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SOME NEW RESULTS ON THE 𝑘-TUPLE DOMINATION NUMBER OF
GRAPHS

Abel Cabrera Martinez*

Abstract. Let 𝑘 ≥ 1 be an integer and 𝐺 be a graph of minimum degree 𝛿(𝐺) ≥ 𝑘 − 1. A set
𝐷 ⊆ 𝑉 (𝐺) is said to be a 𝑘-tuple dominating set of 𝐺 if |𝑁 [𝑣] ∩ 𝐷| ≥ 𝑘 for every vertex 𝑣 ∈ 𝑉 (𝐺),
where 𝑁 [𝑣] represents the closed neighbourhood of vertex 𝑣. The minimum cardinality among all 𝑘-
tuple dominating sets is the 𝑘-tuple domination number of 𝐺. In this paper, we continue with the
study of this classical domination parameter in graphs. In particular, we provide some relationships
that exist between the 𝑘-tuple domination number and other classical parameters, like the multiple
domination parameters, the independence number, the diameter, the order and the maximum degree.
Also, we show some classes of graphs for which these relationships are achieved.
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1. Introduction

Throughout this article we consider 𝐺 as a simple graph with vertex set 𝑉 (𝐺). Given a vertex 𝑣 of 𝐺, 𝑁(𝑣) and
𝑁 [𝑣] represent the open neighbourhood and the closed neighbourhood of 𝑣, respectively. Given a vertex 𝑣 ∈ 𝑉 (𝐺)
and a set 𝐷 ⊆ 𝑉 (𝐺), we denote by deg𝐷(𝑣) = |𝑁(𝑣) ∩ 𝐷| the number of vertices in 𝐷 adjacent to 𝑣 and let
deg𝐷[𝑣] = |𝑁 [𝑣]∩𝐷|. The values 𝛿(𝐺) = min{deg𝑉 (𝐺)(𝑥) : 𝑥 ∈ 𝑉 (𝐺)} and ∆(𝐺) = max{deg𝑉 (𝐺)(𝑥) : 𝑥 ∈ 𝑉 (𝐺)}
denote the minimum and maximum degrees of 𝐺, respectively. A graph is claw-free if and only if it does not
contain the complete bipartite graph 𝐾1,3 as an induced subgraph. Other definitions not given here can be
found in the book [1].

In 1985, Fink and Jacobson [2, 3] introduced the 𝑘-domination in graphs as an extension of the concept
of domination in graphs. A set 𝐷 ⊆ 𝑉 (𝐺) is said to be a 𝑘-dominating set of 𝐺 if deg𝐷(𝑣) ≥ 𝑘 for every
𝑣 ∈ 𝑉 (𝐺) ∖ 𝐷. Notice that the 1-dominating set of 𝐺 is the same as the classical dominating set of 𝐺. The
𝑘-domination number of 𝐺, denoted by 𝛾𝑘(𝐺), is the minimum cardinality among all 𝑘-dominating sets of 𝐺.
We define a 𝛾𝑘(𝐺)-set as a 𝑘-dominating set of 𝐺 with cardinality 𝛾𝑘(𝐺). The same agreement will be assumed
for optimal parameters associated to other characteristic sets defined in the article.

More than 10 years later, and in two different papers (published in 1996 and 2000, respectively), Harary and
Haynes [4, 5] introduced the concept of 𝑘-tuple domination in graphs. Given a graph 𝐺 and a positive integer
𝑘 ≤ 𝛿(𝐺) + 1, a set 𝐷 ⊆ 𝑉 (𝐺) is said to be a 𝑘-tuple dominating set of 𝐺 if deg𝐷[𝑣] ≥ 𝑘 for every 𝑣 ∈ 𝑉 (𝐺).
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Observe that the 1-tuple dominating set of 𝐺 is the same as the dominating set of 𝐺. The 𝑘-tuple domination
number of 𝐺, denoted by 𝛾×𝑘(𝐺), is the minimum cardinality among all 𝑘-tuple dominating sets of 𝐺. For a
comprehensive survey on 𝑘-domination and 𝑘-tuple domination in graphs, we suggest the chapter [6] due to
Hansberg and Volkmann. In addition, some recent results on these parameters can be found in [7–11].

