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COUPLED COMPLEX BOUNDARY METHOD FOR A GEOMETRIC INVERSE
SOURCE PROBLEM

Lekbir Afraites* , Chorouk Masnaoui and Mourad Nachaoui

Abstract. This work deals with a geometric inverse source problem. It consists in recovering the
characteristic function of an unknown inclusion based on boundary measurements. We propose a new
reconstruction method based on the CCBM and the shape gradient method, the inverse problem is
formulated as a shape optimization one, corresponding to a coupled complex boundary state problem.
Well posedness and existence results are presented. A computed expression for the shape gradient is
used to implement a gradient algorithm. The efficiency and accuracy of the reconstruction algorithm
are illustrated by some numerical results, and a comparison between CCBM, Least-squares and Kohn-
Vogeluis methods is presented.
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1. Introduction

Inverse source problems is a class of inverse problems that aims to find (𝑢, 𝐹 ) solution of the equation
𝐿𝑢 = 𝐹 in Ω, using a pair of additional data on the boundary 𝜕Ω of an open bounded set Ω, where 𝐿 is
an elliptic linear differential operator and 𝐹 is the unknown source term. It is well known that this problem
is one of the highly ill-posed problems in Hadamard sense [10], therefore, a general source function cannot be
identified uniquely using boundary measurements, see [22] and [13].

A particular source problem where the unknown source 𝐹 is of the form 𝑝𝜒𝜔 (𝜒 is the characteristic func-
tion) has been studied by Afraites et al. [5] using a shape optimization reformulation, the unknown source
support was reconstructed by a gradient algorithm using the shape gradient and the adjoint method, then the
stability study was presented. This problem has been studied also by Hrizi and Hassine [20] using a topologi-
cal optimization formulation, the unknown source was reconstructed using a level-set curve of the topological
gradient. Kress and Rundell [21] presented an iterative solution method via boundary integral equations, by
reformulating the inverse source problem as an inverse boundary value problem with a non-local Robin condition
on the boundary of the source domain. In [27] a method for the reconstruction of star-shaped characteristic
sources was developped, by reducing the problem to an algebraic system of equations. The paper [6] traited
the inverse characteristic source problem, in the case of Helmholtz equations, from the determination of the
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barycenter of the characteristic source and the recovery of its geometry from a class of star-shaped character-
istic sources, using an algorithm based on an equivalent reciprocity functional formulation. El Badia and Nara
[14] have also investigated the inverse source problem of the Helmholtz equation, where the source consists of
multiple point sources, an algebraic algorithm was proposed to identify the number, locations and intensities
of the point sources from boundary measurements. This inverse source problem was studied also by a coupled
complex boundary method (CCBM), originally proposed by Cheng et al. in [9], it consists in recovering the
source term 𝑝 in the equation 𝐿𝑢 = 𝑝𝜒𝜔, when the source support 𝜔 is known, using some additional Dirichlet
and Neumann boundary conditions. The method consists in coupling the two conditions in a single complex
Robin boundary condition, and then the boundary data fitting is recast into the whole domain data fitting.
The authors have shown that the new CCBM method makes the inverse source problem more robust and more
efficient in computations. Our aim here is to apply this CCBM method to a geometric Inverse source problem,
we should reconstruct the source support 𝜔 rather than the function 𝑝, and we consider the more general case
𝐿𝑢 = ℎ1𝜒𝜔 + ℎ2𝜒Ω∖𝜔̄, for some given source functions ℎ1 and ℎ2.

Recently, the idea of using the coupled complex boundary method for solving inverse geometric problem was
proposed in [1] for solving inverse obstacle problem, the author have shown that the proposed method is feasible
and effective for such problems.

To fix ideas, let Ω be an open, bounded, and connected subset of R𝑑 (𝑑 = 2 or 3) with 𝒞1 boundary 𝜕Ω. Let
𝛿 be a positive constant, we define the set of admissible domains denoted by Ω𝛿 as the set of all open simply
connected subdomains 𝜔 of Ω with a 𝒞2,1 boundary, such that 𝑑(𝑥, 𝜕Ω) > 𝛿 for all 𝑥 ∈ 𝜔. The notation 𝜒𝜔

denotes the characteristic function of 𝜔. For some given functions ℎ1, ℎ2 ∈ 𝐿2(Ω), and based on some knowledge
on the boundary conditions, namely the voltage 𝑓 ∈ 𝐻

1
2 (𝜕Ω) and the current measurement 𝑔 ∈ 𝐻− 1

2 (𝜕Ω), we
try to find 𝜔 and 𝑢 solution of the following overdetermined problem⎧⎨⎩−∆𝑢 + 𝛼𝑢 = ℎ1𝜒𝜔 + ℎ2𝜒Ω∖𝜔 in Ω,

𝑢 = 𝑓 on 𝜕Ω,
𝜕𝑛𝑢 = 𝑔 on 𝜕Ω,

(1)

where 𝜕𝑛 stands for the outward normal derivative, and 𝛼 is a non-negative constant.
To be more precise, the inverse source problem is reformulated as follows:

Problem 1.1.
find 𝜔 ∈ Ω𝛿 and 𝑢 which satisfy the overdetmined system (1). (2)

Note that the right-hand side of the first equation in (1) can be re-expressed as ℎ2 + (ℎ1 − ℎ2)𝜒𝜔.
Among the existing methods found in the literature, a robust reconstruction of the unknown inclusion consists
in reformulating the inverse problem (1) into the following least-squares minimization problem (see for example
[4, 15])

𝐽𝐿𝑆(𝜔) =
1
2

∫︁
𝜕Ω

|𝑢𝑛 − 𝑓 |2, (3)

where 𝑓 is the boundary measurement and 𝑢𝑛 is the state function that solves{︂
−∆𝑢𝑛 + 𝛼𝑢𝑛 = ℎ1𝜒𝜔 + ℎ2𝜒Ω∖𝜔 in Ω,

𝜕𝑛𝑢𝑛 = 𝑔 on 𝜕Ω,
(4)

Another well known optimization approach is based on minimizing a Kohn-Vogelius functional (see [3, 4, 8]),
which illustrates a more robust optimization performances, through the following optimization problem

𝐽𝐾𝑉 (𝜔) =
1
2

∫︁
Ω

|∇(𝑢𝑑 − 𝑢𝑛)|2 +
𝛼

2

∫︁
Ω

|𝑢𝑑 − 𝑢𝑛|2, (5)

and by splitting the over-determined boundary value problem (1) in two auxiliary problems. We denote by 𝑢𝑛

the solution of the first one (4) associated to the Neumann data 𝑔, and 𝑢𝑑 is the solution of the second one



COUPLED COMPLEX BOUNDARY METHOD FOR A GEOMETRIC INVERSE SOURCE PROBLEM 3691

associated to the Dirichlet data 𝑓 given by{︂
−∆𝑢𝑑 + 𝛼𝑢𝑑 = ℎ1𝜒𝜔 + ℎ2𝜒Ω∖𝜔 in Ω,

𝑢𝑑 = 𝑓 on 𝜕Ω.
(6)

We note from the above statements that the minimization problems (3) and (5) use the Neumann data 𝑔 and the
Dirichlet data 𝑓 sequentially. In this paper, we propose a new coupled complex boundary method (CCBM) that
uses both 𝑔 and 𝑓 data in a single PDE. The idea of the CCBM is to couple the Neumann data and Dirichlet
data in a Robin boundary condition in such a way that the Neumann data and Dirichlet data are the real part
and imaginary part of the Robin boundary condition, respectively. As a result, the data needed to fit defined on
the boundary 𝜕Ω are transferred to the volume problem defined on Ω. The coupled complex boundary method
(CCBM) was first proposed by Cheng et al. in ([9]) for solving an inverse source problem, Rongfang et al. in
([17] applied it to an inverse conductivity problem with one measurement. More recently, this method was also
applied in solving inverse obstacle problems by Afraites in [1] and used for solving stationary free boundary
problems by Rabago [26]. To the best of our knowledge, in the literature, this is the first time that the idea of
the coupled complex boundary condition has been explored for solving geometric inverse source problem.
Unlike the classical methods, the CCBM method allows us to define the cost function 𝐽 in the whole domain
Ω which brings advantages of robustness in the reconstruction compared to the Least-Squares type functions
which are defined only on the boundary. From a theoretical perspective, it is difficult to prove the superiority
of the proposed Complex coupled formulation over the Kohn-Vogeluis one. However, numerical examples in
Section 6 indicate that it leads to more robust reconstruction results for this geometric inverse source problem.

