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EDGE OPEN PACKING SETS IN GRAPHS

GAYATHRI CHELLADURAI', KARUPPASAMY KALIMUTHU! AND
SARAVANAKUMAR SOUNDARARAJAN?

Abstract. In a graph G = (V, E), two edges e1 and ez are said to have a common edge if there exists
an edge e € E(G) different from e; and ez such that e joins a vertex of e1 to a vertex of ez in G. That
is, {e1, e, e2) is either Py or K3 in G. A non-empty set D C E(G) is an edge open packing set of a graph
G if no two edges of D have a common edge in G. The maximum cardinality of an edge open packing
set is the edge open packing number of G and is denoted by p¢(G). In this paper, we initiate a study
on this parameter.
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1. INTRODUCTION

By a graph G = (V, E), we mean a finite, undirected graph with neither loops nor multiple edges. For
graph-theoretic terminology, we refer to [6]. Throughout this paper, graphs are assumed to be connected and
non-trivial.

The open neighborhood N(e) of an edge e € E is the set of all edges adjacent to e in G, while the closed
neighborhood of e in G is N[e] = N(e) U {e}. The degree of an edge e = uv of G is deg e = deg u+deg v —2. A
simple bipartite graph with bipartition (X,Y) is («, 3)-biregular if every vertex in X has degree o and every
vertex in Y has degree ( [2].

Coloring is one of the most important research areas in graph theory and umpteen number of coloring
parameters have been introduced and well studied by several authors because of its numerous applications
in various fields such as coding theory [13], biological networks [10], neural networks [3] and so on. Of these,
the concept of injective edge coloring was introduced in [4] and obtained several results on it, we may refer
to [5,11,12]. In a graph G, three edges e;, es and e3 (in this fixed order) are consecutive if ey = zy, ea = yz
and eg = zu for some vertices x, y, z, u (where z = u is allowed). In other words, three edges are consecutive if
they form a path or cycle of length three. A coloring, ¢ : E(G) — C, where C is a set of colors, is an injective
edge coloring (i-edge coloring for short) if the edges e1, es and e are consecutive in G, then e; and ez should
receive different colors. The injective edge coloring number or injective edge chromatic index x}(G) of graph G
is the minimum number of colors permitted in an i-edge coloring. This concept is motivated by the problem of
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FIGURE 1. The graph G.

assigning channels between the stations in order to avoid secondary interference in the Packet Radio Network
(PRN).

It is obvious that an i-edge coloring of G partitioning the edge set E(G) into edge subsets E; having the
property that no three edges in E; to form a consecutiveness in G. Of course, studying the nature of these
subsets is more useful. For instance, suppose we have the position to find the maximum number of transmission
lines of the given PRN in which the secondary interference does not occur. This situation can be interpreted by
defining the parameter, we call as edge open packing sets in graphs as follows.

Definition 1.1. An edge e of a graph G is a common edge of two distinct edges e, ey different from e if e
joins a vertex of e; to a vertex of es. That is, {(e1, e, es) forms either Py or C5. A non-empty set D C E(G) is
an edge open packing set if no two edges in D have a common edge in G. The maximum cardinality among all
edge open packings is the edge open packing number of G and is denoted by p2(G). An edge open packing set
of cardinality p2(G) is called a p2-set of G.

Example 1.2. Consider the graph G given in Figure 1.
It is easy to observe that the set of pendant edges of G forms an edge open packing set with the maximum
cardinality and so p2(G) = 4.

Remark 1.3. Tt is clear that the induced subgraph (D) induced by an edge open packing set is the union of
stars.

2. STANDARD GRAPHS

In this section, we determine the value of the edge open packing number for some standard graphs such as
paths, cycles, complete multipartite graphs, wheels and the Petersen graph.

Proposition 2.1. Let P, be a path of size m > 2. Then

) mE2if m = 2(mod 4)
pe(Pn) =

[2]  otherwise.

Proof. Let E(P,) = {e1,¢€2,...,en} such that e;e;11 are adjacent, where i = 1,2,...,m — 1. It is obvious that
any two adjacent edges of the paths P3 or P, form an edge open packing set with maximum cardinality and so
p2(P3) = p2(Py) = 2. Now, consider the following cases for m > 4.