In [12], Liao and Chang proved that the problem of deciding if a given graph 𝐺 has a 𝑘-tuple dominating set of
cardinality 𝛾×𝑘(𝐺) is NP-hard, even for bipartite and split graphs. This suggests finding the 𝑘-tuple domination
number for special classes of graphs, obtaining tight bounds, as well as providing relationships between this
parameter and other domination invariants in graphs. In this paper, we continue with the study of this classical
domination parameter in graphs. In particular, we center our attention on these last two goals.

2. Relationships with other domination parameters

Relationships between different parameters corresponding to multiple domination have attracted the attention
of several researches in the last few decades, and a high number of significant contributions are nowadays well
known.

Recently, Hansberg and Volkmann [6] put into context all relevant relationships concerning 𝑘-tuple domina-
tion (with emphasis in the case 𝑘 = 2) that have been found up to 2020. Subsequently, Cabrera-Mart́ınez [8,13]
obtained new results in this direction. In particular, the following theorem solved an open problem posed in [6].

Theorem 2.1. [8] Let 𝑘 ≥ 2 be an integer. For any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 − 1,

𝛾×𝑘(𝐺) ≤ 𝑘𝛾𝑘(𝐺)− (𝑘 − 1)2.

The next result provides a new upper bound for the 𝑘-tuple domination number of a graph 𝐺 in terms of the
𝑘-domination number and the 𝑘′-tuple domination number (𝑘′ ∈ {1, . . . , 𝑘 − 1}).

Theorem 2.2. Let 𝑘′, 𝑘 be two integers such that 𝑘 > 𝑘′ ≥ 1. For any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 − 1,

𝛾×𝑘(𝐺) ≤ 𝛾×𝑘′(𝐺) + (𝑘 − 𝑘′)𝛾𝑘(𝐺).

Proof. Let 𝑆 be a 𝛾×𝑘′(𝐺)-set, 𝐷 a 𝛾𝑘(𝐺)-set and 𝐷0 = {𝑣 ∈ 𝐷 : deg𝐷∪𝑆(𝑣) < 𝑘 − 1}. As 𝑆 is a 𝑘′-tuple
dominating set of 𝐺, we deduce that∑︁

𝑣∈𝐷0∖𝑆

deg𝐷∪𝑆(𝑣) ≥ 𝑘′|𝐷0 ∖ 𝑆| and
∑︁

𝑣∈𝐷0∩𝑆

deg𝐷∪𝑆(𝑣) ≥ (𝑘′ − 1)|𝐷0 ∩ 𝑆|,

which implies that ∑︁
𝑣∈𝐷0

deg𝐷∪𝑆(𝑣) ≥ (𝑘′ − 1)|𝐷0|+ |𝐷0 ∖ 𝑆|. (2.1)

Moreover, as 𝑘 > 𝑘′, we deduce the following inequality.

(𝑘 − 1)|𝐷 ∖𝐷0| ≥ (𝑘′ − 1)|𝐷 ∖𝐷0|+ |𝐷 ∖𝐷0| ≥ (𝑘′ − 1)|𝐷 ∖𝐷0|+ |𝐷 ∖ (𝐷0 ∪ 𝑆)|. (2.2)

From inequalities (2.1) and (2.2) we deduce the following inequality.∑︁
𝑣∈𝐷0

deg𝐷∪𝑆(𝑣) + (𝑘 − 1)|𝐷 ∖𝐷0| ≥ (𝑘′ − 1)|𝐷|+ |𝐷 ∖ 𝑆|. (2.3)