The outline of this paper is organized as follows. In Section 2, we present the new coupled complex boundary
method appropriate to our geometric inverse source problem and its reformulation at the shape optimization
by introducing the regularized Least Squares fitting for the imaginary part of the complex PDE’s solution . In
Section 3, we present the well-posedness result of the direct problem. Section 4 is devoted to the existence of
an optimal solution of our minimization problem. In Section 5 we establish the shape gradient calculus of the
cost function. In the Section 6, we give an algorithm based on the gradient method and we solve an elliptic
problem in order to find the steepest descend direction in the space of 𝐻1 velocity vector field that satisfies
certain boundary conditions. Then, we present detailed numerical results. Finally, we present the conclusion in
Section 7 and elaborate the calculation of the shape state derivative in the appendix in Section 8.

2. Coupled complex boundary problem

From now onwards, we will use the following notations, we denote by 𝐻𝑚(𝐺) the Sobolev space of order 𝑚,
which consist of the complex-valued functions defined on a domain 𝐺 ⊂ R𝑑, given by

𝐻𝑚(𝐺) := {𝑣 ∈ 𝐿2(𝐺) : 𝐷𝑘𝑣 ∈ 𝐿2(𝐺), ∀𝑘 ∈ N𝑑, |𝑘| ≤ 𝑚}.

Thus 𝐻0(𝐺) := 𝐿2(𝐺). The Hilbert space 𝐻𝑚(𝐺) is equipped with the scalar product

⟨𝑢, 𝑣⟩𝑚,𝐺 :=
∑︁
|𝑘|≤𝑚

∫︁
𝐺

𝐷𝑘𝑢 𝐷𝑘𝑣 𝑑𝑥 ∀𝑢, 𝑣 ∈ 𝐻𝑚(𝐺),

and the norm ‖𝑢‖𝑚,𝐺 := ⟨𝑢, 𝑢⟩1/2
𝑚,𝐺 ∀𝑢 ∈ 𝐻𝑚(𝐺). We denote by 𝑖 the imaginary unit.

Combining the Dirichlet and Neumann boundary data in a complex Robin boundary condition, the problem
(1) is transferred into the following complex boundary value problem{︂

−∆𝑢 + 𝛼𝑢 = ℎ1𝜒𝜔 + ℎ2𝜒Ω∖𝜔 in Ω,
𝜕𝑛𝑢 + 𝑖𝑢 = 𝑔 + 𝑖𝑓 on 𝜕Ω.

(7)
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Then, for a solution of (7), 𝑢 = 𝑢1 + 𝑖𝑢2, the real and imaginary parts of 𝑢 satisfy{︂
−∆𝑢1 + 𝛼𝑢1 = ℎ1𝜒𝜔 + ℎ2𝜒Ω∖𝜔 in Ω,

𝜕𝑛𝑢1 − 𝑢2 = 𝑔 on 𝜕Ω.
(8)

{︂
−∆𝑢2 + 𝛼𝑢2 = 0 in Ω,

𝜕𝑛𝑢2 + 𝑢1 = 𝑓 on 𝜕Ω.
(9)

Remark 2.1. Obviously, if (𝜔, 𝑢) satisfies (1), then (7) holds. Conversely, if 𝑢2 = 0 in Ω, then 𝑢2 = 𝜕𝑛𝑢2 = 0
on 𝜕Ω, from (8) and (9), it follows that (𝜔, 𝑢) = (𝜔, 𝑢1) satisfies (1).

From the above discussion, the Problem 1.1 is equivalent to the following inverse problem:

Problem 2.2. Given (𝑓, 𝑔) ∈ 𝐿2(𝜕Ω)× 𝐿2(𝜕Ω) and (ℎ1, ℎ2) ∈ 𝐿2(Ω)× 𝐿2(Ω), find (𝜔, 𝑢) ∈ Ω𝛿 ×𝐻1(Ω) such
that

𝑢2 = 0 in Ω,

where 𝑢2 is the imaginary part of the solution 𝑢 = 𝑢1 + 𝑖𝑢2 of the complex boundary problem (7).

To solve the inverse shape Problem 2.2, we transform it into the following shape optimization functional:

𝐽(𝜔) =
1
2
‖𝑢2‖20,Ω, (10)

and introduce the following minimization problem, find 𝜔* ∈ Ω𝛿 an admissible shape, such that

𝜔* = inf
𝜔⊂Ω𝛿

𝐽(𝜔). (11)

This problems is unstable under data perturbations. Indeed, the choice of low frequency in measurements data
can often be interpreted as a regularization method. But additional regularization is usually recommended
to stabilize the numerical algorithm and obtain a satisfactory reconstruction. Thus, we consider the following
regularized shape functional

𝐽(𝜔) =
1
2
‖𝑢2‖20,Ω + 𝜀𝑃Ω(𝜔), (12)

where 𝑃Ω(𝜔) is the perimeter of 𝜔 relative to Ω ([25], page 48), and 𝜀 is a regularization parameter (see
[2, 24] for the choice of the latter).

Remark 2.3. The new method allows us to define the cost function 𝐽 in the whole domain Ω which brings
advantages of robustness in the reconstruction such as the Kohn-Vogelius cost function 𝐽𝐾𝑉 compared to the
Least Squares fitting 𝐽𝐿𝑆 which is defined only on the boundary 𝜕Ω (see [4,5]). Compared to the Kohn-Vogelius
method, the latter requires two problems to be solved at each iteration, however the new method (CCBM),
needs a single complex problem to be solved.

3. Well-posedness result

Before discussing the existence of solution to our problem, we first study the well-posedness of the forward
complex problem (i.e., existence, uniqueness, and sensitivity to data).

Using Green’s formula we derive the variational formulation for (7)

Find 𝑢 ∈ 𝐻1(Ω), such that 𝑎(𝑢, 𝑣) = 𝑙(𝑣), ∀𝑣 ∈ 𝐻1(Ω). (13)
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Where, ∀𝑢, 𝑣 ∈ 𝐻1(Ω)

𝑎(𝑢, 𝑣) =
∫︁

Ω

∇𝑢∇𝑣 𝑑𝑥 + 𝛼

∫︁
Ω

𝑢 𝑣 𝑑𝑥 + 𝑖

∫︁
𝜕Ω

𝑢 𝑣 𝑑𝜎,

𝑙(𝑣) =
∫︁

𝜔

ℎ1 𝑣 𝑑𝑥 +
∫︁

Ω∖𝜔
ℎ2 𝑣 𝑑𝑥 +

∫︁
𝜕Ω

𝑔 𝑣 𝑑𝜎 + 𝑖

∫︁
𝜕Ω

𝑓 𝑣 𝑑𝜎.

We show a well-posedness result of the complex boundary value problem (7) in the following proposition

Proposition 3.1. For a given 𝜔 ∈ Ω𝛿, the complex boundary value problem (7) has a unique stable weak
solution in 𝐻1(Ω) satisfying

‖𝑢‖1,Ω ≤ 𝐶 (‖𝑓‖0,𝜕Ω + ‖𝑔‖0,𝜕Ω + ‖ℎ1‖0,Ω + ‖ℎ2‖0,Ω) .