Case 1. m = 2(mod 4).
Let m = 4k 4+ 2, where k > 1 is an integer. Consider the set

S = {BHQL%J 1<i < mTJrQ} Obviously, no two edges of S have a common edge and so it forms

an edge open packing set of P, and thus p2(P,) > |S| = mT"'Q On the other hand, let D be a maximal edge
open packing set of P,. Now, for 1 <r <k, define E, = {e; : 4r — 3 < i < 4r} and E* = E(P,) \ E;. Then,
E.UE* = E(P,) and |E*| = 2. Obviously, D can have at most two edges from each E, for 1 <r < k and
all the edges from E*. Therefore, p2(P,) < |D| = 2k + 2 = 2(™:2) + 2 = 2 and Case 1 is proved.
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Case 2. m # 2(mod 4).
Let m = 4k+t, where t € {0,1,3} and k > 1 is an integer. Consider the set D = {ei”LQJ 1<i < (%1 }
2

Then D is an edge open packing set of P, so that p2(P,) > |D| = (%W For the other inequality, define
E;={e;:4j—3<i<d4j}forl1<j<kand

¢ if ¢t =0
Ef =E(P,) — E; = {em} if t =1

{em—2,€m—1,em} if t=3.

Now, let D; be a maximal edge open packing set of P,,. Then D; can contains at most two edges from
each E; (1 < j < k) and contains at most [%] edges from Ej, it follows that p?(P,) < |D1| = 2k + [£] <

ok + [2534] < 2]

]

In the following proposition, we present the value of p¢ for cycles. The proof is similar to that of Proposi-
tion 2.1, so we provide the statement alone.

Proposition 2.2. For the cycles C,, with size m > 3, we have

2 —1 if m=2(mod4)
pC) =3
L%J otherwise.
Proposition 2.3. Let G = Gy, n,y,...n,, be a complete multipartite graph with partition (Vi,Va,..., V), where
[Vil=n;, 1 <i<kandn; <ng <...<ng. Then p°(G) = ng.

Proof. Choose an arbitrary vertex v € V; for some 1 < ¢ < k — 1. Then the set of edges from the vertex v to
the vertices belonging to Vi forms an edge open packing set of G and hence p2(G) > |Vi| = ng. Also, it is clear
that any maximal edge open packing set D of G can never contains non-adjacent edges of G and so |D| < ny.
Therefore, p2(G) = ny. O

Proposition 2.4. For wheels W,, with size m, we have p(W,) = | 2.

Proof. Let {v1,va,...,v,-1} be the set of vertices on the rim and let v be the center vertex of W,,. Certainly, the
set D = {vv; : 1 <i<mn-—1andiisodd} is a maximal edge open packing set of W,,, we get p2(W,,) > |D| >
L%J Now, consider the sets Ey = {vv; : 1 <i<n—1} and By = {v;0;41:1 <i<n—2} U{vjv,_1}. Then
any edge open packing set D’ of W,, consisting the edges from exactly one of the sets F; and Es. If D' C Ej,

then D’ contains at most PE;'J edges as any two consecutive edges of E1 have a common edge in W,,. Suppose
D' C Ep. Then |D'| = p2(Cp—1) = | 25| = | 2] and this completes the proof. O

Proposition 2.5. Let G be the Petersen graph. Then p2(G) = 3.

Proof. Consider the Petersen graph given in Figure 2. It is clear that the set {1, 22, y1} forms an edge open
packing set of G and so p2(G) > 3. Also, since any maximal edge open packing set D has at most two edges
from exactly one of the two cycles (outer and inner cycles) of G and one edge from {yi,¥2,...,ys5}. Thus
p2(G) < |D| <3, 0
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FIGURE 2. The Petersen graph.

3. BOUNDS AND CHARACTERIZATION RESULTS

In this section, we provide some bounds for the edge open packing number in terms of diameter, size, minimum
degree, clique number and girth of a graph. Denote the set of edges incident at the vertex v by N.(v). A graph G
is K s-free graph if it does not contain K 5 as an induced subgraph. If G contains K ; as an induced subgraph,
then p2(G) > s. It is obvious that for any graph G, we have 1 < p2(G) < m. Furthermore, p2(G) = 1 if and
only if G is complete and p2(G) = m if and only if G is a star.