Now, we define 𝑊 ′ ⊆ 𝑉 (𝐺) as a set of minimum cardinality among all supersets 𝑊 of 𝐷 ∪ 𝑆 such that
deg𝑊 (𝑣) ≥ 𝑘 − 1 for every 𝑣 ∈ 𝐷. Since deg𝐷∪𝑆(𝑥) ≥ 𝑘 − 1 for every 𝑥 ∈ 𝐷 ∖ 𝐷0, the condition on 𝑊 is
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Figure 1. A graph 𝐺 with 𝛾×2(𝐺) = 𝛾2(𝐺) + 𝛾(𝐺).

equivalent to that every vertex 𝑣 ∈ 𝐷0 has at least 𝑘 − 1 − deg𝐷∪𝑆(𝑣) neighbours in 𝑊 ∖ (𝐷 ∪ 𝑆). Hence, by
the minimality of 𝑊 ′ and inequality (2.3), we deduce that

|𝑊 ′ ∖ (𝐷 ∪ 𝑆)| ≤ |𝐷0|(𝑘 − 1)−
∑︁

𝑣∈𝐷0

deg𝐷∪𝑆(𝑣)

= |𝐷|(𝑘 − 1)−

(︃∑︁
𝑣∈𝐷0

deg𝐷∪𝑆(𝑣) + |𝐷 ∖𝐷0|(𝑘 − 1)

)︃
≤ |𝐷|(𝑘 − 1)− ((𝑘′ − 1)|𝐷|+ |𝐷 ∖ 𝑆|)
= (𝑘 − 𝑘′)|𝐷| − |𝐷 ∖ 𝑆|.

Moreover, it is easy to check that 𝑊 ′ is a 𝑘-tuple dominating set of 𝐺 because each vertex in 𝑉 (𝐺) ∖ 𝐷 is
dominated 𝑘 times by vertices of 𝐷 ⊆ 𝑊 ′ (recall that 𝐷 is a 𝑘-dominating set of 𝐺) and the construction of
𝑊 ′ ensures that each vertex in 𝐷 is dominated 𝑘 times by vertices of 𝑊 ′. Therefore,

𝛾×𝑘(𝐺) ≤ |𝑊 ′|
= |𝑆|+ |𝐷 ∖ 𝑆|+ |𝑊 ′ ∖ (𝐷 ∪ 𝑆)|
≤ |𝑆|+ |𝐷 ∖ 𝑆|+ ((𝑘 − 𝑘′)|𝐷| − |𝐷 ∖ 𝑆|)
= |𝑆|+ (𝑘 − 𝑘′)|𝐷|
= 𝛾×𝑘′(𝐺) + (𝑘 − 𝑘′)𝛾𝑘(𝐺),

which completes the proof. �

The bound given in Theorem 2.2 is tight for certain values of 𝑘. For instance, when 𝑘 = 𝑘′ + 1 = 2, then the
bound is achieved for the graph 𝐺 given in Figure 1 since 𝛾×2(𝐺) = 6, 𝛾2(𝐺) = 4 and 𝛾(𝐺) = 2. Moreover, if
𝑘 = 𝑘′ + 1 for any integer 𝑘 ≥ 2, then the bound is achieved for the join graph 𝐺𝑘,𝑟 defined after Corollary 2.4.

The following result, which is a direct consequence of Theorem 2.2 (considering the particular case where
𝑘′ = 1), improves the upper bound given in Theorem 2.1 whenever 𝛾𝑘(𝐺) > 𝛾(𝐺) + (𝑘 − 1)2.

Corollary 2.3. Let 𝑘 ≥ 2 be an integer. For any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 − 1,

𝛾×𝑘(𝐺) ≤ (𝑘 − 1)𝛾𝑘(𝐺) + 𝛾(𝐺).

The corollary above for the case 𝑘 = 2 was given in [14], and the authors showed that the bound is achieved
for the graph given in Figure 1.

We continue with another consequence derived from Theorem 2.2. For this purpose, we now consider the
particular case where 𝑘′ = 𝑘 − 1.

Corollary 2.4. Let 𝑘 ≥ 2 be an integer. For any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 − 1,

𝛾×𝑘(𝐺) ≤ 𝛾×(𝑘−1)(𝐺) + 𝛾𝑘(𝐺).
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Figure 2. The set of black vertices forms a 𝛾×3(𝑃6 ∘𝐾3)-set.