Proof. We apply the complex version of Lax-Milgram Lemma by showing that the sesquilinear form 𝑎(., .)
(i.e., 𝑢 ↦→ 𝑎(𝑢, 𝑣) is linear, and 𝑣 ↦→ 𝑎(𝑢, 𝑣) is anti-linear) is continuous on 𝐻1(Ω) × 𝐻1(Ω) (i.e., ∃𝑐 > 0,
|𝑎(𝑢, 𝑣)| ≤ 𝑐‖𝑢‖1,Ω‖𝑣‖1,Ω, ∀(𝑢, 𝑣) ∈ 𝐻1(Ω) × 𝐻1(Ω)) and 𝐻1-coercive (i.e., ∃𝑐 > 0, 𝑅𝑒 𝑎(𝑢, 𝑢) ≥ 𝑐‖𝑢‖21,Ω,

∀𝑢 ∈ 𝐻1(Ω)), and the linear form 𝑙(.) is continuous on 𝐻1(Ω) (i.e., ∃𝑐 > 0, |𝑙(𝑣) ≤ 𝑐‖𝑣‖1,Ω, ∀𝑣 ∈ 𝐻1(Ω)).
For any 𝑢, 𝑣 ∈ 𝐻1(Ω) we have

𝑅𝑒 𝑎(𝑢, 𝑢) =
∫︁

Ω

|∇𝑢|2𝑑𝑥 + 𝛼

∫︁
Ω

|𝑢|2𝑑𝑥 ≥ 𝑚𝑖𝑛(1, 𝛼)‖𝑢‖21,Ω

H𝑜lder and the trace inequalities imply that

|𝑎(𝑢, 𝑣)| ≤ |
∫︁

Ω

∇𝑢∇𝑣 𝑑𝑥|+ 𝛼|
∫︁

Ω

𝑢 𝑣 𝑑𝑥|+ |
∫︁

𝜕Ω

𝑢 𝑣 𝑑𝜎|

≤ ‖∇𝑢‖0,Ω‖∇𝑣‖0,Ω + 𝛼‖𝑢‖0,Ω‖𝑣‖0,Ω + ‖𝑢‖0,𝜕Ω‖𝑣‖0,𝜕Ω

≤ ‖𝑢‖1,Ω‖𝑣‖1,Ω + 𝛼‖𝑢‖1,Ω‖𝑣‖1,Ω + 𝑐2‖𝑢‖1,Ω‖𝑣‖1,Ω

≤
(︀
1 + 𝛼 + 𝑐2

)︀
‖𝑢‖1,Ω‖𝑣‖1,Ω

Finally, the continuity of the linear form 𝑙(.) can be proved similarly. We have

|𝑙(𝑣)| ≤ |
∫︁

Ω

𝜒𝜔 ℎ1 𝑣 𝑑𝑥|+ |
∫︁

Ω

𝜒Ω∖𝜔 ℎ2 𝑣 𝑑𝑥|+ |
∫︁

𝜕Ω

𝑔 𝑣 𝑑𝜎|+ |
∫︁

𝜕Ω

𝑓 𝑣 𝑑𝜎|

≤ ‖ℎ1‖0,Ω‖𝑣‖0,Ω + ‖ℎ2‖0,Ω‖𝑣‖0,Ω + ‖𝑔‖0,𝜕Ω‖𝑣‖0,𝜕Ω + ‖𝑓‖0,𝜕Ω‖𝑣‖0,𝜕Ω

≤ (‖ℎ1‖0,Ω + ‖ℎ2‖0,Ω + 𝑐‖𝑔‖0,𝜕Ω + 𝑐‖𝑓‖0,𝜕Ω) ‖𝑣‖1,Ω

where 𝑐 is a constant from the trace inequality. By the complex version of Lax-Milgram Lemma ([11], page 368),
Problem (7) admits a unique solution 𝑢 ∈ 𝐻1(Ω) which depends continuously on data. Moreover,

𝛽‖𝑢‖21,Ω ≤ 𝑅𝑒 𝑎(𝑢, 𝑢) ≤ |𝑎(𝑢, 𝑢)| = |𝑙(𝑢)| ≤ 𝛾‖𝑢‖1,Ω

where 𝛽 = 𝑚𝑖𝑛(1, 𝛼), and 𝛾 = ‖ℎ1‖0,Ω + ‖ℎ2‖0,Ω + 𝑐‖𝑔‖0,𝜕Ω + 𝑐‖𝑓‖0,𝜕Ω.
Then

‖𝑢‖1,Ω ≤
𝛾

𝛽
· (14)

�
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4. Existence of an optimal solution

The existence of optimal shape requires some continuity or at least lower semicontinuity of the functional to
be minimized. This also implies having continuity of the solution of the associated partial differential equation
with respect to the variations of the domain in an adequate topology. In this section, we analyze in detail the
continuity of the shape functional and the mapping 𝜔 → 𝑢𝜔 ∈ 𝐻1(Ω), where 𝑢𝜔 is the solution of the complex
problem (7) corresponding to a variable open subset 𝜔 of the fixed open set Ω𝛿.

It is necessary to add extra conditions on the variable domains to expect good convergence of the solutions.
We state a classical sufficient condition, in terms of uniform regularity of the domains, the 𝜀−cone property,
and we define the family of admissible domains

𝒪 = {𝜔 ⊂ Ω𝛿, 𝜔 open with the 𝜀-cone property}. (15)

Proposition 4.1. There exists 𝜔 ∈ 𝒪 such that

𝐽(𝜔) = inf {𝐽(𝜔*), 𝜔* ∈ 𝒪} .

Proof. Let (𝜔𝑛)𝑛 ⊂ 𝒪 be a minimizing sequence such that 𝐽(𝜔𝑛) −→ inf 𝐽(𝜔). Since 𝒪 is compact for the
topology of characteristic functions (see [25], page 59), then there exist an open set 𝜔 ⊂ 𝒪 and a subsequence
denoted also (𝜔𝑛)𝑛 ⊂ 𝒪 that converges to 𝜔 in the sense of characteristic functions.
We denote by 𝑢𝑛, 𝑢 the solutions of the complex problem (7) corresponding respectively to 𝜔𝑛, 𝜔. From (14)
we have, ∀𝑛 ‖𝑢𝑛‖1,Ω ≤

𝛾

𝛽
.

This shows that the sequence 𝑢𝑛 is bounded in 𝐻1(Ω). Up to a subsequence, it may be assumed that 𝑢𝑛

converges weakly in 𝐻1(Ω) and strongly in 𝐿2(Ω) to a function 𝑢* ∈ 𝐻1(Ω). Let us show that 𝑢* satisfies the
variational formulation of problem (7) corresponding to 𝜔.
By definition of 𝑢𝑛, for all 𝑣 ∈ 𝐻1(Ω),∫︁

Ω

∇𝑢𝑛 ∇𝑣 + 𝛼

∫︁
Ω

𝑢𝑛 𝑣 + 𝑖

∫︁
𝜕Ω

𝑢𝑛 𝑣 =
∫︁

𝜔𝑛

ℎ1 𝑣 +
∫︁

Ω∖𝜔𝑛

ℎ2 𝑣 +
∫︁

𝜕Ω

𝑔 𝑣 + 𝑖

∫︁
𝜕Ω

𝑓 𝑣 (16)

Since 𝜒𝜔𝑛
→ 𝜒𝜔 weakly * in 𝐿∞(Ω), 𝑝 𝑣 ∈ 𝐿1(Ω) then∫︁

Ω

𝜒𝜔𝑛ℎ1 𝑣 →
∫︁

Ω

𝜒𝜔ℎ1 𝑣 and
∫︁

Ω

𝜒Ω∖𝜔𝑛
ℎ2 𝑣 →

∫︁
Ω

𝜒Ω∖𝜔 ℎ2 𝑣.

We know that 𝑢𝑛 ⇀ 𝑢* in 𝐻1(Ω), then ∇𝑢𝑛 ⇀ ∇𝑢* in 𝐿2(Ω), we get∫︁
Ω

∇𝑢𝑛∇𝑣 →
∫︁

Ω

∇𝑢*∇𝑣

We have 𝑢𝑛 → 𝑢* in 𝐿2(Ω), it follows that ∫︁
Ω

𝑢𝑛𝑣 →
∫︁

Ω

𝑢*𝑣.

By compacity of the trace from 𝐻1(Ω) to 𝐿2(𝜕Ω), we can extract a subsequence 𝑢𝑛 → 𝑢* in 𝐿2(𝜕Ω), we deduce
that ∫︁

𝜕Ω

𝑢𝑛𝑣 →
∫︁

𝜕Ω

𝑢*𝑣.