Now, we characterize graphs G for which p2(G) = 2. Before going to characterize, we prove the following
proposition.

ope 0 diam(G)
Proposition 3.1. For any graph G, we have p°(G) > [T—‘

Proof. Suppose diam(G) = k. In any diametral path P, we can choose at least {g] edges with the property

that no two edges have a common edge in P and so any maximal edge open packing set of G can have at least
[£] edges. Thus p2(G) > [£] = {%(G)-‘ O

Theorem 3.2. p°(G) = 2 if and only if the following conditions are true

(i) 2 <diam(G) < 4;
(ii) G is Ky 4-free, where s > 3 and;
(iii) for any two non-adjacent edges e; = uv and es = xy such that e; and ey have no common edge in G,
every vertex in V(G) \ {u,v,z,y} is adjacent to at least two vertices in the set {u,v,x,y}.

Proof. Assume that p2(G) = 2. Then by Proposition 3.1 that diam(G) < 4. Also, for the graphs of diameter
one, that is for complete graphs, the value of p¢ is 1, this implies that here diam(G) > 2. Thus (i) follows. Now,
if G contains H = K1 4, (s > 3) as an induced subgraph, then the edges of H forms an edge open packing set of
G and so p2(G) > 3, which is a contradiction to our assumption. Therefore, condition (ii) is satisfied. Finally,
let e; = uv and es = xy be two non-adjacent edges such that e; and e; have no common edge in G and let
A = {u,v,z,y}. Consider an arbitrary vertex w in V(G) \ A and assume that w has at most one neighbor in A.
If w is adjacent with exactly one vertex in A, say u, then the set {e1, e, wu} will become an edge open packing
set of G, we have p2(G) > 3. Suppose w has no neighbor in A. Let w’ € V(G) \ A such that ww’ € E(G). If
w’ has no neighbor in A, then the set {ej, es, ww’} is an edge open packing set of G, we have p2(G) > 3. On
the other hand, the vertex w’ is adjacent with either exactly one vertex or two adjacent vertices in A as G is
K, s-free(s > 3). Certainly, the set {uw’, ww’, zy} will form an edge open packing of G and so p2(G) > 3. In all
the cases, we arrive at a contradiction to p2(G) = 2 and this proves condition (iii) is true.

Conversely, a graph G satisfies the conditions from (i) to (iii) stated in the theorem. Let D be any maximal
edge open packing set of G. We claim that |D| < 2. Now, by condition (iii), (D) has at most two components.
If (D) has exactly one component D1, then by condition (ii), either Dy & K3 1 or D1 & K7 9. Otherwise, let D
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and Dy be two components of (D). Then both D; and D are isomorphic to K ; according to the condition
(iii) and hence our claim. Thus p2(G) = 2 follows from the condition (i). O

In the following theorems, we characterize the graphs G for which p2(G) = m — 1 and p2(G) = m — 2.

Theorem 3.3. Let G be a graph with size m > 3. Then pS(G) = m — 1 if and only if G is a graph obtained
from a star Ky ,—1 by subdividing exactly one edge of Ki y,—1 by once.

Proof. Let D be a p2-set of G such that |[D| = m—1 and let e = uwv € E— D. If (D) consists of two components,
say (G1 and Go, then two vertices u and v do not lie in the same component. Without loss of generality, assume
that u € V(G1) and v € V(G2). Now, let ey = wu and e; = vx be two edges in G; and Go respectively.
Certainly, e is a common edge between the edges e; and eq, which is not possible and so (D) has exactly one
component. Let H = K3 ,,—1 be the component of (D). As G is connected, either u or v should be a pendant
vertex in [ and thus G is isomorphic to a graph obtained from a star K ,,—1 by subdividing exactly one edge
of K1 m,m—1 by once. The converse is obvious. O

Next, we characterize graphs G for which p2(G) = m — 2. For this, we use the following definitions and
describe new family of graphs as follows.