For any integers 𝑘, 𝑟 ∈ Z with 𝑟 ≥ 𝑘 ≥ 2, let 𝐺𝑘,𝑟 be the join graph obtained from the complete graph
𝐾𝑘−1 and the trivial graph 𝑁𝑟, i.e., 𝐺𝑘,𝑟 = 𝐾𝑘−1 ∨ 𝑁𝑟. Observe that 𝛾×𝑘(𝐺𝑘,𝑟) = |𝑉 (𝐺𝑘,𝑟)| = 𝑘 − 1 + 𝑟,
𝛾×(𝑘−1)(𝐺𝑘,𝑟) = 𝑘 − 1 and 𝛾𝑘(𝐺𝑘,𝑟) = 𝑟. Therefore, for these graphs the bound given in Corollary 2.4 is tight.

In 2001, Favaron et al. [15] showed that 𝛾×𝑘(𝐺) ≥ 𝛾𝑘′(𝐺) + 𝑘 − 𝑘′ for any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 > 𝑘′ ≥ 1.
The bound given in the following result improves the previous one whenever diam(𝐺) ≥ 5 (diam(𝐺) represents
the diameter of a connected graph 𝐺).

Theorem 2.5. Let 𝑘′, 𝑘 be two integers such that 𝑘 > 𝑘′ ≥ 1. For any connected graph 𝐺 with 𝛿(𝐺) ≥ 𝑘,

𝛾×𝑘(𝐺) ≥ 𝛾𝑘′(𝐺) + (𝑘 − 𝑘′)
⌈︂

𝑑𝑖𝑎𝑚(𝐺) + 1
5

⌉︂
.

Proof. Let 𝐷 be a 𝛾×𝑘(𝐺)-set. Let 𝑃 = 𝑣0𝑣1 · · · 𝑣𝑟 be a diametrical path of 𝐺 (in this case, 𝑟 = diam(𝐺)) and
𝑋 = {𝑣0, 𝑣5, . . . , 𝑣5⌊𝑟/5⌋}. Now, let 𝐷′ be the subset of 𝑁 [𝑋]∩𝐷 such that |𝐷′| = (𝑘−𝑘′)|𝑋| and deg𝐷′ [𝑥] = 𝑘−𝑘′

for every 𝑥 ∈ 𝑋. By the definitions of 𝐷 and 𝑋, it follows that 𝐷′ is well defined. Moreover, and by the definition
of 𝑋, if 𝑥, 𝑦 ∈ 𝑋 (with 𝑥 ̸= 𝑦), then 𝑁 [𝑢𝑥] ∩ 𝑁 [𝑢𝑦] = ∅ for any 𝑢𝑥 ∈ 𝑁 [𝑥] and any 𝑢𝑦 ∈ 𝑁 [𝑦]. We claim that
𝑊 = 𝐷 ∖𝐷′ is a 𝑘′-dominating set of 𝐺. Let 𝑣 ∈ 𝑉 (𝐺) ∖𝑊 . Since 𝐷′ ⊆ 𝑁 [𝑋] and deg𝐷′ [𝑥] = 𝑘 − 𝑘′ for every
𝑥 ∈ 𝑋, it follows that deg𝐷′ [𝑣] ≤ 𝑘 − 𝑘′. Now, we analyse the next two cases.

Case 1: 𝑣 ∈ 𝑉 (𝐺) ∖ 𝐷. In this case, we have that deg𝐷(𝑣) ≥ 𝑘 and deg𝐷′(𝑣) ≤ 𝑘 − 𝑘′. This implies that
deg𝑊 (𝑣) ≥ deg𝐷(𝑣)− deg𝐷′(𝑣) ≥ 𝑘 − (𝑘 − 𝑘′) = 𝑘′, as required.
Case 2: 𝑣 ∈ 𝐷′. In this case, we have that deg𝐷(𝑣) ≥ 𝑘 − 1 and deg𝐷′(𝑣) ≤ 𝑘 − 𝑘′ − 1. Hence, deg𝑊 (𝑣) ≥
deg𝐷(𝑣)− deg𝐷′(𝑣) ≥ (𝑘 − 1)− (𝑘 − 𝑘′ − 1) = 𝑘′, as required.