Therefore, for all 𝑣 ∈ 𝐻1(Ω),∫︁
Ω

∇𝑢*∇𝑣 + 𝛼

∫︁
Ω

𝑢*𝑣 + 𝑖

∫︁
𝜕Ω

𝑢*𝑣 =
∫︁

𝜔

ℎ1 𝑣 +
∫︁

Ω∖𝜔
ℎ2 𝑣 +

∫︁
𝜕Ω

𝑔 𝑣 + 𝑖

∫︁
𝜕Ω

𝑓 𝑣 (17)
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This proves that 𝑢* = 𝑢(𝜔).
Let us denote by 𝑢𝑛

2 the imaginary part of 𝑢𝑛, and 𝑢2 the imaginary part of 𝑢. We have ‖𝑢𝑛‖0,Ω −→ ‖𝑢‖0,Ω,
and therefore

‖𝑢𝑛
2‖0,Ω −→ ‖𝑢2‖0,Ω.

Since the perimeter is lower semicontinuous with respect to the convergence of characteristic functions (see [25],
page 51),

𝑃Ω(𝜔) ≤ lim inf 𝑃Ω(𝜔𝑛). (18)

We can infer that
𝐽(𝜔) ≤ lim inf 𝐽(𝜔𝑛).

Which implies that 𝜔 is a minimizer of (11). �

5. Shape derivative calculus

In order to use a descent method of gradient type, it is necessary to differentiate the shape functional 𝐽 with
respect to the shape variable 𝜔. To define the shape derivative, we will use the so called velocity method, which
is, for instance, introduced in [23]. To this end, we consider the variation of a given smooth reference shape 𝜔
according to the displacement 𝑉 , defined by 𝜑𝑡(𝑥) = 𝑥 + 𝑡𝑉 (𝑥), where 𝑉 a smooth vector field with compact
support in Ω𝛿, and we denote by 𝒱 the space of admissible deformations 𝑉 . It is well known that 𝜑 is invertible,
for sufficiently small 𝑡.

We say that the functional 𝐽(𝜔) has an Eulerian derivative at 𝜔 in the direction 𝑉 if the limit

lim
𝑡→0

𝐽(𝜑𝑡(𝜔))− 𝐽(𝜔)
𝑡

:= 𝐷𝐽(𝜔).𝑉

exists. Furthermore, if the mapping 𝑉 ↦−→ 𝐷𝐽(𝜔).𝑉 = ⟨∇𝐽, 𝑉 ⟩ is linear and continuous, we say that 𝐽 is shape
differentiable at 𝜔. When 𝐽 has an Eulerian derivative, we say that ∇𝐽 is the shape gradient of 𝐽 at 𝜔. For
more details concerning the differentiation with respect to the domain, we refer to the books [12,18,25].

5.1. Shape gradient of the cost function

Computing the shape gradient of the cost functional requires to calculate also the shape derivative of the
state (7). Numericaly, it implies that we need to solve as many boundary problems as discrete shape variables.
To avoid this extra computational cost, we use the classical adjoint state method, which requires to solve only
one extra boundary value problem.

By introducing the suitable adjoint problem, we give the shape gradient of the cost function in the following
proposition.

Proposition 5.1. Let 𝑉 ∈ 𝒱, the cost functional 𝐽 is differentiable with respect to the shape 𝜔 in the direction
of 𝑉 and its shape derivative is given by

𝐷𝐽(𝜔).𝑉 =
∫︁

𝜕𝜔

(𝑞2(ℎ2 − ℎ1) + 𝜀𝜅)𝑉𝑛, (19)

where 𝜅 = 𝑑𝑖𝑣Γ(𝑛), and 𝑞 = 𝑞1 + 𝑖𝑞2 solves the following adjoint problem{︂
−∆𝑞 + 𝛼𝑞 = 𝑢2 in Ω,

𝜕𝑛𝑞 − 𝑖𝑞 = 0 on 𝜕Ω.
(20)
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Proof. First, we derive the following expression using Hadamard and divergence formulas

𝐷𝐽(𝜔).𝑉 =
∫︁

Ω

𝑢2𝑢
′
2 +

1
2

∫︁
Ω

𝑑𝑖𝑣(|𝑢|2𝑉 ) + 𝜀

∫︁
𝜕𝜔

𝑑𝑖𝑣Γ(𝑉 )

=
∫︁

Ω

𝑢2𝑢
′
2 +

1
2

∫︁
𝜕Ω

|𝑢|2𝑉𝑛 + 𝜀

∫︁
𝜕𝜔

𝑑𝑖𝑣Γ(𝑉𝑛𝑛)

=
∫︁

Ω

𝑢2𝑢
′
2 + 𝜀

∫︁
𝜕𝜔

𝑉𝑛𝑑𝑖𝑣Γ(𝑛).

Where 𝑑𝑖𝑣Γ denotes the tangential divergence on 𝜕𝜔, and 𝜅 is the mean curvature of 𝜕𝜔.
On the other hand, one can show that the shape derivative of the state solves the following boundary value
problem (see Appendix) ⎧⎪⎨⎪⎩

∆𝑢′ + 𝛼𝑢′ = 0 in Ω,
[𝑢′] = 0 on 𝜕𝜔,

[𝜕𝑛𝑢′] = (ℎ1 − ℎ2)𝑉𝑛 on 𝜕𝜔,
𝜕𝑛𝑢′ + 𝑖𝑢′ = 0 on 𝜕Ω.

(21)

Then, the weak formulation of (21) with 𝑞 the solution of (20) as a test function, and the weak formulation of
(20) with 𝑢′ as a test function, are given by∫︁

Ω

∇𝑢′∇𝑞 + 𝛼

∫︁
Ω

𝑢′𝑞 + 𝑖

∫︁
𝜕Ω

𝑢′𝑞 =
∫︁

𝜕𝜔

(ℎ1 − ℎ2)𝑞𝑉𝑛, (22)

∫︁
Ω

∇𝑞∇𝑢̄′ + 𝛼

∫︁
Ω

𝑞𝑢̄′ − 𝑖

∫︁
𝜕Ω

𝑞𝑢̄′ =
∫︁

Ω

𝑢2𝑢̄
′, (23)

(23) implies that ∫︁
Ω

∇𝑢′∇𝑞 + 𝛼

∫︁
Ω

𝑢′𝑞 + 𝑖

∫︁
𝜕Ω

𝑢′𝑞 =
∫︁

Ω

𝑢2𝑢
′, (24)

By (22) and (24), it follows ∫︁
Ω

𝑢2𝑢
′ =

∫︁
𝜕𝜔

(ℎ1 − ℎ2)𝑞𝑉𝑛.

Finally, we conclude that ∫︁
Ω

𝑢2𝑢
′
2 = −

∫︁
𝜕𝜔

𝑞2(ℎ1 − ℎ2)𝑉𝑛.

�

6. Algorithm and numerical results

In this section, we present some numerical simulations in order to confirm and complete our previous theo-
retical results with a comparison between CCBM, Least-squares and Kohn-Vogelius Methods. In order to solve
numerically the optimization problem (12), we opt for the classical shape variation descent algorithm. First of
all, we describe the algorithm and the framework used, then, we present the numerical simulations and some
comparisons.
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6.1. Algorithm

The shape derivative of the cost function 𝐽 along a deformation field 𝑉 can be expressed as

∇𝐽(𝜔)[𝑉 ] =
∫︁

𝜕𝜔

𝑅𝑉𝑛𝑑𝜎,

where 𝑅 = 𝑞2(ℎ2 − ℎ1) + 𝜀𝜅 where 𝑞2 is the imaginary part of 𝑞 the solution of the adjoint problem (20).
The deformation field 𝑉 is chosen to provide a descent direction of the cost function 𝐽(𝜔), thus 𝑉 = −𝑅.𝑛 on
𝜕𝜔 is a descent direction. In addition, it is well known that the shape gradient is defined on the boundary of the
moving shape [28], using this approach, the direction of descent must be defined only on 𝜕𝜔. However, if the
boundary measurements (𝑓, 𝑔) is not sufficiently smooth, the surface expression of the shape gradient may not
exist or the direction of descent 𝑉 may have a poor regularity. Therefore, it is interesting to derive a direction of
descent 𝑉 on Ω from the volumetric expression of the shape gradient. Which requires solving another additional
variational problem. Let 𝑉 be the Riesz representative of −∇𝐽(𝜔), i.e. (see [7] and [16])

< 𝑉, 𝜑 >𝐻1(Ω)= −∇𝐽(𝜔)[𝜑] = − < 𝑅.𝑛, 𝜑 >𝐿2(𝜕𝜔) ∀𝜑 ∈ 𝐷2, (25)

where
𝐷 =

{︁
𝜑 ∈ 𝐻1(Ω), 𝜑 = 0 𝑖𝑛 𝜕Ω

}︁
,

and <, > is the inner product on 𝐷2 defined by

< 𝑉, 𝜑 >𝐻1(Ω)=
∫︁

Ω

∇𝑉 : ∇𝜑 + 𝑉.𝜑.

