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FLEXIBLE FRACTIONAL TRANSPORTATION PROBLEM WITH MULTIPLE
GOALS: A PENTAGONAL FUZZY CONCEPT

Mohd Arif Khan , Ahteshamul Haq* and Aquil Ahmed

Abstract. We present the framework of the multiobjective fractional transportation problem in the
form of pentagonal fuzzy supply and demand. The ideal transportation model is set up to match the
decision makers’ preferences in competing for the criteria, and transportation costs, delivery time,
degradation, environmental and social concerns are the objectives. We employed flexible fuzzy goal
programming to handle the Model’s complexity to improve the reasonable compromise. The real-world
problem of wind turbine blades is used to validate the superiority and effectiveness of the technique.
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1. Introduction

We are all aware that the transportation problem (TP) is a multiobjective decision-making problem. The TPs
are designed to transport numerous items to various locations at a lower cost, shorter transportation time, less
production cost, etc. Assume a distribution centre wants to find the best transportation strategy for transporting
identical commodities from M sources (also known as origin, supply, or capacity centres) to N locations (also
called destination, demand or requirement centres). Furthermore, every source has materials to deliver to various
destinations, and all destinations have a predicted requirement for goods to be received from sources. The TP
aims to calculate the ideal quantities to transport from source to all destinations while minimizing production
costs, transportation costs, and delivery time. When it comes to maximizing the relationship between physical
and/or economic factors, fractional programming is beneficial as programming models can better fit real-world
situations. Linear fractional programming (LFP) problems are important because many real-world problems
are based on relative ratios, such as financial and corporate planning (debt/equity ratios), production planning
(inventory/sales, output/employee ratios), and health care and hospital planning (cost/patient, nurse/patient
ratios). Several strategies for solving LFP problems have been explored in previous research. The real-world
problems represented by fractional functions are frequently met in the following situations: return on investment,
current ratio, and risk assets to capital, foreign loans to total loan, residential mortgages to total mortgages,
for finance or corporate planning, and in transportation such as actual cost to standard cost, etc. In the
managerial domain, the ratio functions profit and cost quality to be maximized are essentially competing;
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such problems are fundamentally multiobjective LFP problems. That is present in the various applications of
the operations research field, such as resource allocation, transportation, production, finance, location theory,
stochastic process, game theory, etc. The multiobjective fractional problem with multiple conflicting linearities
under the given linear constraints is called the multiobjective LFP problem.

2. Literature review

TP is one of the oldest applications of the Linear Programming Problem. TP deals with problems concern-
ing the function’s effectiveness when we associate several origins with each possibility of different destinations.
TP may also involve the movement of a product from plant to warehouses, warehouses to wholesalers, whole-
salers to retailers and retailers to customers. It is a circumstance in which a product or products are to be
carried from several sources to multiple sinks to save costs, travel time, and production costs, among other
things. Hitchcock [1] created the basic TPs. To solve the TP, Dantzig and Thapa [2] described the simplex
approach. Ezekiel and Edeki [3] recently discussed a modified Vogel’s approximation technique to tackle the
TP. The FTP was initially proposed by Swarup [4], Jain and Saksena [5] studied the time minimizing TP with
fractional bottleneck objective function (TMTP-FBOF). Liu [6] investigated the FTPs where fuzzy parameters
have represented the cost coefficients and right-hand sides, whereas Bhurjee and Panda [7] developed a novel
multiobjective fractional programming problem with objective function parameters and interval constraints.
Cetin and Tiryaki [8] developed a multi-level fractional transportation problem (MLFTP) and discussed a fuzzy
approach for obtaining a Pareto-optimal compromise solution for this problem. Narayanamoorthy and Anukokila
[9] examined the fractional solid TP, in which supply, demands, and conveyance capacities were assumed to be
fuzzy variables. Radhakrishnan and Anukokila [10] used a compensating approach to resolve the fuzzy frac-
tional TP. Based on the fuzzy goal programming (FGP) technique, KailashLachhwani [11] presented a modified
method for solving multi-level multiobjective LFP problems. Pramanik and Banerjee [12] presented a chance-
constrained capacitated multiobjective TP with the fuzzy objectives, and a compromise solution was established.
Gupta et al. [13] developed an FGP framework for minimizing the negative deviational variables in the multiob-
jective TP. Examples of fractional programming objectives for TPs are minimizing actual cost/standard cost,
actual time/standard time, actual deterioration/standard deterioration, and risk assets/capital. The minimum
distance approaches for fuzzy programming and lexicographic GP are used to obtain a compromise solution
to the multiobjective fractional transportation problem (MOFTP) with mixed constraints by Sadia et al. [14].
Costa [15] developed a weighted sum new method for optimizing the linear fractional objective functions.