Definition 3.4. (i) An edge e = uw has vertices v and v that are saturated by e. Given a set of edges D, denote
the set of vertices saturated by edges of D by Vp.

(ii) A non-pendant edge e = wv is a support edge of G if either u or v is a support vertex in G.

Observation 3.5. If GG is a graph of size at least 3 that is not a star and D is an edge open packing set of G
such that (D) contains k > 2 components, then F — D contains at least k edges.

Let A1, A2 and As be the families of graphs obtained from Ps, Ps and P; respectively by attaching (> 0)
number of pendant edges at each support vertex of Ps, Ps and Ps.

Let A4 and As be the families of graphs obtained from C3 and Cy respectively by attaching ¢(> 0) pendant
edges at exactly one vertex of C3 and exactly one vertex of Cj.

Let Ag be the family of graphs obtained from a star K; ;, where s > 3 by subdividing exactly two edges of
K s once at a time.

Let A7 be the family of graphs obtained from a star K s, where s > 3 by attaching two pendant edges at
exactly one of the pendant vertices of K s.

The seven families of graphs are shown in Figure 3.
Theorem 3.6. Let G be a graph with size m. Then pS(G) =m — 2 if and only if G € UT_, A,.

Proof. Suppose p2(G) = m — 2 and let D be a p2-set of G. Then E — D has exactly two edges and so (D)
contains at most two components follows from Observation 3.5. Let e; = uv and ey = xy be the edges in £ — D.
We prove this theorem in the following cases.

Case 1. (D) has exactly one component.

Let (D) = K, s, where s = m — 2 and assume that e; and e are adjacent in G. Without loss of generality,
let v =2 and let (E— D) = P : (u,e1,2,ea,y). As G is connected and |E — D| = 2, the set Vp should
contains at least one vertex but at most two vertices of P.

If Vp contains exactly one of the vertices u,x and y, then none of the vertices u,z and y will become the
center vertex of K ;. Otherwise, if any one of the vertices u,x and y is the center vertex of K ,, then the
edge(s) on P incident at that center vertex together with D forms an edge open packing set of G, which
produces a contradiction to the maximality of D. Therefore, if Vp contains exactly one vertex of P, then it is
a pendant vertex of K ;. Further, if s = 1, then either G is P4 or a star, which implies that p2(G) > m —1,
a contradiction and this yields that s > 2. Now, if V contains exactly one of u and y, then G € A;. Suppose
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FIGURE 3. Families from A; to Ax.

x € Vp and s = 2. Then G is isomorphic to the graph obtained from the star K 3 by subdividing exactly
one edge of K 3 by once and so p(G) = m — 1 follows from Theorem 3.3. This is a contradiction and hence
s > 3. Therefore, G € A7y when s > 3 and = € Vp.
Suppose Vp contains two vertices of P. Now, we first claim that ¢ Vp. If not, then either D U {zu} or
D U {ay} forms an edge open packing set according as u € Vp or y € V. This is a contradiction and hence
u,y € Vp. If both u and y are the pendant vertices of K s, then G € A4 and G € As according as s = 1
and s > 2. If any one of v and y is the center vertex of K; ,, then G € Ay.
Now, let us consider that the edges e; = uv and es = xy are independent in (E — D). Since G is connected
and D is edge open packing, the component K; s of (D) should consist of exactly one vertex from e; and
one vertex from ez, and both which cannot be the center vertex of K ;. Certainly, these two vertices are
the pendant vertices of K; s and in which case G € Ag.
Case 2. (D) has two components.

Let H; = K1, and Hy = K;; be the components of (D), where a +b = m — 2. Since G is connected and
no two edges of D have a common edge in E — D, it follows that e; and ey should be adjacent in (E — D).
Without loss of generality, let = v. Certainly, « ¢ Vp as D is an edge open packing set of G and so exactly
one of the vertices of v and y belongs to Hy and the other vertex in Hy. Suppose v € V(H;) and y € V(Hz).
Then G € A;, when both u and y are the center vertices of Hy and Hs respectively. If both u and y are the
pendant vertices of Hy and Hs, then

(i) Ge Ay whena=b=1.