The equation (25) is the week formulation for the following system⎧⎨⎩−∆𝑉 + 𝑉 = 0 in Ω,
𝑉 = 0 on 𝜕Ω,

[𝜕𝑛𝑉 ] = −𝑅.𝑛 on 𝜕𝜔.
(26)

We give in the following algorithm the gradient method of our problem.

Algorithm 1: Gradient algorithm for shape optimization
1: Choose an initial shape 𝜔0, set 𝑘 = 0 and iterate:
2: Solve the state problem (7) and the adjoint problem (20) for 𝜔 = 𝜔𝑘.
3: Compute the descent direction 𝑉𝑘 using (26).
4: Update the current boundary 𝜕𝜔𝑘 by 𝑉𝑘 to obtain 𝜕𝜔𝑘+1, i.e., set 𝜕𝜔𝑘+1 := {𝑥 + 𝑡𝑘𝑉𝑘(𝑥) : 𝑥 ∈ 𝜕𝜔𝑘}, for some

sufficiently small scalar 𝑡𝑘 > 0.
5: While ‖∇𝐽(𝜔𝑘).𝑉𝑘‖ ≥ 𝜖, 𝑘 = 𝑘 + 1 and repeat .

6.2. Numerical results

For the numerical simulations, we consider the dimension two and we use the finite elements Software
Freefem++ (see [19]). The exterior boundary 𝜕Ω is assumed to be the square [−1, 1] × [−1, 1]. We con-
struct the synthetic data on 𝜕Ω, by fixing the shape 𝜔 and choosing the Neumann boundary condition
𝑔(𝑡) = sin(𝑡), 𝑡 ∈ [0, 2𝜋], then, we compute the trace of state 𝑢 solution of (4) to extract the measurement
𝑓 = 𝑢 𝑜𝑛 𝜕Ω. For the latter equation, we use a 𝑃2 finite elements discretization to solve the direct problem.
The examples with noisy data are generated by perturbing the Dirichlet data 𝑓 using a fixed amplitude of
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Figure 1. Reconstruction of the first domain by Kohn-Vogelius, Least-squares and CCBM
methods. (a) Kohn-Vogelius. (b) Least-squares. (c) CCBM.

Figure 2. Evolution of the three cost functions and their gradients according to the number
of iterations. (a) Cost functions. (b) Gradients.

Gaussian noise. The synthetic data has been chosen, in a way to avoid the so-called inverse crime phenomena.
To this end, the size of discretization used to obtain the synthetic data is different from the one used for solving
the inverse problem.
We precise that in all tests, the exterior boundary is represented by the black line, the initial shape by the green
line, the exact shape to identify by the blue line and the reconstructed shape by the dotted red line.

6.2.1. Results without noise

we present in Figures 1 and 3, the reconstruction result by three cost functionals, in the left, the identification
by the Kohn-Vogelius cost function, in the middle the Least-squares, and in the right, the result obtained by
CCBM. we notice that the results obtained are effective and similar.

In Figures 2 and 4, we plot the variation of the cost functionals according to the number of iterations and
the evolution of their associated gradients also. Clearly, The CCBM converges much quicker than the two other
methods.

In Figures 5 and 7, we observe that the results obtained by the CCBM and Kohn-Vogelius is more robust
than those obtained by Least-squares. In Figures 6 and 8, the convergence of the CCBM dominates that of the
Kohn-Vogelius and Least-squares.
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Figure 3. Reconstruction of the unknown domain by the three methods. (a) Kohn-Vogelius.
(b) Least-squares. (c) CCBM.

Figure 4. Evolution of the three cost functions, and their associated gradients according to
the number of iterations. (a) Cost functions. (b) Gradients.

Figure 5. Reconstruction of the unknown domain by the three methods methods. (a) Kohn-
Vogelius. (b) Least squares. (c) CCB.
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Figure 6. Evolution of the three cost functions and their gradients according to the number
of iterations. (a) Cost functions. (b) Gradients.

Figure 7. Reconstruction of the unknown domain by three methods. (a) Kohn-Vogelius. (b)
Least squares. (c) CCBM.

Figure 8. Evolution of the three cost functions and their gradients according to the number
of iterations. (a) Cost functions. (b) Gradients.
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Figure 9. Reconstructions of the unknown domain with noise.

6.2.2. Results with Gaussian noise

In this subsection, we present the results obtained from the noisy data as follows

𝑓(𝑥) = 𝑓(𝑥)
(︀
1 + 𝜏𝜉

)︀
,

where 𝜉 is a uniformly distributed random variable in [−1, 1] and 𝜏 dictates the level of noise.
We present in Figure 9, the results with different levels of noise. We observe that for different geometries the
CCBM gives good results.

6.2.3. Results with impulse noise

Having shown the stability of the proposed method with noised data infected with Gaussian noise, we present
in this section the robustness of this method through a more complicated type of noise. We suppose that the
given data is infected by the impulse noise. Impulse noise consists of relatively short duration ”on/off” noise
pulses, caused by a variety of sources, dropouts, or surface degradation. The impulse noise is not trivial due to
its complex statistical nature. To construct noised data, we select randomly a number of nodes in the boundary
𝜕Ω with a percentage 𝜚. Then we add the impulsive noise to data as follows:

𝑓𝜚 = 𝑓𝜚 + 𝜚𝜂𝜄‖𝑓𝜚‖∞
where 𝜂 is the magnitude of corruption, ‖𝑓𝜚 · ‖∞ is the maximum norm. While 𝜄 is a vector of impulsive noise
which have the following probability density function

D(𝜄𝑖(𝑥)) = 𝜆1𝛿(𝜄𝑖(𝑥)) + 𝜆2D𝑁 (𝜄𝑖(𝑥))
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Figure 10. Plot of different boundaries obtained with noised data with different rates of
impulsive noise.

where 𝛿(𝜄𝑖(𝑥)) is the Kronecker delta function and D𝑁 (𝜄𝑖(𝑥)) is a zero-mean Gaussian probability density
function. While 𝜆1 and 𝜆2 are parameters that control the mixture of a discrete probability mass function
𝛿(𝜄𝑖(𝑥)) and a continuous probability density function.

In Figure 10, we present the plot of different obtained boundaries by the algorithm 1, using data with different
rates of impulsive noise. For the case of 1% rate of impulsive noise, the percentage of corrupted data points is
𝜚 = 30% and the magnitude of corruption is 𝜂 = 0.1. In the case of 2% rate of impulsive noise, we have taken
𝜚 = 50% as percentage of corrupted data points and 𝜂 = 0.2 as magnitude of corruption. While in the last case,
all nodes of boundary 𝜕Ω was affected by noise which corresponds to 𝜚 = 100% and the magnitude of corruption
was 𝜂 = 0.5. As we can see in this case of more complicated noise, the proposed approach still present a good
approximation which prove numerically its stability.