Decision-makers (DM) desire a more realistic technique to deal with uncertainty in real-world situations
based on the effectiveness of fuzzy sets in real-world applications. As a result, Atanassov [16] proposed a new
set known as the intuitionistic fuzzy set (IFS). In decision-making problems [17], intuitionistic FGP has been
widely used. Some researchers have also employed IFS to solve various transportation issues [18,19]. IFS consider
both the degree of falsity and truth, but it does not consider indeterminacy. As a result, it cannot deal with
indeterminacy in the real world. To address the limitations of the fuzzy set and IFS, Smarandache [20] proposed
the neutrosophic set (NS) structure for developing a reasonable solution to any real-world situation. The IFS is
extended or generalized by NS. It effectively and efficiently portrays real-world problems by considering all com-
ponents of decision scenarios Abdel-Basset et al. [21]. Nafei and Nasseri [22] investigated integer neutrosophic
programming. Edalatpanah [23] designed a nonlinear neutrosophic programming framework. Rizk-Allah et al.
[24] created a neutrosophic-based compromise optimal solution framework for the multiobjective TP. Ye [25]
established some basic neutrosophic number operations and a neutrosophic function before building a neutro-
sophic number linear programming (NNLP) scheme to deal with the neutrosophic numbers. Ahmad [26] recently
solved multiobjective optimization using the robust neutrosophic programming approach. Panda and Pal [27]
discussed the pentagonal fuzzy number (PFN) properties and arithmetic operations. Das et al. [28] discussed the
real-life multiobjective fractional programming problem and proposed the ranking approach between two fuzzy
triangular numbers. Das [29] described the TP under the single-valued pentagonal neutrosophic numbers and
introduced the arithmetic operations. Midya et al. [30] presented a multiobjective fixed-charged TP in a rough
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decision-making framework, and a transformation procedure is modified to convert the non-linear problem into
its linear form. Kumar et al. [31] discussed a computing procedure for solving the fuzzy Pythagorean TP under
three different models. Kane et al. [32] proposed a two-step method for solving the TP where the parameters
are presented in the non-negative triangular fuzzy numbers with a numerical illustration. Pratihar et al. [33]
discussed modifying the classical Vogel’s approximation method for solving the interval type 2 fuzzy TP. Gadhi
et al. [34] discussed the fractional multiobjective optimization problem and gave the necessary optimality con-
dition for convexity and the Karush–Kuhn–Tucker multipliers. Kane et al. [35] discussed the fully fuzzy TP
involving trapezoidal fuzzy numbers for the transportation costs and values of the supply and demand. They
proposed a two-step method for solving the fuzzy TP where fuzzy triangular numbers represent the problem’s
parameters. Joshi et al. [36] described the neutrosophic environment’s multiobjective linear fractional TP. Pathi-
nathan and Ponnivalavan [37] described the PFN, including addition, subtraction, and arithmetic operations.
Chang [38] discussed the mixed binary problem with GP; Ramzannia et al. [39] presented flexible fuzzy goals
(FFGs) and constraints for multichoice goal programming. Haq et al. [40] described how to convert a nonlinear
programming problem into a binary goal programming (BGP) problem and solve it using the FFG programming
approach.

This article examines an FFG model for the multiobjective fractional TP. The supply and demand of the
TP are in the form of PFN with flexible fuzzy type goals. The crisp form of the problem is converted using the
defuzzified method to formulate it into the integer Nonlinear Programming Problem. The formulated problem
is transformed into a BGP problem, and the solution is produced by utilizing the multichoice GP idea with
LINGO software. The numerical example is also examined in terms of its practical use.

3. Mathematical model of MOFTP and pentagonal fuzzy set

This section discussed the MOFTP’s general form and Pentagonal fuzzy set. The general model of the MOFTP
is given as

Model 1

Min 𝑍𝑘 =

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(𝑘)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(𝑘)
𝑖𝑗 𝑥𝑖𝑗

=
𝑁𝑘(𝑥)
𝐷𝑘(𝑥)

, 𝑘 = 1, 2, . . . ,𝐾

subject to
{︂∑︀𝐼

𝑖=1 𝑥𝑖𝑗 ≥ 𝑏𝑗 ;
∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤ 𝑎𝑖

𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼

where 𝑛
(𝑘)
𝑖𝑗 is the coefficient vector for the numerator and 𝑑

(𝑘)
𝑖𝑗 is the coefficient vector for the denominator. 𝑎𝑖,

𝑏𝑗 are the available product at 𝑖th source and demand at the 𝑗th destination.
The constraint ensures the restrictions on the goods delivered due to finite availability, while the demand

restrictions ensure that product demand is met at each destination.

(a) Supply and demand: linear pentagonal fuzzy number

Data on some independent factors is rarely accurate in real-life case studies; therefore, there is some uncer-
tainty in the data. As a result, in light of the new information on vagueness, model 1 has been revised.