(ii) Ge Ay whena=1andb>1lora>1and b=1.

(ili) G € A3 when a > 1 and b > 1.
Finally, if u is the center vertex of H; and y is a pendant vertex of Hs, then we have

(i) GeA; whena>1and b=1.

(i) G € Ay when a > 1 and b > 1.
Conversely, assume that G € U!_;A;. Since p2(G) = m only when G is a star and p2(G) = m — 1 only when
G is a graph stated in Theorem 3.3, which implies that p2(G) < m — 2 if G € UT_, A;.
If G € A4, then the set of all pendant edges is an edge open packing set of G so that p2(G) = m — 2. Suppose
G € Ay UAy. Then the set of all pendant edges with exactly one of its support edges forms an edge open
packing set of G and thus p2(G) = m — 2. Suppose G € As U As. Then the set of all pendant and support
edges is an edge open packing set of G and so p2(G) =m — 2. If G € Ag U A7, then the edges in K s forms
an edge open packing set of G and hence p2(G) = m — 2.

O
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FIGURE 4. A graph in 3 ;3.

In the following proposition, we present an upper bound for p¢ in terms of the size and the minimum degree.

Proposition 3.7. Let G be a graph of size m. Then p2(G) < %.
Proof. Let D be a p2-set of G and let uv € D. Since D is an edge open packing set, it follows that £ — D contains
at least (0 —1)-edges incident with « or v and which holds for every edge in D. Thus |E(G) — D| > |D|(6(G) —1)
and hence the result follows. O

Next, we characterize r-regular graphs which attain the bound in the above proposition. For this purpose,
we construct a family of r-regular graphs v, ,, as follows.

Let V(G) = X UY U Z such that no two vertices of X or Y or Z are adjacent, where |X| =5 — 3, [Y[ =&
and |Z| = g-. Consider (r,r — 1)-biregular graph with the vertex sets X and Y in which the degree of each
vertex in X is r and the degree of each vertex in Y is r — 1. The existence of a biregular graph is possible by
the condition that | X|r = [Y|(r — 1). Now, join each vertex in Z to r vertices of Y such that N(u) N N(v) = ¢
for any two vertices u,v € Z and let G be the resultant graph. It is obvious that G is an r-regular graph with

n vertices such that n = 0(mod 2r) (Fig. 4).
Theorem 3.8. Let G be an r-regular graph. Then p2(G) = = if and only if G € Yy p.

Proof. Assume that G € 1, ,,. Obviously, the set of edges connecting the vertices of Y to the vertices of Z in
the above construction forms an edge open packing set of G so that p2(G) > g=r = 2. Thus p2(G) = =* follows
from Proposition 3.7.

Conversely, let G be an r-regular graph of order n such that p2(G) = 2. Suppose D is a pg-set of G with
H = K;,4(t < r) as one of its component, then |E — D| > p2(G)r — p2(G) + r — ¢ and which in turns that
2 (G) < w < ™, a contradiction. Therefore, every component of (D) is isomorphic to K, and there are

5= copies of such components in (D). Let Y and Z be two sets of pendant vertices and support vertices of (D)
respectively. Then |Y'| = § and |Z| = g%. Since D is a p?-set, no two vertices of Y are adjacent and no two
vertices of Z are adjacent. Let X be the set of vertices in V' — Vp. Since G is r-regular and every vertex in Z
has degree 7, it follows that each vertex in X is adjacent with r vertices in Y alone and thus G € ¥, ;. (]

Theorem 3.9. Let G be a graph with the size and the cligue number w. Then p2(G) < m — % + 1.

Furthermore, p2(G) = m — @ + 1 if and only if G is either K, or a graph obtained from K, by attaching
any number of pendant edges at exactly one vertex of K,.

Proof. Let H be a maximum clique and D be a maximal edge open packing set of G. Then D contains at most
one edge from H and hence we achieved the inequality.

