Flexible fractional transportation problem with multiple goals: a pentagonal fuzzy concept
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 3789-3800

We present the framework of the multiobjective fractional transportation problem in the form of pentagonal fuzzy supply and demand. The ideal transportation model is set up to match the decision makers’ preferences in competing for the criteria, and transportation costs, delivery time, degradation, environmental and social concerns are the objectives. We employed flexible fuzzy goal programming to handle the Model’s complexity to improve the reasonable compromise. The real-world problem of wind turbine blades is used to validate the superiority and effectiveness of the technique.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022169
Classification : 90C32, 46N10
Keywords: Multiobjective optimization, fractional programming, transportation problem, flexible fuzzy goals, pentagonal fuzzy number
@article{RO_2022__56_6_3789_0,
     author = {Khan, Mohd Arif and Haq, Ahteshamul and Ahmed, Aquil},
     title = {Flexible fractional transportation problem with multiple goals: a pentagonal fuzzy concept},
     journal = {RAIRO. Operations Research},
     pages = {3789--3800},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022169},
     mrnumber = {4504414},
     zbl = {1536.90224},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022169/}
}
TY  - JOUR
AU  - Khan, Mohd Arif
AU  - Haq, Ahteshamul
AU  - Ahmed, Aquil
TI  - Flexible fractional transportation problem with multiple goals: a pentagonal fuzzy concept
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3789
EP  - 3800
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022169/
DO  - 10.1051/ro/2022169
LA  - en
ID  - RO_2022__56_6_3789_0
ER  - 
%0 Journal Article
%A Khan, Mohd Arif
%A Haq, Ahteshamul
%A Ahmed, Aquil
%T Flexible fractional transportation problem with multiple goals: a pentagonal fuzzy concept
%J RAIRO. Operations Research
%D 2022
%P 3789-3800
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022169/
%R 10.1051/ro/2022169
%G en
%F RO_2022__56_6_3789_0
Khan, Mohd Arif; Haq, Ahteshamul; Ahmed, Aquil. Flexible fractional transportation problem with multiple goals: a pentagonal fuzzy concept. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 3789-3800. doi: 10.1051/ro/2022169

[1] F. L. Hitchcock, The distribution of a product from several sources to numerous localities. Stud. Appl. Math. 20 (1941) 224–230. | MR | JFM

[2] G. B. Dantzig and M. N. Thapa, Linear Programming 2: Theory and Extensions. Springer Science & Business Media (2006).

[3] I. D. Ezekiel and S. O. Edeki, Modified Vogel approximation method for balanced transportation models towards optimal option settings. Int. J. Civil Eng. Technol. 9 (2018) 358–366.

[4] K. Swarup, Transportation technique in linear fractional functional programming. J. R. Nav. Sci. Ser. 21 (1966) 256–260.

[5] M. Jain and P. K. Saksena, Time minimizing transportation problem with fractional bottleneck objective function. Yugoslav J. Oper. Res. 22 (2012) 115–129. | MR | Zbl | DOI

[6] S. T. Liu, Fractional transportation problem with fuzzy parameters. Soft Comput. 20 (2016) 3629–3636. | DOI

[7] A. K. Bhurjee and G. Panda, Multiobjective interval fractional programming problems: an approach for obtaining efficient solutions. Opsearch 52 (2015) 156–167. | MR | Zbl | DOI

[8] N. Cetin and F. Tiryaki, A fuzzy approach using generalized dinkelbach’s algorithm for multiobjective linear fractional transportation problem. Math. Probl. Eng. (2014). | DOI | MR | Zbl

[9] S. Narayanamoorthy and P. Anukokila, Optimal solution of fractional programming problem based on solid fuzzy transportation problem. Int. J. Oper. Res. 22 (2015) 91–105. | MR | Zbl | DOI

[10] B. Radhakrishnan and P. Anukokila, A compensatory approach to fuzzy fractional transportation problem. Int. J. Math. Oper. Res. 6 (2014) 176–192. | MR | Zbl | DOI

[11] K. Lachhwani, Modified FGP approach for multi-level multi objective linear fractional programming problems. Appl. Math. Comput. 266 (2015) 1038–1049. | MR | Zbl

[12] S. Pramanik and D. Banerjee, Multiobjective chance constrained capacitated transportation problem based on fuzzy goal programming. Int. J. Comput. App. 44 (2012) 42–46.

[13] M. Jain and P. K. Saksena, Time minimizing transportation problem with fractional bottleneck objective function. Yugoslav J. Oper. Res. 22 (2012) 115–129. | MR | Zbl | DOI

[14] S. Sadia, N. Gupta and Q. M. Ali, Multiobjective capacitated fractional transportation problem with mixed constraints. Math. Sci. Lett. 5 (2016) 235–242. | DOI

[15] J. P. Costa, Computing non-dominated solutions in MOLFP. Eur. J. Oper. Res. 181 (2007) 1464–1475. | Zbl | DOI

[16] K. T. Atanassov, Intuitionistic Fuzzy Sets. Physica, Heidelberg (1999) 1–137. | MR

[17] I. Deli and N. Çağman, Intuitionistic fuzzy parameterized soft set theory and its decision making. Appl. Soft Comput. 28 (2015) 109–113. | DOI

[18] T. Beaula and M. Priyadharsini, A new algorithm for finding a fuzzy optimal solution for intuitionistic fuzzy transportation problems. Int. J. Appl. Fuzzy Sets Artif. Intell. 5 (2015) 183–192.