A fuzzy number can represent the parameters’ uncertainty. As a result, after making the following changes
to all of the assumptions, Model 1 can be recast as follows:

Model 1a

Min 𝑍𝑘 =

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(𝑘)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(𝑘)
𝑖𝑗 𝑥𝑖𝑗

=
𝑁𝑘(𝑥)
𝐷𝑘(𝑥)

, 𝑘 = 1, 2, . . . ,𝐾
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Figure 1. Linear PFN.

subject to
{︂∑︀𝐼

𝑖=1 𝑥𝑖𝑗 ≥ 𝑏̃𝑗 ;
∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤ 𝑎̃𝑖,
𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼.

The items’ demand and production units (Supply) are linear PFNs. Then, the Model 1a will be as follows:

Model 1b

Min 𝑍𝑘 =

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(𝑘)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(𝑘)
𝑖𝑗 𝑥𝑖𝑗

=
𝑁𝑘(𝑥)
𝐷𝑘(𝑥)

, 𝑘 = 1, 2, . . . ,𝐾

subject to

⎧⎪⎨⎪⎩
∑︀𝐼

𝑖=1 𝑥𝑖𝑗 ≥
(︀
𝑏1
𝑗 , 𝑏2

𝑗 , 𝑏3
𝑗 , 𝑏4

𝑗 , 𝑏5
𝑗 ; 𝑘

)︀
,∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤
(︀
𝑎1

𝑖 , 𝑎2
𝑖 , 𝑎3

𝑖 , 𝑎4
𝑖 , 𝑎5

𝑖 ; 𝑘
)︀
,

𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼.

(b) Defuzzification PFN based on removal of area method for linear pentagonal fuzzy number

Model 1b cannot be solved directly; we use the defuzzification methodology [41] based on the removal of area
method for linear PFNs to convert it into an equivalent crisp form. The defuzzification approach was applied
for crisp form.

Let 𝑎̃𝑖 = (𝑎1
𝑖 , 𝑎

2
𝑖 , 𝑎

3
𝑖 , 𝑎

4
𝑖 , 𝑎

5
𝑖 , 𝑘) be a linear PFN, as shown in Figure 1. We used the following expression for

calculating its magnitude:

𝐷(𝑎̃𝑖, 𝑘) =
1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
. (1)

4. Methodology for MOFTP under linear PFN

In this section, we discussed the solving procedure for the MOFTP problems. Using equation (1), we convert
Model 1b into crisp form. The Model 1b will be changed as follows:

Model 2

Min 𝑍𝑘 =

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(𝑘)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(𝑘)
𝑖𝑗 𝑥𝑖𝑗

=
𝑁𝑘(𝑥)
𝐷𝑘(𝑥)

, 𝑘 = 1, 2, . . . ,𝐾

subject to

⎧⎪⎨⎪⎩
∑︀𝐼

𝑖=1 𝑥𝑖𝑗 ≥ 1
10

[︀
𝑘
(︀
𝑏1
𝑗 − 2𝑏3

𝑗 + 2𝑏4
𝑗 + 𝑏5

𝑗

)︀
+

(︀
𝑏2
𝑗 + 4𝑏3

𝑗 + 𝑏4
𝑗

)︀]︀
,∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤ 1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
,

𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼.
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A) Objective function as multiple-goal value: flexible FGP

Model 3

Min 𝑍𝑘 =

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(𝑘)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(𝑘)
𝑖𝑗 𝑥𝑖𝑗

=
𝑁𝑘(𝑥)
𝐷𝑘(𝑥)

≤ (𝑍𝑘1 or Z𝑘2 or . . . or Z𝑘𝑇 ), 𝑘 = 1, 2, . . . ,𝐾

subject to

⎧⎪⎨⎪⎩
∑︀𝐼

𝑖=1 𝑥𝑖𝑗 ≥ 1
10

[︀
𝑘
(︀
𝑏1
𝑗 − 2𝑏3

𝑗 + 2𝑏4
𝑗 + 𝑏5

𝑗

)︀
+

(︀
𝑏2
𝑗 + 4𝑏3

𝑗 + 𝑏4
𝑗

)︀]︀
,∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤ 1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
,

𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼.

The aspiration levels (ALs) are considered for the 𝑘th goal, as 𝑍𝑘1, 𝑍𝑘2, . . . , 𝑍𝑘𝑇 . We minimize deviations from
the 𝑘th goals.

Model 3a

Min
𝐾∑︁

𝑘=1
|𝑍𝑘 − (𝑍𝑘1 or Z𝑘2 or . . . or Z𝑘𝑇 )|, 𝑘 = 1, 2, . . . ,𝐾

subject to

⎧⎪⎨⎪⎩
∑︀𝐼

𝑖=1 𝑥𝑖𝑗 ≥ 1
10

[︀
𝑘
(︀
𝑏1
𝑗 − 2𝑏3

𝑗 + 2𝑏4
𝑗 + 𝑏5

𝑗

)︀
+

(︀
𝑏2
𝑗 + 4𝑏3

𝑗 + 𝑏4
𝑗

)︀]︀
,∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤ 1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
,

𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼.