Suppose p2(G) = m — “’(“JT_” + 1. Then D contains exactly one edge from H and all the edges from F =
E(G)\ E(H) (Note that this set may be empty). We first claim that every vertex that lies outside of H is
pendant. Suppose not, Let u, v, w be the vertices of G such that u € V(H), v,w € V\V(H) and wv,vw € E(G).
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As F C D, the set D consists both the edges uv,vw, it follows that no edge of H belong to D, which is not
true. Thus, every vertex outside of H is pendant. Also, since F' C D, F itself is an edge open packing set of G.
Thus (F) is a star and hence either G = K, or a graph obtained from K, by attaching any number of pendant
edges at exactly one vertex of K,. Conversely, if G & K,,, then p2(G) =1=m — W(WT_U + 1. Suppose G is a
graph obtained from K, by attaching any number of pendant edges at exactly one vertex of K,,. Then the set
of pendant edges of G together with exactly one edge of K, that is, adjacent with these pendant edges forms
an edge open packing set of G and thus p2(G) =m — % +1. O

Proposition 3.10. If G is a graph with g(G) > 3, then p2(G) > {@—‘ — 1. Moreover, the equality holds if
and only if G is either complete or a cycle of size m with m # 0(mod 4).

Proof. Consider a cycle C in G such that the length of C is equal to g(G). Then by Proposition 2.2, we have
p2(G) 2 p2(C) > [42] 1.

Suppose p2(G) = {@—‘ — 1. If g(G) = 3, then p¢(G) = 1 and thus G is complete. Assume that g(G) > 4.

Suppose G is not a cycle. Let e be an edge incident at the vertex on C, say v and label eq, e2,...,e4q) to the

edges of C such that e; and es are incident at v. Then the set D = {ei+2L%J 1< < {@—‘ — 1} U{e} is an

edge open packing of G and thus p2(G) > |D| = {@-‘ —1+1= {@-‘ , a contradiction and hence G is a cycle.
Now, by Proposition 2.2, we have G is a cycle with g(G) # 0(mod 4). The converse is just a verification. O

Definition 3.11 ([1]). A subset S of F is called a 2-edge packing if Nle] N N[f] = ¢ for all e, f € S. The
maximum cardinality of a 2-edge packing in G is called the 2-edge packing number of G and is denoted by
Pj(G).

Theorem 3.12. For any graph G, we have Py(G) < p2(G) < A(G)Py(G).

Proof. Let D be a 2-edge packing set of G. Since no two edges in D have a common edge in G, the set D is
an edge open packing set of G so that Py(G) < p2(G). Further, any maximal edge open packing set D’ of G
such that (D’) has at most Pj(G) components and each component has at most A(G) edges, it follows that
#(G) < A(G)PYG). O

Definition 3.13 ([14]). For all 1 <i<mn—1,

(i) An alternate triangular snake A(T),) is obtained from a path wu,us,...,u, by joining u; and ;41 (alter-
nately) to a new vertex v;. That is every alternate edge of a path is replaced by Cs.

(ii) An alternate quadrilateral snake A(QS,,) is obtained from a path wuy,us, ..., u, by joining wu;, u;+1 (alter-
nately) to a new vertex v;, w; respectively and then joining v; and w;. That is every alternate edge of a
path is replaced by Cj.

Theorem 3.14. Given any two positive integers a,b > 1 and an integer k > 3 with (ﬂ <a <b < ka, there
exists a graph G such that Py(G) = a, p2(G) = b and A(G) = k.

Proof. If a = b =1, then G is a complete graph on k + 1 vertices. If a,b > 1 and b = k, then G is obtained from
K, by subdividing exactly a edges in K 3. Suppose a,b > 1 and b # k. Then consider the following cases.

Case 1. b < k.
Consider a star K j with the center vertex u and let vy, vs,...,v; be the pendant vertices of K ;. Form a
clique by making the adjacency between every pair of vertices of {u, vy, va,...,vk_p+1} and attach exactly

one pendant vertex w; to the vertex vg_py144 for all 1 < i < a — 1. Let G be the resultant graph. For
instance, a graph G with a = 3, b =5 and k = 8 is given in Figure 5.
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FIGURE 5. A graph G with a =3, b =15 and k = 8.
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FIGURE 6. A graph G; with a =5 and b= 9.