6.2.4. Real case without exact solution

In this section we consider a case with data from real life situation. We consider an electrostatic problem.
We consider a rectangular domain Ω =] − 1, 1[2. Denote by Ψ the source term of electrostatic charges which
supposed discontinued through the inclusion 𝜔 and let (𝑔, 𝑓) be given data on the boundary. Our goal is to
reconstruct surface charges 𝜔 that creating the potential field 𝑢 from Cauchy data (𝑔, 𝑓). The Cauchy data are
taken as follows : the measured potential 𝑓 on the boundary is presented in the Figure 11. the output flux 𝑔 = 0.
While the source ℎ1 = 12𝑣 and ℎ2 = 230𝑣. The mesh of the optimal domain is presented in the Figure 12. In
the Figure 13, we present the evolution of the cost functional 𝐽 and the norm of the gradient |∇𝐽 | according
to iterations. In the Figure 14, we present the potential in optimal domain for 2 and 3 dimensions.

As we can be seen, the obtained results in the real-life case show the performance of the proposed approach.

7. Conclusion

We have presented a regularized Complex coupled formulation for the identification of the geometric source
problem. The inverse problem is reformulated as a shape optimization one. The existence of a minimizer is inves-
tigated. A numerical algorithm for solving the proposed optimization problem is developed. We also derived an
exact computation of the gradient of the cost function of our optimization problem. The numerical experiments
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Figure 11. The measured potential on different parts of the boundary 𝜕Ω.

Figure 12. The mesh of the optimal configuration of domain showing the inclusion 𝜔.
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Figure 13. The evolution of the cost function and the norm of the gradient.

Figure 14. The plot of the optimal potential in 2 dimensions and 3 dimensions.

performed in this paper demonstrate the robustness of the developed regularized coupled method for solving
this geometric inverse problems.

Appendix A. Shape derivative of the state

Before starting, we give some notations. We denote by 𝑛 the outward unit normal to 𝜕𝜔 pointing into Ω ∖ 𝜔,
thus 𝜕𝑛𝑢− (resp. 𝜕𝑛𝑢+) is the normal derivative from the inside of 𝜔 (resp. Ω∖𝜔) at interface 𝜕𝜔, and [·] denotes
the jump across the same interface. Let 𝑉 ∈ 𝒱 and 𝑉𝑛 := ⟨𝑉, 𝑛⟩ its normal component. Consider the smooth
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transformation 𝜑𝑡(𝑥) = 𝑥 + 𝑡𝑉 (𝑥). We denote by

𝐽𝑡(𝑥) = det 𝐷𝜑𝑡(𝑥),
𝐴𝑡(𝑥) = 𝐷𝜑−1

𝑡 (𝑥)ᵀ𝐷𝜑−1
𝑡 (𝑥)𝐽𝑡(𝑥),

𝜉𝑡(𝑥) = 𝐽𝑡(𝑥)‖𝐷𝜑−𝑇
𝑡 (𝑥).𝑛‖.

Note that 𝐴𝑡(𝑥) is symmetric positive and for 𝑡 < 𝑡0 we have

𝑦ᵀ𝐴𝑡(𝑥)𝑦 ≥ 𝜇‖𝑦‖2 and 0 < 𝛽 ≤ 𝐽𝑡.

Furthermore, the application 𝐴𝑡 is smooth with 𝐴0(𝑥) = 𝐼, 𝐽0(𝑥) = 1 and

𝑑

𝑑𝑡
𝐽𝑡(𝑥)|𝑡=0 = div (𝑉 ) ,

𝒜 :=
𝑑

𝑑𝑡
𝐴𝑡(𝑥)|𝑡=0 = div (𝑉 ) 𝐼 − (𝐷𝑉 ᵀ + 𝐷𝑉 ) ,

𝑑

𝑑𝑡
𝜉𝑡(𝑥)|𝑡=0 = div (𝑉 )− ⟨𝐷𝑉.𝑛, 𝑛⟩ = 𝑑𝑖𝑣Γ(𝑉 ).

We denote by 𝑢𝑡 the solution of (7) with inclusion 𝜔𝑡 = 𝜑𝑡(𝜔). For the computation of the shape gradient of the
state, we shall use the classical technique which consists of transporting the quantity 𝑢𝑡 defined in the variable
domain 𝜔𝑡 back onto the reference domain 𝜔 using the following transformation 𝑢𝑡 = 𝑢𝑡 ∘𝜑𝑡, the usual methods
of differential calculus can now be applied since both functionals 𝑢𝑡 and 𝑢 are now defined in the fixed domain
𝜔. The material derivative (or Lagrangian derivative) of the state is then given by

𝑢̇ := lim
𝑡→0

𝑢𝑡 − 𝑢

𝑡
, ∀𝑥 ∈ Ω.

The shape derivative (or Eulerian derivative) of the state is defined by

𝑢′ := 𝑢̇−∇𝑢.𝑉.

Theorem A.1. The state solution 𝑢 has a material derivative 𝑢̇ that satisfies

∀𝑣 ∈ 𝐻1(Ω), ⟨∇𝑢̇,∇𝑣⟩0,Ω + 𝛼⟨𝑢̇, 𝑣⟩0,Ω =− ⟨𝒜∇𝑢,∇𝑣⟩0,Ω − 𝛼⟨div (𝑉 ) 𝑢, 𝑣⟩0,Ω + ⟨div (𝑉 ) ℎ2, 𝑣⟩0,Ω

+ ⟨∇ℎ2.𝑉, 𝑣⟩0,Ω + ⟨div (𝑉 ) (ℎ1 − ℎ2), 𝑣⟩0,𝜔

+ ⟨∇(ℎ1 − ℎ2).𝑉, 𝑣⟩0,𝜔.

(A.1)

The state 𝑢 is shape differentiable and its shape derivative 𝑢′ solves⎧⎪⎨⎪⎩
∆𝑢′ + 𝛼𝑢′ = 0 in Ω,

[𝑢′] = 0 on 𝜕𝜔,
[𝜕𝑛𝑢′] = (ℎ1 − ℎ2)𝑉𝑛 on 𝜕𝜔,

𝜕𝑛𝑢′ + 𝑖𝑢′ = 0 on 𝜕Ω.

(A.2)

We think it is useful to show how, using the classical methods of shape optimization, we can prove both
existence of the derivative and problem (A.2). Therefore, we give a rigorous proof of Theorem A.1 and also
show that material derivative is belonging to 𝐻1(Ω).

Proof. The proof is divided into four parts. Firstly, we transfer the perturbed problem to the fixed domain, we
then prove weak convergence of a given sequence to the material derivative of the state, next, we show its stong
convergence, and finally, we deduce the shape derivative.
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First step. Let 𝑢𝑡 denote the solution of Problem (7) given in a domain with inclusion 𝜔𝑡 = 𝜑𝑡(𝜔), we have

∀𝑣 ∈ 𝐻1(Ω),
∫︁

Ω

∇𝑢𝑡.∇𝑣 + 𝛼

∫︁
Ω

𝑢𝑡𝑣 + 𝑖

∫︁
𝜕Ω

𝑢𝑡𝑣 =
∫︁

Ω

ℎ2𝑣 +
∫︁

𝜔𝑡

(ℎ1 − ℎ2)𝑣 +
∫︁

𝜕Ω

𝑔𝑣 + 𝑖

∫︁
𝜕Ω

𝑓𝑣.