Therefore,

Model 3b

Min
𝐾∑︁

𝑘=1

𝑤𝑘

(︀
𝑑−𝑘 + 𝑑+

𝑘

)︀

subject to

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑍𝑘 − 𝑑−𝑘 + 𝑑+

𝑘 =
∑︀T

t=1 𝑍𝑘𝑡𝑆𝑘𝑡(𝑏),∑︀𝐼
𝑖=1 𝑥𝑖𝑗 ≥ 1

10

[︀
𝑘
(︀
𝑏1
𝑗 − 2𝑏3

𝑗 + 2𝑏4
𝑗 + 𝑏5

𝑗

)︀
+

(︀
𝑏2
𝑗 + 4𝑏3

𝑗 + 𝑏4
𝑗

)︀]︀
,∑︀𝐽

𝑗=1 𝑥𝑖𝑗 ≤ 1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
,

𝑥𝑖𝑗 ≥ 0, 𝑘 = 1, 2, . . . ,𝐾; 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼

where 𝑆𝑘𝑡(𝑏) is the binary variables term that defines the AL for 𝑘th objective; 𝑑+
𝑘 and 𝑑−𝑘 are over and

underachievement of the 𝑘th goal.

B) The FFG membership function

The nature of objectives is flexible and fuzzy. The objectives’ membership function is as follows:

𝜇(𝐺𝑗(𝑋) ≺𝑓𝑓 𝑍𝑘1 or . . . or 𝑍𝑘𝑆𝑘
) =

𝑍𝑘1 − 𝑍𝑘

𝑃𝑘1
+ 1 or . . . or

𝑍𝑘𝑇 − 𝑍𝑘

𝑃𝑘𝑇
+ 1, 𝑘 = 1, . . . ,𝐾 (2)

where 𝑃𝑘𝑡(𝑘 = 1, 2, . . . ,𝐾), (𝑡 = 1, 2, . . . , 𝑇 ) is the tolerance quantity for the target value 𝑍𝑘𝑡 of the objectives.
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C) The crisp goal value for FFG

If 𝜆𝑘 is the minimal quantity of membership degree which fulfils the objective, i.e.

𝜇(𝑍𝑘(𝑋) ≺𝑓𝑓 𝑍𝑘1 or . . . or 𝑍𝑘𝑇 ) =
𝑍𝑘1 − 𝑍𝑘

𝑃𝑘1
+ 1 ≥ 𝜆𝑘 or . . . or

𝑍𝑘𝑇 − 𝑍𝑘

𝑃𝑘𝑇
+ 1 ≥ 𝜆𝑘, 𝑘 = 1, . . . ,𝐾.

The FFG will be converted into the crisp objective as follows:

𝑍𝑘 ≤ 𝑍𝑘1 + 𝑃𝑘1(1− 𝜆𝑘) or . . . or 𝑍𝑘𝑇 + 𝑃𝑘𝑇 (1− 𝜆𝑘), 𝑘 = 1, . . . ,𝐾. (3)

Model 4

Min 𝑍𝑘 =

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(𝑘)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(𝑘)
𝑖𝑗 𝑥𝑖𝑗

=
𝑁𝑘(𝑥)
𝐷𝑘(𝑥)

≺𝑓𝑓 𝑍𝑘1 or . . . or 𝑍𝑘𝑇 ; 𝑘 = 1, 2, . . . ,𝐾

subject to
𝐽∑︁

𝑗=1

𝑥𝑖𝑗 ≤
1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
,

𝐼∑︁
𝑖=1

𝑥𝑖𝑗 ≥
1
10

[︀
𝑘
(︀
𝑏1
𝑗 − 2𝑏3

𝑗 + 2𝑏4
𝑗 + 𝑏5

𝑗

)︀
+

(︀
𝑏2
𝑗 + 4𝑏3

𝑗 + 𝑏4
𝑗

)︀]︀
,

𝑥𝑖𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼.

Using the principle of MCGP, the above MCGP problem with several ALs may be transformed into a BGP
problem, and the LINGO software is used to achieve the solution.