Now, consider the sets S; = {wiv(k,bHH) 1<i<a- 1} U{vive} and Sy = {uv(k,bﬂ-) 1< < b}. It is
easy to see that S; and Sy are the 2-edge packing set and edge open packing set of G respectively and thus
P)(G) > |S1l=a—141=a and p2(G) > |Sz| = b. Suppose D is a maximal 2-edge packing set of G. If D
consisting an edge e of G which is incident at u, then we cannot add any edge to D and so |D| =1 in this
case. If D consisting no edge incident at u, then D can include at most one edge from the clique, say vivs,
and all the pendant edges that are not incident at u. Thus |D| < 1+ (a —1) = a. Let Dy be a maximal edge
open packing set of G. Then D; has at most one edge from the clique. If D; has no edge from the clique,
then D; has exactly two edges, one from the set of pendant edges not incident at v and the other one is
adjacent to the chosen pendant edge. Suppose D; has one edge from the clique, say e. If e is not incident
at u, then D should contains all the pendant edges that are not incident at u, and in this case, we have
|D1] =1+ (a — 1) = a. On the other hand, if e is incident at w, then Dy can contains all the edges incident
at u not belonging in the clique and so |Di| =1+ (b—1) =b.
Case 2. b> k.
Now, we construct a graph G in the following subcases based on the values of k£ as follows.
Subcase 2.1. k= 3.
If a < b < 2a, then construct an alternate triangular snake A(Ts,) and name the vertices in ith triangle
by C% : (r;, si,t;) for all 1 < i < a. Introduce the set of vertices {z; : 1 < j <b—a} and join z; to s; for
all 1 < j <b—a. Let Gy be the resultant graph. Figure 6. shows a graph G; with a =5 and b= 9.
Define the sets Ry = {s;t; : 1 <i < a}and Ry = {z;s; : 1 < j <b—a}. Now, the sets Ry and Ry UR; are
2-edge packing and edge open packing of G respectively so that Pj(G1) > a and p2(G1) > a+b—a =0b.
Forall1 <i<b—a,let A; = ({2i,5i,75,ti,ri41}) and forallb—a < j < a—1,let B; = ({s;,75,t;,7j11})
and let C = ({sq,7q,ta}) (Note that the subgraphs B; and C of G become null graphs when b = 2a
and B; alone null graph when b = 2a — 1). Then any maximal 2-edge packing set has at most one edge
from each A;, each B; and from C, so we get P5(G1) < (b—a)+ (2a—b—1) +1 = a. Also, any maximal
edge open packing set contains at most two edges from each A; and at most (2a — b) edges from each
U?;gfaBj U C. Therefore, p2(G1) < 2(b—a) + (2a —b) = b.
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FIGURE 7. A graph G5 with a =5 and b = 13.
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F1GURE 8. A graph G with a =10, b =21 and k = 5.

Suppose 2a < b < 3a. Then construct an alternate quadrilateral snake A(QS2,) and denote the vertices
in ith cycle by C} : (u;, v;, w;, ;) for all 1 <4 < a. Introduce the set of vertices {y; : 1 < j < b— 2a} and
join y; to v; for all 1 < j < b— 2a. Let G2 be the resultant graph. Figure 7. illustrates a graph G with
a=>5and b=13.
Now, the set {vw;:1<i<a} is a 2-edge packing set of Gz and the set
{viy; + 1 <i <b—2a} U{vw;,vu; : 1 <i<a}is an edge open packing set of G2 so that Py(G2) > a
and p2(G2) > b —2a + 2a = b. One can easily verify that any maximal 2-edge packing set has at most a
edges and any maximal edge open packing set has at most b edges in Gs.
Subcase 2.2. k£ > 4.
Now, we construct a graph G that satisfies the given requirement as follows. Let s = (%W and denote
R = b — k(s — 1). Consider the alternate quadrilateral snake A(QS;), where ¢t = 2(s — 1). For all
1 <i < s—1, denote the ith cycle of A(QS;) by C% : (u;,v;, w;, x;,u;). Attach (k — 2)-pendant edges at
each v;, say vivgj), where 1 <i<s—1and1<j<k-—2. Introduce s — 1 vertices uj,ub,...,u,_; and
join each u to the vertex u; for all 1 <i < s— 1. Let H be the resultant graph.
If R = 1, construct the cycle Cs : (us,vs, Zs,us) and join the vertex z,_1 of H to us. Let Hy be the

resultant graph and define By = {v(l) 1}(2), - v(k_Q),wi 1 <i<s— 1} in Hy.

