≥ 𝑎+ 𝑏−𝑎 = 𝑏.
For all 1 ≤ 𝑖 ≤ 𝑏−𝑎, let 𝐴𝑖 = ⟨{𝑧𝑖, 𝑠𝑖, 𝑟𝑖, 𝑡𝑖, 𝑟𝑖+1}⟩ and for all 𝑏−𝑎 < 𝑗 ≤ 𝑎−1, let 𝐵𝑗 = ⟨{𝑠𝑗 , 𝑟𝑗 , 𝑡𝑗 , 𝑟𝑗+1}⟩
and let 𝐶 = ⟨{𝑠𝑎, 𝑟𝑎, 𝑡𝑎}⟩ (Note that the subgraphs 𝐵𝑗 and 𝐶 of 𝐺1 become null graphs when 𝑏 = 2𝑎
and 𝐵𝑗 alone null graph when 𝑏 = 2𝑎− 1). Then any maximal 2-edge packing set has at most one edge
from each 𝐴𝑖, each 𝐵𝑗 and from 𝐶, so we get 𝑃 ′2(𝐺1) ≤ (𝑏− 𝑎) + (2𝑎− 𝑏− 1) + 1 = 𝑎. Also, any maximal
edge open packing set contains at most two edges from each 𝐴𝑖 and at most (2𝑎 − 𝑏) edges from each
∪𝑎−1

𝑗=𝑏−𝑎𝐵𝑗 ∪ 𝐶. Therefore, 𝜌𝑜
𝑒(𝐺1) ≤ 2(𝑏− 𝑎) + (2𝑎− 𝑏) = 𝑏.
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Figure 7. A graph 𝐺2 with 𝑎 = 5 and 𝑏 = 13.

Figure 8. A graph 𝐺 with 𝑎 = 10, 𝑏 = 21 and 𝑘 = 5.

Suppose 2𝑎 ≤ 𝑏 ≤ 3𝑎. Then construct an alternate quadrilateral snake 𝐴(𝑄𝑆2𝑎) and denote the vertices
in 𝑖th cycle by 𝐶𝑖

4 : (𝑢𝑖, 𝑣𝑖, 𝑤𝑖, 𝑥𝑖) for all 1 ≤ 𝑖 ≤ 𝑎. Introduce the set of vertices {𝑦𝑗 : 1 ≤ 𝑗 ≤ 𝑏− 2𝑎} and
join 𝑦𝑗 to 𝑣𝑗 for all 1 ≤ 𝑗 ≤ 𝑏− 2𝑎. Let 𝐺2 be the resultant graph. Figure 7. illustrates a graph 𝐺2 with
𝑎 = 5 and 𝑏 = 13.
Now, the set {𝑣𝑖𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑎} is a 2-edge packing set of 𝐺2 and the set
{𝑣𝑖𝑦𝑖 : 1 ≤ 𝑖 ≤ 𝑏− 2𝑎} ∪ {𝑣𝑖𝑤𝑖, 𝑣𝑖𝑢𝑖 : 1 ≤ 𝑖 ≤ 𝑎} is an edge open packing set of 𝐺2 so that 𝑃 ′2(𝐺2) ≥ 𝑎
and 𝜌𝑜

𝑒(𝐺2) ≥ 𝑏− 2𝑎+ 2𝑎 = 𝑏. One can easily verify that any maximal 2-edge packing set has at most 𝑎
edges and any maximal edge open packing set has at most 𝑏 edges in 𝐺2.

Subcase 2.2. 𝑘 ≥ 4.
Now, we construct a graph 𝐺 that satisfies the given requirement as follows. Let 𝑠 =

⌈︀
𝑏
𝑘

⌉︀
and denote

𝑅 = 𝑏 − 𝑘(𝑠 − 1). Consider the alternate quadrilateral snake 𝐴(𝑄𝑆𝑡), where 𝑡 = 2(𝑠 − 1). For all
1 ≤ 𝑖 ≤ 𝑠− 1, denote the 𝑖th cycle of 𝐴(𝑄𝑆𝑡) by 𝐶𝑖