Model 5

Min 𝑍 =
𝐾∑︁

𝑘=1

𝑑+
𝑗 +

𝐾∑︁
𝑘=1

𝑑−𝑗

subject to

𝑍𝑘 − 𝑑+
𝑘 + 𝑑−𝑘 =

𝑇∑︁
𝑡=1

(𝑍𝑘𝑡 + 𝑃𝑘𝑡(1− 𝜆𝑘))𝑆𝑘𝑡(𝑏),

𝐽∑︁
𝑗=1

𝑥𝑖𝑗 ≤
1
10

[︀
𝑘
(︀
𝑎1

𝑖 − 2𝑎3
𝑖 + 2𝑎4

𝑖 + 𝑎5
𝑖

)︀
+

(︀
𝑎2

𝑖 + 4𝑎3
𝑖 + 𝑎4

𝑖

)︀]︀
,

𝐼∑︁
𝑖=1

𝑥𝑖𝑗 ≥
1
10

[︀
𝑘
(︀
𝑏1
𝑗 − 2𝑏3

𝑗 + 2𝑏4
𝑗 + 𝑏5

𝑗

)︀
+

(︀
𝑏2
𝑗 + 4𝑏3

𝑗 + 𝑏4
𝑗

)︀]︀
,

𝑥𝑖𝑗 ≥ 0, 𝑘 = 1, . . . ,𝐾; 𝑗 = 1, 2, . . . , 𝐽 ; 𝑖 = 1, 2, . . . , 𝐼

where 𝑆𝑘𝑡(𝑏) is the binary variables term that defines the AL for 𝑘th objective; 𝑑+
𝑘 and 𝑑−𝑘 are over and

underachievement of the 𝑘th goal.

5. Numerical illustration

Consider a wind turbine manufacturing business with four different operations in different regions and shift
wind turbine blades to four regions. All of the facilities produced the same style of a wind turbine blade. However,
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wind turbine blades are priced differently due to various circumstances in different regions. The 𝑖th source can
deliver 𝑎𝑖 units of a particular item, whereas the 𝑗th destination needs 𝑏𝑗 units of the identical item. Thus,
when supplying wind turbine blades to other regions, the industrial firm emphasizes three key goals: minimizing
the total cost, delivery time, and deterioration. As a result, the goals are to reduce the actual/standard cost,
actual/standard deterioration, and actual/standard delivery time involved in moving wind turbine blades from
various origin sites to various destinations. PFNs are active for the restricted availability at the source and the
minimal demand to be supplied at the destinations to fulfil the requirements.

(1) Total transportation cost: the wind turbine blade’s primary goal is to decrease the total transportation
cost from source point 𝑖 to endpoint 𝑗. Wind turbine blades have a breadth, a tall height, and a heavy
weight. As a result, these blades are tough to transport by rail, road, and other means. Moreover, the costs
of transporting the blades are estimated based on the source point and endpoints.

Min 𝑍1 =
Transportation actual cost (𝐶𝑎)

Transportation standard cost (𝐶𝑠)
=

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(1)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(1)
𝑖𝑗 𝑥𝑖𝑗

·

(2) Total deterioration: the second goal is to reduce overall blade deterioration from 𝑖th source to the 𝑗th
destination.

Min 𝑍2 =
Actual deteriaration (𝐷𝑎)

Standard deteriaration (𝐷𝑠)
=

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(2)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(2)
𝑖𝑗 𝑥𝑖𝑗

·

(3) Total delivery time: the last goal is to reduce the distribution time of wind turbine blades from 𝑖th
source point to the 𝑗th endpoint. The journey time is carefully calculated due to the dimensions of the wind
turbine plate.

Min 𝑍3 =
Delivery actual time (𝑇𝑎)

Delivery standard time (𝑇𝑠)
=

∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝑛

(3)
𝑖𝑗 𝑥𝑖𝑗∑︀𝐼

𝑖=1

∑︀𝐽
𝑗=1 𝑑

(3)
𝑖𝑗 𝑥𝑖𝑗

·

This work optimizes the TP of the wind turbine blade with the flexible FGP model as the multiple objectives
of the fractional TP. As a result, the constraints are assumed to be sharp. Notably, the MOFTP model
presented above provides a compromise solution if the total supply available at all sources equals the total
demand at all destinations.

Problem and data description: a manufacturer of wind turbine blades [42] sells the product from the ith
(𝑖 = 1, 2, 3, 4) source to the 𝑗th (𝑗 = 1, 2, 3, 4) destination. Due to some intention, the same type of wind turbine
blade is marketed at varying prices in different regions.

The standard cost (𝐶𝑠) and the total actual cost (𝐶𝑎) are

𝐶𝑠 =

⎡⎢⎢⎣
18 16 19 12
20 15 15 18
16 12 15 10
13 12 16 14

⎤⎥⎥⎦ 𝐶𝑎 =

⎡⎢⎢⎣
20 18 18 13
19 13 16 18
15 11 17 12
14 14 16 13

⎤⎥⎥⎦.