[19] G. Gupta and K. Anupum, An efficient method for solving intuitionistic fuzzy transportation problem of type-2. Int. J. Appl. Comput. Math. 3 (2017) 3795–3804. | MR | Zbl | DOI

[20] F. Smarandache, Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis. American Research Press (1998). | MR | Zbl

[21] M. Abdel-Basset, G. Manogaran, A. Gamal and F. Smarandache, A hybrid approach of neutrosophic sets and DEMATEL method for developing supplier selection criteria. Design Autom. Embedded Syst. 22 (2018) 257–278. | DOI

[22] A. H. Nafei and S. H. Nasseri, A new approach for solving neutrosophic integer programming problems. Int. J. Appl. Oper. Res. Open Access J. 9 (2019) 1–9.

[23] S. A. Edalatpanah, A nonlinear approach for neutrosophic linear programming. J. Appl. Res. Ind. Eng. 6 (2019) 367–373.

[24] R. M. Rizk-Allah, A. E. Hassanien and M. Elhoseny, A multiobjective transportation model under neutrosophic environment. Comput. Electr. Eng. 69 (2018) 705–719. | DOI

[25] J. Ye, Neutrosophic number linear programming method and its application under neutrosophic number environments. Soft Comput. 22 (2018) 4639–4646. | DOI

[26] F. Ahmad, Robust neutrosophic programming approach for solving intuitionistic fuzzy multiobjective optimization problems. Complex Intell. Syst. 7 (2021) 1935–1954. | DOI

[27] A. Panda and M. Pal, A study on pentagonal fuzzy number and its corresponding matrices. Pac. Sci. Rev. B: Humanities Soc. Sci. 1 (2015) 131–139.

[28] S. K. Das, S. A. Edalatpanah and T. Mandal, A proposed model for solving fuzzy linear fractional programming problem: numerical point of view. J. Comput. Sci. 25 (2018) 367–375. | MR | DOI

[29] S. K. Das, Application of Transportation Problem Under Pentagonal Neutrosophic Environment. Infinite Study (2020).

[30] S. Midya, S. Kumar Roy and G. Wilhelm Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO: Oper. Res. 55 (2021) 1715–1741. | MR | Zbl | Numdam | DOI

[31] R. Kumar, S. A. Edalatpanah, S. Jha and R. Singh, A Pythagorean fuzzy approach to the transportation problem. Complex Intell. Syst. 5 (2019) 255–263. | DOI

[32] L. Kane, H. Sidibe, S. Kane, H. Bado, M. Konate, D. Diawara and L. Diabate, A simplified new approach for solving fully fuzzy transportation problems with involving triangular fuzzy numbers. J. Fuzzy Extension App. 2 (2021) 89–105.

[33] J. Pratihar, R. Kumar, S. A. Edalatpanah and A. Dey, Modified Vogel’s approximation method for transportation problem under uncertain environment. Complex Intell. Syst. 7 (2021) 29–40. | DOI

[34] N. A. Gadhi, K. Hamdaoui, M. El Idrissi and F. Z. Rahou, Necessary optimality conditions for a fractional multiobjective optimization problem. RAIRO: Oper. Res. 55 (2021) S1037–S1049. | MR | Zbl | Numdam | DOI

[35] L. Kané, M. Diakité, H. Bado, S. Kané, K. Moussa and K. Traoré, A new algorithm for fuzzy transportation problems with trapezoidal fuzzy numbers under fuzzy circumstances. J. Fuzzy Extension Appl. 2 (2021) 204–225.

[36] V. D. Joshi, J. Singh, R. Saini and K. S. Nisar, Solving multi-objective linear fractional transportation problem under neutrosophic environment. J. Interdisciplinary Math. 25 (2022) 123–136. | DOI

[37] T. Pathinathan and K. Ponnivalavan, Pentagonal fuzzy number. Int. J. Comput. Algorithm 3 (2014) 1003–1005.

[38] C. T. Chang, On the mixed binary goal programming problems. Appl. Math. Comput. 159 (2004) 759–768. | MR | Zbl

[39] G. A. Ramzannia-Keshteli, S. H. Nasseri, R. M. Ganji and S. Bavandi, Multichoice goal programming with flexible fuzzy goals and constraints. In: 2019 7th Iranian Joint Congress on Fuzzy and Intelligent Systems (CFIS). IEEE (2019, January) 1–4. | DOI

[40] A. Haq, I. Ali and R. Varshney, Compromise allocation problem in multivariate stratified sampling with flexible fuzzy goals. J. Stat. Comput. Simul. 90 (2020) 1557–1569. | MR | Zbl | DOI

[41] A. Chakraborty, S. P. Mondal, S. Alam, A. Ahmadian, N. Senu, D. De and S. Salahshour, The pentagonal fuzzy number: its different representations, properties, ranking, defuzzification and application in game problems. Symmetry 11 (2019) 248. | Zbl | DOI

[42] C. Veeramani, S. A. Edalatpanah and S. Sharanya, Solving the multiobjective fractional transportation problem through the neutrosophic goal programming approach. Discrete Dyn. Nat. Soc. 2021 (2021). | DOI

Cité par Sources :