4 : (𝑢𝑖, 𝑣𝑖, 𝑤𝑖, 𝑥𝑖, 𝑢𝑖). Attach (𝑘 − 2)-pendant edges at
each 𝑣𝑖, say 𝑣𝑖𝑣

(𝑗)
𝑖 , where 1 ≤ 𝑖 ≤ 𝑠− 1 and 1 ≤ 𝑗 ≤ 𝑘 − 2. Introduce 𝑠− 1 vertices 𝑢′1, 𝑢

′
2, . . . , 𝑢

′
𝑠−1 and

join each 𝑢′𝑖 to the vertex 𝑢𝑖 for all 1 ≤ 𝑖 ≤ 𝑠− 1. Let 𝐻 be the resultant graph.
If 𝑅 = 1, construct the cycle 𝐶3 : (𝑢𝑠, 𝑣𝑠, 𝑥𝑠, 𝑢𝑠) and join the vertex 𝑥𝑠−1 of 𝐻 to 𝑢𝑠. Let 𝐻1 be the
resultant graph and define 𝐵1 =

{︁
𝑣
(1)
𝑖 , 𝑣

(2)
𝑖 , . . . , 𝑣

(𝑘−2)
𝑖 , 𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑠− 1

}︁
in 𝐻1.

If 𝑅 = 2, construct the cycle 𝐶3 : (𝑢𝑠, 𝑣𝑠, 𝑥𝑠, 𝑢𝑠) and join the vertex 𝑥𝑠−1 of 𝐻 to 𝑢𝑠. Further introduce
the vertices 𝑢′𝑠 and 𝑣(1)

𝑠 . Now, join 𝑢′𝑠 to 𝑢𝑠 and join 𝑣(1)
𝑠 to 𝑣𝑠. Let 𝐻2 be the resultant graph and define

𝐵2 =
{︁
𝑣
(1)
𝑖 , 𝑣

(2)
𝑖 , . . . , 𝑣

(𝑘−2)
𝑖 , 𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑠− 1

}︁
∪

{︁
𝑣
(1)
𝑠

}︁
in 𝐻2.

If 𝑅 ≥ 3, construct the cycle 𝐶𝑠
4 : (𝑢𝑠, 𝑣𝑠, 𝑤𝑠, 𝑥𝑠, 𝑢𝑠) and join the vertex 𝑥𝑠−1 to 𝑢𝑠. Moreover, attach

𝑏 − 𝑘(𝑠 − 1) − 2 pendant edges at 𝑣𝑠 and name the pendant vertices incident at 𝑣𝑠 by 𝑣
(𝑗)
𝑠 , where

1 ≤ 𝑗 ≤ 𝑏−𝑘(𝑠−1)−2. Introduce the vertex 𝑢′𝑠 and join it to the vertex 𝑢𝑠. Address 𝐻3 be the resultant
graph and define 𝐵3 =

{︁
𝑣
(1)
𝑖 , 𝑣

(2)
𝑖 , . . . , 𝑣

(𝑘−2)
𝑖 , 𝑤𝑖 : 1 ≤ 𝑖 ≤ 𝑠− 1

}︁
∪

{︁
𝑣
(𝑗)
𝑠 : 1 ≤ 𝑗 ≤ 𝑏− 𝑘(𝑠− 1)− 2

}︁
in

𝐻3.
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Figure 9. A graph 𝐺 with 𝑎 = 13, 𝑏 = 22 and 𝑘 = 5.

Figure 10. A graph 𝐺 with 𝑎 = 12, 𝑏 = 24 and 𝑘 = 5.

Now, choose any 𝑎− 𝑠 number of vertices from either 𝐵1 or 𝐵2 or 𝐵3 according as 𝑅 = 1 or 𝑅 = 2 or 𝑅 = 3
and attach exactly one pendant edge at each of these (𝑎− 𝑠) vertices, say 𝑒1, 𝑒2, . . . , 𝑒𝑎−𝑠 and let 𝐺 be the
resultant graph. Graphs that are exhibiting 𝑅 = 1, 𝑅 = 2 and 𝑅 ≥ 3 respectively are given in Figures 8–10.
Define 𝐸1 = {𝑒1, 𝑒2, . . . , 𝑒𝑎−𝑠}. For 𝑅 = 1, the set ∪𝑠−1

𝑖=1𝑁𝑒(𝑣𝑖)∪ {𝑢𝑠𝑣𝑠} forms an edge open packing set of 𝐺

and so 𝜌𝑜
𝑒(𝐺) ≥

⃒⃒
∪𝑠−1

𝑖=1𝑁𝑒(𝑣𝑖) ∪ {𝑢𝑠𝑣𝑠}
⃒⃒

=
(︁∑︀𝑠−1

𝑖=1 deg 𝑣𝑖

)︁
+1 = 𝑘(𝑠−1)+1 = 𝑏−𝑅+1 = 𝑏−1+1 = 𝑏 and the

set {𝑢𝑖𝑢
′
𝑖 : 1 ≤ 𝑖 ≤ 𝑠− 1}∪𝐸1∪{𝑢𝑠𝑣𝑠} is a 2-edge packing set of 𝐺 so that 𝑃 ′2(𝐺) ≥ (𝑠−1)+(𝑎−𝑠)+1 = 𝑎.