Then, the mathematical formulation of the standard cost (𝐶𝑠) and the total actual cost (𝐶𝑎) will be as follows:

𝐶𝑎 = 20𝑥11 + 18𝑥12 + 18𝑥13 + 13𝑥14 + 19𝑥21 + 13𝑥22 + 16𝑥23 + 18𝑥24

+ 15𝑥31 + 11𝑥32 + 17𝑥33 + 12𝑥34 + 14𝑥41 + 14𝑥42 + 16𝑥43 + 13𝑥44

𝐶𝑠 = 18𝑥11 + 16𝑥12 + 19𝑥13 + 12𝑥14 + 20𝑥21 + 15𝑥22 + 15𝑥23 + 18𝑥24

+ 16𝑥31 + 12𝑥32 + 15𝑥33 + 10𝑥34 + 13𝑥41 + 12𝑥42 + 16𝑥43 + 14𝑥44. (4)
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Table 1. The objective goals (𝑍𝑘𝑡) and the tolerance amount (𝑃𝑘𝑡).

𝑡 𝑍1𝑡 𝑍2𝑡 𝑍3𝑡 𝑃1𝑡 𝑃2𝑡 𝑃3𝑡

1 0.9153488 0.9616571 0.9014567 0.0008979 0.0000419 0.0003765
2 0.9156627 0.9616840 0.9016092 0.0012118 0.0000688 0.0005290
3 0.9158004 0.9617834 0.9014218 0.0013495 0.0001682 0.0003416
4 0.9153675 0.9618001 0.9011599 0.0009166 0.0001849 0.0000797
5 0.9152941 0.9617304 0.9013786 0.0008432 0.0001152 0.0002984

The standard time (𝑇𝑠) and the total actual time (𝑇𝑎) are

𝑇𝑠 =

⎡⎢⎢⎣
28 33 32 35
25 25 32 28
22 20 25 28
21 20 26 30

⎤⎥⎥⎦ 𝑇𝑎 =

⎡⎢⎢⎣
30 34 34 34
26 24 31 29
21 20 26 29
21 22 25 31

⎤⎥⎥⎦.

Then, the mathematical formulation of the standard time (𝑇𝑠) and the total actual time (𝑇𝑎) will be as follows:

𝑇𝑎 = 30𝑥11 + 34𝑥12 + 34𝑥13 + 34𝑥14 + 26𝑥21 + 24𝑥22 + 31𝑥23 + 29𝑥24

+ 21𝑥31 + 20𝑥32 + 26𝑥33 + 29𝑥34 + 21𝑥41 + 22𝑥42 + 25𝑥43 + 31𝑥44

𝑇𝑠 = 28𝑥11 + 33𝑥12 + 32𝑥13 + 35𝑥14 + 22𝑥21 + 25𝑥22 + 32𝑥23 + 28𝑥24

+ 22𝑥31 + 20𝑥32 + 25𝑥33 + 28𝑥34 + 21𝑥41 + 20𝑥42 + 26𝑥43 + 30𝑥44. (5)

The standard deterioration (𝐷𝑠) and the total actual deterioration (𝐷𝑎) are

𝐷𝑠 =

⎡⎢⎢⎣
38 35 35 32
38 30 34 36
40 36 32 37
33 35 32 32

⎤⎥⎥⎦ 𝐷𝑎 =

⎡⎢⎢⎣
40 34 37 28
38 28 37 40
42 39 30 41
29 38 32 32

⎤⎥⎥⎦.

Then, the mathematical formulation of the standard deterioration (𝐷𝑠) and the total actual deterioration (𝐷𝑎)
will be as follows:

𝐷𝑎 = 40𝑥11 + 34𝑥12 + 37𝑥13 + 28𝑥14 + 38𝑥21 + 28𝑥22 + 37𝑥23 + 40𝑥24

+ 42𝑥31 + 39𝑥32 + 30𝑥33 + 41𝑥34 + 29𝑥41 + 38𝑥42 + 32𝑥43 + 32𝑥44

𝐷𝑠 = 38𝑥11 + 35𝑥12 + 35𝑥13 + 32𝑥14 + 38𝑥21 + 30𝑥22 + 34𝑥23 + 36𝑥24

+ 40𝑥31 + 36𝑥32 + 32𝑥33 + 37𝑥34 + 33𝑥41 + 35𝑥42 + 32𝑥43 + 32𝑥44. (6)

The goal of each objective (𝑍𝑘𝑡) and tolerance amount (𝑃𝑘𝑡) is shown in Table 1.
The supplies (𝑎𝑖) and demands (𝑏𝑗) are in the form of PFN as:

𝑎𝑖 =

⎡⎢⎢⎣
(20, 22, 25, 27, 30; 𝑘)
(25, 28, 30, 32, 35; 𝑘)
(26, 29, 32, 35, 37; 𝑘)
(23, 25, 28, 30, 33; 𝑘)

⎤⎥⎥⎦ 𝑏𝑗 =

⎡⎢⎢⎣
(6, 8, 10, 12, 15; 𝑘)
(9, 12, 14, 16, 18; 𝑘)
(18, 20, 22, 25, 28; 𝑘)
(12, 15, 18, 20, 24; 𝑘)

⎤⎥⎥⎦.