Then, the transported 𝑢𝑡 = 𝑢𝑡 ∘ 𝜑𝑡 solves the variational equation∫︁
Ω

𝐴𝑡∇𝑢𝑡.∇𝑣 + 𝛼

∫︁
Ω

𝑢𝑡𝑣𝐽𝑡 + 𝑖

∫︁
𝜕Ω

𝑢𝑡𝑣 =
∫︁

Ω

ℎ2 ∘ 𝜑𝑡𝑣𝐽𝑡 +
∫︁

𝜔

(ℎ1 ∘ 𝜑𝑡 − ℎ2 ∘ 𝜑𝑡)𝑣𝐽𝑡 +
∫︁

𝜕Ω

𝑔𝑣 + 𝑖

∫︁
𝜕Ω

𝑓𝑣. (A.3)

Second step. Using the variational equation solved by 𝑢 subtracted from the equation (A.3), and the fact that
𝜑𝑡(𝑥) = 𝑥 on 𝜕Ω, we obtain⟨

𝐴𝑡

∇𝑢𝑡 −∇𝑢

𝑡
,∇𝑣

⟩
0,Ω

+ 𝛼
⟨
𝐽𝑡

𝑢𝑡 − 𝑢

𝑡
, 𝑣

⟩
0,Ω

=
⟨𝐼 −𝐴𝑡

𝑡
∇𝑢,∇𝑣

⟩
0,Ω

+ 𝛼
⟨1− 𝐽𝑡

𝑡
𝑢, 𝑣

⟩
0,Ω

+
⟨
𝐽𝑡

ℎ2 ∘ 𝜑𝑡 − ℎ2

𝑡
, 𝑣

⟩
0,Ω

+
⟨𝐽𝑡 − 1

𝑡
ℎ2, 𝑣

⟩
0,Ω

+
⟨
𝐽𝑡

(ℎ1 ∘ 𝜑𝑡 − ℎ2 ∘ 𝜑𝑡)− (ℎ1 − ℎ2)
𝑡

, 𝑣
⟩

0,𝜔

+
⟨𝐽𝑡 − 1

𝑡
(ℎ1 − ℎ2), 𝑣

⟩
0,𝜔

.

(A.4)

Using
(𝑢𝑡 − 𝑢)

𝑡
as a test function, and from the properties of 𝐴𝑡 and 𝐽𝑡 we get

𝜇
⃦⃦⃦∇𝑢𝑡 −∇𝑢

𝑡

⃦⃦⃦2

0,Ω
+ 𝛽𝛼

⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦2

0,Ω
≤

⃦⃦⃦𝐴𝑡 − 𝐼

𝑡

⃦⃦⃦
∞

⃦⃦⃦
∇𝑢

⃦⃦⃦
0,Ω

⃦⃦⃦∇𝑢𝑡 −∇𝑢

𝑡

⃦⃦⃦
0,Ω

+ 𝛼
⃦⃦⃦1− 𝐽𝑡

𝑡

⃦⃦⃦
∞

⃦⃦⃦
𝑢
⃦⃦⃦

0,Ω

⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦
0,Ω

+
⃦⃦⃦
𝐽𝑡

⃦⃦⃦
∞

⃦⃦⃦ℎ2 ∘ 𝜑𝑡 − ℎ2

𝑡

⃦⃦⃦
0,Ω

⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦
0,Ω

+
⃦⃦⃦𝐽𝑡 − 1

𝑡

⃦⃦⃦
∞

⃦⃦⃦
ℎ2

⃦⃦⃦
0,Ω

⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦
0,Ω

+
⃦⃦⃦
𝐽𝑡

⃦⃦⃦
∞

⃦⃦⃦ (ℎ1 ∘ 𝜑𝑡 − ℎ1)− (ℎ2 ∘ 𝜑𝑡 − ℎ2)
𝑡

⃦⃦⃦
0,Ω

⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦
0,Ω

mes(Ω𝛿)1/2

+
⃦⃦⃦𝐽𝑡 − 1

𝑡

⃦⃦⃦
∞

⃦⃦⃦
ℎ1 − ℎ2

⃦⃦⃦
0,Ω

⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦
0,Ω

mes(Ω𝛿)1/2.

From Young’s inequality, we deduce that

𝑚𝑖𝑛(𝜇, 𝛽𝛼)
⃦⃦⃦𝑢𝑡 − 𝑢

𝑡

⃦⃦⃦
0,Ω

≤ 𝐶

(︂⃦⃦⃦𝐴𝑡 − 𝐼

𝑡

⃦⃦⃦
∞

⃦⃦⃦
∇𝑢

⃦⃦⃦
0,Ω

+ 𝛼
⃦⃦⃦1− 𝐽𝑡

𝑡

⃦⃦⃦
∞

⃦⃦⃦
𝑢
⃦⃦⃦

0,Ω
+

⃦⃦⃦
𝐽𝑡

⃦⃦⃦
∞

⃦⃦⃦ℎ2 ∘ 𝜑𝑡 − ℎ2

𝑡

⃦⃦⃦
0,Ω

+
⃦⃦⃦𝐽𝑡 − 1

𝑡

⃦⃦⃦
∞

⃦⃦⃦
ℎ2

⃦⃦⃦
0,Ω

+
⃦⃦⃦
𝐽𝑡

⃦⃦⃦
∞

⃦⃦⃦ (ℎ1 ∘ 𝜑𝑡 − ℎ1)− (ℎ2 ∘ 𝜑𝑡 − ℎ2)
𝑡

⃦⃦⃦
0,Ω

mes(Ω𝛿)1/2

+
⃦⃦⃦𝐽𝑡 − 1

𝑡

⃦⃦⃦
∞

⃦⃦⃦
ℎ1 − ℎ2

⃦⃦⃦
0,Ω

mes(Ω𝛿)1/2

)︂
,

where 𝐶 is a positive constant. Therefore the sequence (𝑢𝑡 − 𝑢)/𝑡 is bounded in 𝐻1(Ω). Thus, we obtain the
weak convergence of the sequence in 𝐻1(Ω) and its weak limit is 𝑢̇ the material derivative of 𝑢.

Third step. We show the strong convergence of (𝑢𝑡 − 𝑢)/𝑡. We pass to the limit as 𝑡 → 0 in (A.4), we show
that 𝑢̇ solves

⟨∇𝑢̇,∇𝑣⟩0,Ω + 𝛼⟨𝑢̇, 𝑣⟩0,Ω =− ⟨𝒜∇𝑢,∇𝑣⟩0,Ω − 𝛼⟨div (𝑉 ) 𝑢, 𝑣⟩0,Ω + ⟨div (𝑉 ) ℎ2, 𝑣
⟩

0,Ω
+ ⟨∇ℎ2.𝑉, 𝑣⟩0,Ω

+ ⟨div (𝑉 ) (ℎ1 − ℎ2), 𝑣⟩0,𝜔 + ⟨∇(ℎ1 − ℎ2).𝑉, 𝑣⟩0,𝜔.
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This was stated as (A.1) in Theorem A.1. This equation allows us to prove the strong convergence in 𝐻1(Ω),
in fact, taking 𝑣 = (𝑢𝑡 − 𝑢)/𝑡 in (A.4), we get