For 𝑅 = 2, the set ∪𝑠−1
𝑖=1𝑁𝑒(𝑣𝑖) ∪

{︁
𝑢𝑠𝑣𝑠, 𝑣𝑠𝑣

(1)
𝑠

}︁
forms an edge open packing set of 𝐺 so that 𝜌𝑜

𝑒(𝐺) ≥⃒⃒⃒
∪𝑠−1

𝑖=1𝑁𝑒(𝑣𝑖) ∪
{︁
𝑢𝑠𝑣𝑠, 𝑣𝑠𝑣

(1)
𝑠

}︁⃒⃒⃒
=

(︁∑︀𝑠−1
𝑖=1 deg 𝑣𝑖

)︁
+ 2 = 𝑘(𝑠− 1) + 2 = 𝑏−𝑅 + 2 = 𝑏− 2 + 2 = 𝑏 and the set

{𝑢𝑖𝑢
′
𝑖 : 1 ≤ 𝑖 ≤ 𝑠} ∪ 𝐸1 is a 2-edge packing set of 𝐺 so that 𝑃 ′2(𝐺) ≥ 𝑠+ (𝑎− 𝑠) = 𝑎.

For 𝑅 ≥ 3, the set ∪𝑠
𝑖=1𝑁𝑒(𝑣𝑖) is an edge open packing set of 𝐺 so that 𝜌𝑜

𝑒(𝐺) ≥ |∪𝑠
𝑖=1𝑁𝑒(𝑣𝑖)| =(︁∑︀𝑠−1

𝑖=1 deg 𝑣𝑖

)︁
+ deg 𝑣𝑠 = 𝑘(𝑠 − 1) + 𝑏 − 𝑘(𝑠 − 1) = 𝑏 and the set {𝑢𝑖𝑢

′
𝑖 : 1 ≤ 𝑖 ≤ 𝑠} ∪ 𝐸1 is a 2-edge

packing of 𝐺 so that 𝑃 ′2(𝐺) ≥ 𝑠+ (𝑎− 𝑠) = 𝑎.
Let 𝐴 be the set of edges of 𝐺 such that 𝐴 = 𝐸[𝐴(𝑄𝑆𝑡)] and 𝐵 = 𝐸(𝐺) ∖ 𝐴. Then any maximal edge open
packing 𝐷 of 𝐺 can have at most 2(𝑠 − 1)-edges from 𝐴 and at most 𝑏 − 2(𝑠 − 1) edges from 𝐵 and thus
𝜌𝑜

𝑒(𝐺) ≤ |𝐷| = 𝑏. Also, one can easily verify that any 2-edge packing set consisting at most 𝑎 edges from 𝐺.
Therefore, 𝜌𝑜

𝑒(𝐺) = 𝑏 and 𝑃 ′2(𝐺) = 𝑎. �

4. Conclusion and scope

In this paper, we have introduced an edge open packing number 𝜌𝑜
𝑒(𝐺) and determined the exact value of 𝜌𝑜

𝑒

for some standard graphs. Also, we have obtained several bounds on it and some characterizations were done.
Even though, there is a wide scope for further research on this topic in the following directions.



3776 C. GAYATHRI ET AL.

(1) Characterize graphs 𝐺 for which 𝜌𝑜
𝑒(𝐺) = 𝑚

𝛿(𝐺) .
(2) Characterize graphs 𝐺 for which

(i) 𝜌𝑜
𝑒(𝐺) = 𝑃 ′2(𝐺).

(ii) 𝜌𝑜
𝑒(𝐺) = ∆(𝐺)𝑃 ′2(𝐺).

(3) Obtain sharp bounds for the value of 𝜌𝑜
𝑒 for the family of trees.

(4) Studying the effect of removal of a vertex or an edge from a graph 𝐺 is of practical importance. This kind
of studies can be carried out in many graph-theoretic parameters, one can see [7–9]. Similar to that, one
can analyze, how the value of 𝜌𝑜

𝑒 is changed when a vertex or an edge is removed from 𝐺.

Conflicts of interest. The authors have no conflicts of interest to declare that are relevant to the content of this
article.
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