Some new results on the k -tuple domination number of graphs
RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3491-3497

Let k ≥ 1 be an integer and G be a graph of minimum degree δ(G) ≥ k − 1. A set D ⊆ V(G) is said to be a k-tuple dominating set of G if |N[v] ∩ D| ≥ k for every vertex v ∈ V(G), where N[v] represents the closed neighbourhood of vertex v. The minimum cardinality among all k-tuple dominating sets is the k-tuple domination number of G. In this paper, we continue with the study of this classical domination parameter in graphs. In particular, we provide some relationships that exist between the k-tuple domination number and other classical parameters, like the multiple domination parameters, the independence number, the diameter, the order and the maximum degree. Also, we show some classes of graphs for which these relationships are achieved.

DOI : 10.1051/ro/2022159
Classification : 05C69
Keywords: $$-domination, $$-tuple domination, double domination
@article{RO_2022__56_5_3491_0,
     author = {Martinez, Abel Cabrera},
     title = {Some new results on the $k$-tuple domination number of graphs},
     journal = {RAIRO. Operations Research},
     pages = {3491--3497},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/ro/2022159},
     mrnumber = {4497835},
     zbl = {1502.05188},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022159/}
}
TY  - JOUR
AU  - Martinez, Abel Cabrera
TI  - Some new results on the $k$-tuple domination number of graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3491
EP  - 3497
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022159/
DO  - 10.1051/ro/2022159
LA  - en
ID  - RO_2022__56_5_3491_0
ER  - 
%0 Journal Article
%A Martinez, Abel Cabrera
%T Some new results on the $k$-tuple domination number of graphs
%J RAIRO. Operations Research
%D 2022
%P 3491-3497
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022159/
%R 10.1051/ro/2022159
%G en
%F RO_2022__56_5_3491_0
Martinez, Abel Cabrera. Some new results on the $k$-tuple domination number of graphs. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3491-3497. doi: 10.1051/ro/2022159

[1] T. W. Haynes, S. T. Hedetniemi and M. A. Henning, Topics in domination in graphs, in Developments in Mathematics. Springer (2020). | MR | Zbl

[2] J. F. Fink and M. S. Jacobson, n -domination in graphs, in Graph theory with applications to algorithms and computer science. Wiley-Intersci. Publ., Wiley, New York (1985) 283–300. | MR | Zbl

[3] J. F. Fink and M. S. Jacobson, On n -domination, n -dependence and forbidden subgraphs, in Graph theory with applications to algorithms and computer science. Kalamazoo, Michigan (1984); Wiley-Intersci. Publ., Wiley, New York (1985) 301–311. | MR | Zbl

[4] F. Harary and T. W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs. Discrete Math. 155 (1996) 99–105. | MR | Zbl | DOI

[5] F. Harary and T. W. Haynes, Double domination in graphs. Ars Combin. 55 (2000) 201–213. | MR | Zbl

[6] A. Hansberg and L. Volkmann, Multiple domination, in Topics in Domination in Graphs. Developments in Mathematics. Springer (2020) 151–203. | MR | Zbl | DOI

[7] S. Alipour, A. Jafari and M. Saghafian, Upper bounds for k -tuple (total) domination numbers of regular graphs. Bull. Iran. Math. Soc. 46 (2020) 573–577. | MR | Zbl | DOI

[8] A. Cabrera-Martínez, A note on the k -tuple domination number of graphs. Ars Math. Contemp. 22 (2022) P4.03. | MR | Zbl | DOI

[9] G. B. Ekinci and C. Bujtás, Bipartite graphs with close domination and k -domination numbers. Open Math. 18 (2020) 873–885. | MR | Zbl | DOI

[10] N. Jafari Rad, Upper bounds on the k -tuple domination number and k -tuple total domination number of a graph. Australas. J. Comb. 73 (2019) 280–290. | MR | Zbl

[11] M. H. Nguyen, M. H. Hà, D. N. Nguyen and T. T. Tran, Solving the k -dominating set problem on very large-scale networks. Comput. Soc. Netw. 7 (2020) 4. | DOI

[12] Ch.-S. Liao and G. J. Chang, k -tuple domination in graphs. Inform. Process. Lett. 87 (2003) 45–50. | MR | Zbl | DOI

[13] A. Cabrera-Martínez, New bounds on the double domination number of trees. Discrete Appl. Math. 315 (2022) 97–103. | MR | Zbl | DOI

[14] A. Cabrera Martínez and J. A. Rodríguez-Velázquez, A note on double domination in graphs. Discrete Appl. Math. 300 (2021) 107–111. | MR | Zbl | DOI

[15] O. Favaron, M. A. Henning, J. Puech and D. Rautenbach, On domination and annihilation in graphs with claw-free blocks. Discrete Math. 231 (2001) 143–151. | MR | Zbl | DOI

[16] R. Klasing and C. Laforest, Hardness results and approximation algorithms of k -tuple domination in graphs. Inform. Process. Lett. 89 (2004) 75–83. | MR | Zbl | DOI

Cité par Sources :