⟨𝐴𝑡∇𝑣,∇𝑣⟩0,Ω + 𝛼⟨𝐽𝑡𝑣, 𝑣⟩0,Ω =
⟨𝐼 −𝐴𝑡

𝑡
∇𝑢,∇𝑣

⟩
0,Ω

+ 𝛼
⟨1− 𝐽𝑡

𝑡
𝑢, 𝑣

⟩
0,Ω

+
⟨
𝐽𝑡

ℎ2 ∘ 𝜑𝑡 − ℎ2

𝑡
, 𝑣

⟩
0,Ω

+
⟨𝐽𝑡 − 1

𝑡
ℎ2, 𝑣

⟩
0,Ω

+
⟨
𝐽𝑡

(ℎ1 ∘ 𝜑𝑡 − ℎ2 ∘ 𝜑𝑡)− (ℎ1 − ℎ2)
𝑡

, 𝑣
⟩

0,𝜔

+
⟨𝐽𝑡 − 1

𝑡
(ℎ1 − ℎ2), 𝑣

⟩
0,𝜔

+
⟨𝐽𝑡 − 1

𝑡
(ℎ1 − ℎ2), 𝑣

⟩
0,𝜔

= ⟨(𝐴𝑡 − 𝐼)∇𝑣,∇𝑣⟩0,Ω + 𝛼⟨(𝐽𝑡 − 1)𝑣, 𝑣⟩0,Ω + ⟨
𝐼 −𝐴𝑡

𝑡
∇𝑢𝑡,∇𝑣⟩0,Ω

+ 𝛼⟨1− 𝐽𝑡

𝑡
𝑢𝑡, 𝑣⟩0,Ω +

⟨
𝐽𝑡

ℎ2 ∘ 𝜑𝑡 − ℎ2

𝑡
, 𝑣

⟩
0,Ω

+
⟨𝐽𝑡 − 1

𝑡
ℎ2, 𝑣

⟩
0,Ω

+
⟨
𝐽𝑡

(ℎ1 ∘ 𝜑𝑡 − ℎ2 ∘ 𝜑𝑡)− (ℎ1 − ℎ2)
𝑡

, 𝑣
⟩

0,𝜔

+
⟨𝐽𝑡 − 1

𝑡
(ℎ1 − ℎ2), 𝑣

⟩
0,𝜔

+
⟨𝐽𝑡 − 1

𝑡
(ℎ1 − ℎ2), 𝑣

⟩
0,𝜔

= 𝐸1,𝑡 + 𝐸2,𝑡,

we denote by

𝐸1,𝑡 =⟨(𝐴𝑡 − 𝐼)∇𝑣,∇𝑣⟩0,Ω + 𝛼⟨(𝐽𝑡 − 1)𝑣, 𝑣⟩0,Ω,

𝐸2,𝑡 =
⟨𝐼 −𝐴𝑡

𝑡
∇𝑢𝑡,∇𝑣

⟩
0,Ω

+ 𝛼
⟨1− 𝐽𝑡

𝑡
𝑢𝑡, 𝑣⟩0,Ω +

⟨
𝐽𝑡

ℎ2 ∘ 𝜑𝑡 − ℎ2

𝑡
, 𝑣

⟩
0,Ω

+
⟨𝐽𝑡 − 1

𝑡
ℎ2, 𝑣

⟩
0,Ω

+
⟨
𝐽𝑡

(ℎ1 ∘ 𝜑𝑡 − ℎ2 ∘ 𝜑𝑡)− (ℎ1 − ℎ2)
𝑡

, 𝑣
⟩

0,𝜔
+

⟨𝐽𝑡 − 1
𝑡

(ℎ1 − ℎ2), 𝑣
⟩

0,𝜔

+
⟨𝐽𝑡 − 1

𝑡
(ℎ1 − ℎ2), 𝑣

⟩
0,𝜔

.

Using the weak convergence of (𝑢𝑡 − 𝑢)/𝑡, we get after straightforward calculations
𝐸1,𝑡 → 0 and 𝐸2,𝑡 → −⟨𝒜∇𝑢,∇𝑢̇⟩0,Ω − 𝛼⟨div (𝑉 ) 𝑢, 𝑢̇⟩0,Ω + ⟨∇ℎ2.𝑉, 𝑣⟩0,Ω + ⟨div (𝑉 ) ℎ2, 𝑢̇⟩0,Ω + ⟨∇(ℎ1 −
ℎ2).𝑉, 𝑣⟩0,𝜔 + ⟨div (𝑉 ) (ℎ1 − ℎ2), 𝑢̇⟩0,𝜔 when 𝑡 → 0.
By (A.1), we conclude that 𝐸2,𝑡 → ⟨∇𝑢̇𝑑,∇𝑢̇𝑑⟩0,Ω + 𝛼⟨𝑢̇𝑑, 𝑢̇𝑑⟩0,Ω.
This shows that ⟨𝐴𝑡∇𝑣,∇𝑣⟩0,Ω + 𝛼⟨𝐽𝑡𝑣, 𝑣⟩0,Ω converges to ‖∇𝑢̇‖20,Ω + 𝛼‖𝑢̇‖20,Ω. Using the proprieties of 𝐴𝑡 and
𝐽𝑡 we deduce the strong convergence of 𝑣 = (𝑢𝑡 − 𝑢)/𝑡 to 𝑢̇ in 𝐻1(Ω).

Fourth Step. We obtain the equations satisfied by the shape derivative 𝑢′ = 𝑢̇− 𝑉.∇𝑢. Let 𝑏 = (𝑉.∇𝑢)∇𝑣 +
(𝑉.∇𝑣)∇𝑢− (∇𝑢.∇𝑣)𝑉 . Using the following classical identity

−∇𝑢.𝒜∇𝑣 = div (𝑏)− (𝑉.∇𝑢)∆𝑣 − (𝑉.∇𝑣)∆𝑢,

and equation (A.1) satisfied by 𝑢̇ we get∫︁
Ω

∇𝑢̇.∇𝑣 + 𝛼

∫︁
Ω

𝑢̇𝑣 =
∫︁

Ω

div (𝑏)−
∫︁

Ω

(𝑉.∇𝑢)∆𝑣 −
∫︁

Ω

(𝑉.∇𝑣)∆𝑢− 𝛼

∫︁
Ω

div (𝑉 ) 𝑢𝑣 +
∫︁

Ω

div (𝑉 ) ℎ2𝑣

+
∫︁

Ω

∇ℎ2.𝑉 𝑣 +
∫︁

𝜔

div (𝑉 ) (ℎ1 − ℎ2)𝑣 +
∫︁

𝜔

∇(ℎ1 − ℎ2).𝑉 𝑣.
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Using the divergence theorem and integration by parts (considering −∆𝑢 = −𝛼𝑢+ℎ2 +(ℎ1−ℎ2)𝜒𝜔), we obtain∫︁
Ω

∇𝑢̇.∇𝑣 + 𝛼

∫︁
Ω

𝑢̇𝑣 = −
∫︁

𝜕𝜔

[(𝑉.∇𝑣)𝜕𝑛𝑢] +
∫︁

𝜕𝜔

[(∇𝑢.∇𝑣)𝑉𝑛] +
∫︁

Ω

∇(𝑉.∇𝑢)∇𝑣

− 𝛼

∫︁
Ω

div (𝑉 ) 𝑢𝑣 +
∫︁

Ω

div (ℎ2𝑉 ) 𝑣 +
∫︁

𝜔

div ((ℎ1 − ℎ2)𝑉 ) 𝑣

− 𝛼

∫︁
Ω

(𝑉.∇𝑣)𝑢 +
∫︁

Ω

(𝑉.∇𝑣)ℎ2 +
∫︁

𝜔

(𝑉.∇𝑣)(ℎ1 − ℎ2).

Which implies that∫︁
Ω

∇(𝑢̇− 𝑉∇𝑢).∇𝑣 𝑑𝑥 + 𝛼

∫︁
Ω

(𝑢̇− 𝑉∇𝑢)𝑣 = −𝛼

∫︁
Ω

(div (𝑉 𝑢𝑣) +
∫︁

Ω

div (𝑉 ℎ2𝑣) +
∫︁

𝜔

div (𝑉 (ℎ1 − ℎ2)𝑣) .

We obtain the following equation satisfied by the shape derivative 𝑢′ = 𝑢̇− 𝑉.∇𝑢∫︁
Ω

∇𝑢′.∇𝑣 + 𝛼

∫︁
Ω

𝑢′𝑣 = −
∫︁

𝜕𝜔

𝑉𝑛𝑣(ℎ1 − ℎ2),

and using Green’s formula we get

−
∫︁

Ω

∆𝑢′𝑣 + 𝛼

∫︁
Ω

𝑢′𝑣 −
∫︁

𝜕𝜔

𝑣 [𝜕𝑛𝑢′] = −
∫︁

𝜕𝜔

𝑉𝑛𝑣(ℎ1 − ℎ2).

We deduce that 𝑢′ satisfies the equation −∆𝑢′ + 𝛼𝑢′ = 0 on Ω∖𝜔̄ ∪ 𝜔 with the condition

[𝜕𝑛𝑢′] = (ℎ1 − ℎ2)𝑉𝑛 on 𝜕𝜔.

Then, we determine the jump of 𝑢′. Since 𝑢̇ ∈ 𝐻1(Ω), we have

[𝑢′] = −𝑉𝑛 [𝜕𝑛𝑢] = 0 on 𝜕𝜔.

Using the boundary condition 𝜕𝑛𝑢 + 𝑖𝑢 = 𝑔 + 𝑖𝑓 on 𝜕Ω and the fact that 𝑉 = 0 on 𝜕Ω, we obtain

𝜕𝑛𝑢′ + 𝑖𝑢′ = 0 on 𝜕Ω.

We came to the end of our proof of shape differentiability of 𝑢. �
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