Coupled complex boundary method for a geometric inverse source problem
RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3689-3709

This work deals with a geometric inverse source problem. It consists in recovering the characteristic function of an unknown inclusion based on boundary measurements. We propose a new reconstruction method based on the CCBM and the shape gradient method, the inverse problem is formulated as a shape optimization one, corresponding to a coupled complex boundary state problem. Well posedness and existence results are presented. A computed expression for the shape gradient is used to implement a gradient algorithm. The efficiency and accuracy of the reconstruction algorithm are illustrated by some numerical results, and a comparison between CCBM, Least-squares and Kohn-Vogeluis methods is presented.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022168
Classification : 65K05, 65K10, 49J20, 49J50
Keywords: Coupled complex boundary method, inverse geometric source problem, shape optimization, shape derivative, adjoint method
@article{RO_2022__56_5_3689_0,
     author = {Afraites, Lekbir and Masnaoui, Chorouk and Nachaoui, Mourad},
     title = {Coupled complex boundary method for a geometric inverse source problem},
     journal = {RAIRO. Operations Research},
     pages = {3689--3709},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/ro/2022168},
     mrnumber = {4502918},
     zbl = {1518.65058},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022168/}
}
TY  - JOUR
AU  - Afraites, Lekbir
AU  - Masnaoui, Chorouk
AU  - Nachaoui, Mourad
TI  - Coupled complex boundary method for a geometric inverse source problem
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3689
EP  - 3709
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022168/
DO  - 10.1051/ro/2022168
LA  - en
ID  - RO_2022__56_5_3689_0
ER  - 
%0 Journal Article
%A Afraites, Lekbir
%A Masnaoui, Chorouk
%A Nachaoui, Mourad
%T Coupled complex boundary method for a geometric inverse source problem
%J RAIRO. Operations Research
%D 2022
%P 3689-3709
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022168/
%R 10.1051/ro/2022168
%G en
%F RO_2022__56_5_3689_0
Afraites, Lekbir; Masnaoui, Chorouk; Nachaoui, Mourad. Coupled complex boundary method for a geometric inverse source problem. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3689-3709. doi: 10.1051/ro/2022168

[1] L. Afraites, A new coupled complex boundary method (ccbm) for an inverse obstacle problem. Discrete Contin. Dyn. Syst.-S 15 (2022) 23. | MR | Zbl | DOI

[2] L. Afraites and A. Atlas, Parameters identification in the mathematical model of immune competition cells. J. Inverse Ill-Posed Probl. 23 (2015) 323–337. | MR | Zbl | DOI

[3] L. Afraites, M. Dambrine, K. Eppler and D. Kateb, Detecting perfectly insulated obstacles by shape optimization techniques of order two. Discrete Contin. Dyn. Syst.-B 8 (2007) 389. | MR | Zbl

[4] L. Afraites, M. Dambrine and D. Kateb, Shape methods for the transmission problem with a single measurement. Numer. Funct. Anal. Optim. 28 (2007) 519–551. | MR | Zbl | DOI

[5] L. Afraites, C. Masnaoui and M. Nachaoui, Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete Contin. Dyn. Syst.-S 15 (2022) 1. | MR | Zbl | DOI

[6] C. J. S. Alves, R. Mamud, N. F. M. Martins and N. C. Roberty, On inverse problems for characteristic sources in helmholtz equations. Math. Probl. Eng. 2017 (2017). | MR | Zbl

[7] H. Azegami and K. Takeuchi, A smoothing method for shape optimization: traction method using the robin condition. Int. J. Comput. Methods 3 (2006) 21–33. | MR | Zbl | DOI

[8] F. Caubet, M. Dambrine, D. Kateb and C. Z. Timimoun, A kohn-vogelius formulation to detect an obstacle immersed in a fluid. Inverse Probl. Imaging 7 (2013) 123. | MR | Zbl | DOI

[9] X. Cheng, R. Gong, W. Han and X. Zheng, A novel coupled complex boundary method for solving inverse source problems. Inverse Probl. 30 (2014) 055002. | MR | Zbl | DOI

[10] P. J. Daniell, Lectures on cauchy’s problem in linear partial differential equations. Math. Gaz. 12 (1924) 173–174.

[11] R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 3 Spectral Theory and Applications, Vol. 3. Springer Science & Business Media (1999). | MR

[12] M. C. Delfour and J.-P. Zolésio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization. SIAM (2011). | MR | Zbl | DOI

[13] A. El Badia and T. H. Duong, Some remarks on the problem of source identification from boundary measurements. Inverse Probl. 14 (1998) 883. | MR | Zbl | DOI

[14] A. El Badia and T. Nara, An inverse source problem for helmholtz’s equation from the cauchy data with a single wave number. Inverse Probl. 27 (2011) 105001. | MR | Zbl | DOI

[15] K. Eppler and H. Harbrecht, A regularized newton method in electrical impedance tomography using shape hessian information. Control Cybern. 34 (2005) 203. | MR | Zbl

[16] M. Giacomini, O. Pantz and K. Trabelsi, Certified descent algorithm for shape optimization driven by fully-computable a posteriori error estimators. ESAIM: Control Optim. Calc. Var. 23 (2017) 977–1001. | MR | Zbl | Numdam

[17] R. Gong, X. Cheng and W. Han, A coupled complex boundary method for an inverse conductivity problem with one measurement. Appl. Anal. 96 (2017) 869–885. | MR | Zbl | DOI

[18] J. Haslinger and R. A. E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation. SIAM, 2003. | MR | Zbl | DOI

[19] F. Hecht, Finite Element Library Freefem++.

[20] M. Hrizi and M. Hassine, One-iteration reconstruction algorithm for geometric inverse source problem. J. Elliptic Parabol. Equ. 4 (2018) 177–205. | MR | Zbl | DOI

[21] R. Kress and W. Rundell, A nonlinear integral equation and an iterative algorithm for an inverse source problem. J. Integral Equ. Appl. 27 (2015) 179–198. | MR | Zbl | DOI

[22] V. Michel and A. S. Fokas, A unified approach to various techniques for the non-uniqueness of the inverse gravimetric problem and wavelet-based methods. Inverse Probl. 24 (2008) 045019. | MR | Zbl | DOI

[23] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Rapport du LA 189 (1976) 76015.

[24] A. Oulmelk, L. Afraites, A. Hadri and M. Nachaoui, An optimal control approach for determining the source term in fractional diffusion equation by different cost functionals. Appl. Numer. Math. 181 (2022) 647–664. | MR | Zbl | DOI

[25] M. Pierre and A. Henrot, Shape Variation and Optimization: A Geometrical Analysis (2018). | MR | Zbl

[26] J. F. T. Rabago, On the new coupled complex boundary method in shape optimization framework for solving stationary free boundary problems. Preprint (2022). | arXiv | MR | Zbl

[27] N. C. Roberty and C. J. S. Alves, On the identification of star-shape sources from boundary measurements using a reciprocity functional. Inverse Probl. Sci. Eng. 17 (2009) 187–202. | MR | Zbl | DOI

[28] J.-P. Zolésio and M. C. Delfour, Shapes and Geometries: Analysis, Differential Calculus, and Optimization. SIAM (2001). | MR | Zbl

Cité par Sources :