v 0 ’ e
If R = 2, construct the cycle Cs : (us, vs, s, us) and join the vertex xs_1 of H to us. Further introduce
the vertices v/, and vgl). Now, join u/, to us and join vgl) to vs. Let Hs be the resultant graph and define

By = {0(1),1)1(2),...,1)“_2),101 1 <i<s— 1} U {vgl)} in Ho.

K3 K3
If R > 3, construct the cycle C§ : (us,vs, ws, Ts,us) and join the vertex zs_1 to us. Moreover, attach
b— k(s — 1) — 2 pendant edges at vs and name the pendant vertices incident at v, by oY) where
1< j <b—k(s—1)—2. Introduce the vertex v/, and join it to the vertex us. Address Hj3 be the resultant

graph and define Bs = {vi(l),v?),...,vl(k_m,wi 1<i<s— 1} U {vgj) 1<ji<b—k(s—1) 72} in
Hs.
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F1GURE 10. A graph G with a =12, b =24 and k = 5.

Now, choose any a — s number of vertices from either By or By or B3 accordingas R=1or R=2or R=3
and attach exactly one pendant edge at each of these (a — s) vertices, say e, es,...,e,—s and let G be the
resultant graph. Graphs that are exhibiting R = 1, R = 2 and R > 3 respectively are given in Figures 8-10.
Define F1 = {e1,ea,...,e4_s}. For R = 1, the set Uf;llNe(vi) U {usvs} forms an edge open packing set of G
and so p2(G) > |USZEN, (v5) U {usvs}| = (Zj;ll deg vi) +1=Fk(s—1)+1=b—R+1=b—1+1=band the
set {uul 11 <i<s—1}UFE;U{usvs} is a 2-edge packing set of G so that Py(G) > (s—1)+(a—s)+1 =a.
For R = 2, the set Uf:_llNe(v,-) U {usvs,vsvgl)} forms an edge open packing set of G so that p2(G) >

‘Uf;llNe(vi) U {Usvs,vsvgl)}’ - (Zf;ll deg vi) +2=k(s—1)+2=b—R+2=>b—2+2=>b and the set
{uu; : 1 <i < s}UEF is a 2-edge packing set of G so that P;(G) > s+ (a — s) = a.

For R > 3, the set Ui_;N.(v;) is an edge open packing set of G so that p2(G) > |Ui_;Nc(v;)| =
(Zf;ll deg vi) +degvs = k(s —1)+b—k(s—1) = b and the set {wu):1<i<s}UE; is a 2-edge
packing of G so that P(G) > s+ (a — s) = a.

Let A be the set of edges of G such that A = E[A(QS;)] and B = E(G) \ A. Then any maximal edge open
packing D of G can have at most 2(s — 1)-edges from A and at most b — 2(s — 1) edges from B and thus

p2(G) < |D| = b. Also, one can easily verify that any 2-edge packing set consisting at most a edges from G.
Therefore, p°(G) = b and Py(G) = a. O

4. CONCLUSION AND SCOPE

In this paper, we have introduced an edge open packing number p¢(G) and determined the exact value of p9
for some standard graphs. Also, we have obtained several bounds on it and some characterizations were done.
Even though, there is a wide scope for further research on this topic in the following directions.
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(1) Characterize graphs G for which p2(G) = IR

(2) Characterize graphs G for which
(i) p2(C) = PY(C).
(i) p2(G) = AG)PY(G).

(3) Obtain sharp bounds for the value of p? for the family of trees.

(4) Studying the effect of removal of a vertex or an edge from a graph G is of practical importance. This kind
of studies can be carried out in many graph-theoretic parameters, one can see [7-9]. Similar to that, one
can analyze, how the value of p¢ is changed when a vertex or an edge is removed from G.
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