Procedure: the fractional TP will be solved by simultaneously optimizing the objectives with the given restric-
tions. The problem can be represented in a mathematical model as follows:

Min 𝑍1 =
𝐶𝑎

𝐶𝑠
; Min 𝑍2 =

𝐷𝑎

𝐷𝑠
; Min 𝑍3 =

𝑇𝑎

𝑇𝑠
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subject to
𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ (20, 22, 25, 27, 30; 𝑘)
𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 ≤ (25, 28, 30, 32, 35; 𝑘)
𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ (26, 29, 32, 35, 37; 𝑘)
𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 ≤ (23, 25, 28, 30, 33; 𝑘)
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 ≥ (6, 8, 10, 12, 15; 𝑘)
𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 ≥ (9, 12, 14, 16, 18; 𝑘)
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 ≥ (18, 20, 22, 25, 28; 𝑘)
𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 ≥ (12, 15, 18, 20, 24; 𝑘)
(𝑥𝑖𝑗 ≥ 0) ∈ integer ∀ 𝑗 = 1, 2, 3, 4; 𝑖 = 1, 2, 3, 4.

Using equation (1), the problem will be converted into crisp form. Then, the problem will be

Min 𝑍1 =
𝐶𝑎

𝐶𝑠
; Min 𝑍2 =

𝐷𝑎

𝐷𝑠
; Min 𝑍3 =

𝑇𝑎

𝑇𝑠

subject to

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ [54𝑘 + 149]/10; 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 ≤ [64𝑘 + 180]/10
𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ [69𝑘 + 192]/10; 𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 ≤ [60𝑘 + 167]/10
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 ≥ [25𝑘 + 60]/10; 𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 ≥ [31𝑘 + 84]/10
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 ≥ [52𝑘 + 133]/10; 𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 ≥ [40𝑘 + 107]/10
𝑘 ∈ [0, 1]; (𝑥𝑖𝑗 ≥ 0) ∈ integer ∀𝑗 = 1, 2, 3, 4; 𝑖 = 1, 2, 3, 4.

We have switched to BGP using the FFG membership function. Then, the problem will be represented as:

Minimize 𝑍 =
3∑︁

𝑘=1

𝑑+
𝑗 +

3∑︁
𝑘=1

𝑑−𝑗

subject to

𝐶𝑎

𝐶𝑠
− 𝑑+

1 + 𝑑−1 =
𝑇∑︁

𝑙=1

(𝑍1𝑡 + 𝑃1𝑡(1− 𝜆1))𝑏1𝑡;

𝐷𝑎

𝐷𝑠
− 𝑑+

2 + 𝑑−2 =
𝑇∑︁

𝑙=1

(𝑍2𝑡 + 𝑃2𝑡(1− 𝜆2))𝑏2𝑡;

𝑇𝑎

𝑇𝑠
− 𝑑+

3 + 𝑑−3 =
𝑇∑︁

𝑙=1

(𝑍3𝑡 + 𝑃3𝑡(1− 𝜆3))𝑏3𝑡;

𝑥11 + 𝑥12 + 𝑥13 + 𝑥14 ≤ [54𝑘 + 149]/10; 𝑥21 + 𝑥22 + 𝑥23 + 𝑥24 ≤ [64𝑘 + 180]/10
𝑥31 + 𝑥32 + 𝑥33 + 𝑥34 ≤ [69𝑘 + 192]/10; 𝑥41 + 𝑥42 + 𝑥43 + 𝑥44 ≤ [60𝑘 + 167]/10
𝑥11 + 𝑥21 + 𝑥31 + 𝑥41 ≥ [25𝑘 + 60]/10; 𝑥12 + 𝑥22 + 𝑥32 + 𝑥42 ≥ [31𝑘 + 84]/10
𝑥13 + 𝑥23 + 𝑥33 + 𝑥43 ≥ [52𝑘 + 133]/10; 𝑥14 + 𝑥24 + 𝑥34 + 𝑥44 ≥ [40𝑘 + 107]/10
𝑘 ∈ [0, 1]; (𝑥𝑖𝑗 ≥ 0) ∈ integer ∀ 𝑗 = 1, 2, 3, 4; 𝑖 = 1, 2, 3, 4

𝑏𝑘𝑡 is binary number and
𝑇∑︁

𝑡=1

𝑏𝑘𝑡 = 1, 𝑘 = 1, 2, 3.
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Table 2. Compromise solution.

Techniques Objectives Decision variables

FGP
𝑍1 = 1.0196;
𝑍2 = 1.0320;
𝑍3 = 1.0248

𝑥12 = 10, 𝑥13 = 5, 𝑥14 = 10, 𝑥21 = 8, 𝑥22 = 6, 𝑥23 = 1,
𝑥24 = 1, 𝑥32 = 7, 𝑥34 = 25, 𝑥41 = 1, 𝑥43 = 26, 𝑥44 = 1
𝑥11 = 𝑥31 = 𝑥33 = 𝑥42 = 0,

GP
𝑍1 = 1.0230;
𝑍2 = 1.0085;
𝑍3 = 0.9997

𝑥11 = 5, 𝑥13 = 4, 𝑥14 = 16, 𝑥21 = 8, 𝑥22 = 6, 𝑥23 = 11,
𝑥24 = 5, 𝑥31 = 8, 𝑥32 = 7, 𝑥33 = 17, 𝑥41 = 1, 𝑥42 = 11,
𝑥44 = 16, 𝑥12 = 𝑥34 = 𝑥43 = 0,

Intuitionistic
FGP

𝑍1 = 0.9875;
𝑍2 = 0.9748;
𝑍3 = 0.9842

𝑥14 = 25, 𝑥21 = 21, 𝑥22 = 7, 𝑥24 = 4,
𝑥31 = 20, 𝑥33 = 4, 𝑥34 = 8, 𝑥43 = 28,
𝑥11 = 𝑥12 = 𝑥13 = 𝑥23 = 𝑥32 = 𝑥41 = 𝑥42 = 𝑥44 = 0

Neutrosophic
GP

𝑍1 = 0.9789;
𝑍2 = 0.9874;
𝑍3 = 0.9601

𝑥13 = 3, 𝑥14 = 22, 𝑥21 = 4, 𝑥22 = 24, 𝑥23 = 2,
𝑥31 = 18, 𝑥33 = 14, 𝑥43 = 13, 𝑥44 = 15
𝑥11 = 𝑥12 = 𝑥24 = 𝑥32 = 𝑥34 = 𝑥41 = 𝑥42 = 0,

Flexible FGP
𝑍1 = 0.9631512;
𝑍2 = 0.9650924;
𝑍3 = 0.9466048

𝑥14 = 12, 𝑥22 = 20, 𝑥31 = 4, 𝑥41 = 3, 𝑥44 = 15
𝑥11 = 𝑥12 = 𝑥13 = 𝑥21 = 𝑥23 = 𝑥24 = 𝑥32 = 0,
𝑥33 = 𝑥34 = 𝑥42 = 𝑥43 = 0

6. Results and discussion

The suggested flexible FGP is tested using a numerical example. In this sense, the FGP model for the MOFTP
is developed using ALs and tolerance levels to find the optimal solution. The flexible FGP problems are then
solved using the LINGO software. For case study problems, the resultant solution is compared to the GP, FGP,
intuitionistic FGP, and neutrosophic GP techniques presented in Table 2. Table 2 shows that the first objective
function values are 1.0230, 0.0196, 0.9875, 0.9789, and 0.9631512 for FGP, GP, intuitionistic FGP, neutrosophic
GP, and flexible FGP, respectively. For FGP, GP, intuitionistic FGP, neutrosophic GP, and flexible FGP, the
second objective function values are 1.0085, 1.032, 0.9748, 0.9874, and 0.9650924, respectively. Similarly, the
third objective function value for FGP, GP, intuitionistic FGP, neutrosophic GP, and flexible FGP is 0.9997,
1.0248, 0.9842, 0.9601 and 0.9466048, respectively. It demonstrates that the flexible FGP technique provides
the least objective value, implying that the flexible FGP technique is used to obtain the compromise solution.
As a result, flexible FGP provides an improved result than the FGP, GP, intuitionistic FGP, and neutrosophic
GP methods. This method can be used efficiently utilizing to solve the other optimization problem. Overall, the
proposed technique is better suited the multiobjective structural issues.

7. Motivation and contribution

This study is motivated by flexible fractional programming using fuzzy pentagonal numbers to capture the
potential of decision-makers. The following are the contributions of the study:

(i) It serves as an additional contribution to the literature on the fractional TP.
(ii) A case study is provided in which solution procedures for multiobjective multi-product problem formulation

are reported.
(iii) Fuzzy concepts of Pentagonal are used in fractional TPs.
(iv) This study has applied a new approach based on Flexible Fractional Programming.
(v) The approach is compared with GP, FGP, Intuitionistic FGP and Neutrosophic GP the result proves to

be better.
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8. Conclusion

The best compromise solution for MOFTP, a flexible FGP framework, is created. A numerical problem has
been used to demonstrate the effectiveness of the approach. Finally, this study demonstrates that the flexible
FGP approach outperforms existing approaches such as FGP, GP, intuitionistic FGP, and neutrosophic GP
in terms of compromise results. The MOFTP model was developed with the assistance of a decision-maker to
overcome the challenges experienced in real-world scenarios. Five alternative strategies were used to identify
the best compromise solution. A fuzzy pentagonal number is used for the supply & demand parameter. All
the objectives are minimization types which is the major limitation of the proposed technique. Different fuzzy
numbers are used to solve the optimization problem in future research work. The multichoice parameter can
also be used for solving the MOFTP with the help of different techniques.
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