From the both cases above, we deduce that 𝑊 is a 𝑘′-dominating set of 𝐺, which implies that

𝛾𝑘′(𝐺) ≤ |𝑊 | = |𝐷| − |𝐷′| = |𝐷| − (𝑘 − 𝑘′)|𝑋| = 𝛾×𝑘(𝐺)− (𝑘 − 𝑘′) ⌈(diam(𝐺) + 1)/5⌉ .

Therefore, the proof is complete. �

The lexicographic product of two graphs 𝐺1 and 𝐺2 is the graph 𝐺1 ∘ 𝐺2 whose vertex set is 𝑉 (𝐺1 ∘ 𝐺2) =
𝑉 (𝐺1)×𝑉 (𝐺2) and (𝑢, 𝑣)(𝑥, 𝑦) ∈ 𝐸(𝐺1 ∘𝐺2) if and only if 𝑢𝑥 ∈ 𝐸(𝐺1) or 𝑢 = 𝑥 and 𝑣𝑦 ∈ 𝐸(𝐺2). For instance,
in Figure 2 we have the graph 𝑃6 ∘𝐾3.

The lower bound given in Theorem 2.5 is tight due to 𝛾×𝑘(𝑃6 ∘𝐾𝑘) = 2𝑘, 𝛾𝑘′(𝑃6 ∘𝐾𝑘) = 2𝑘′ and diam(𝑃6 ∘
𝐾𝑘) = 5 for any integers 𝑘, 𝑘′ with 𝑘 > 𝑘′ ≥ 1.

3. Bounds in terms of order, independence number and maximum degree

We begin this section by restating the following well-known trivial upper bounds.

Theorem 3.1. [15] For any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 − 1,

𝛾×𝑘(𝐺) ≤ 𝑛(𝐺)− 𝛿(𝐺) + 𝑘 − 1 ≤ 𝑛(𝐺).
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Klasing and Laforest [16] obtained the lower bound 𝛾×𝑘(𝐺) ≥ 𝑘𝛼(𝐺)/2 (𝛼(𝐺) represents the independence
number of 𝐺), assuming that 𝐺 is a claw-free graph with 𝛿(𝐺) ≥ 𝑘− 1. The following result relates the 𝑘-tuple
domination number with the independence number, but in the opposite sense to that shown in the previous
bound.

Proposition 3.2. Let 𝑘 ≥ 2 be an integer. For any claw-free graph 𝐺 of order 𝑛(𝐺) and 𝛿(𝐺) ≥ 𝑘 + 1,

𝛾×𝑘(𝐺) ≤ 𝑛(𝐺)− 𝛼(𝐺).

Proof. Let 𝐼 be an 𝛼(𝐺)-set. We proceed to prove that 𝑊 = 𝑉 (𝐺) ∖ 𝐼 is a 𝑘-tuple dominating set of 𝐺. It is
clear that deg𝑊 (𝑥) ≥ 𝛿(𝐺) > 𝑘 for every vertex 𝑥 ∈ 𝐼. Let 𝑣 ∈ 𝑊 . If deg𝑊 (𝑣) ≤ 𝑘 − 2, then deg𝐼(𝑣) ≥ 3 as
𝛿(𝐺) ≥ 𝑘 + 1, which contradicts the fact that 𝐺 is claw-free. Hence, deg𝑊 (𝑣) ≥ 𝑘 − 1, as required. Therefore,
𝑊 is a 𝑘-tuple dominating set of 𝐺, and so, 𝛾×𝑘(𝐺) ≤ |𝑊 | = 𝑛(𝐺)− 𝛼(𝐺). �

The bound above is tight for certain values of 𝑘. For instance, when 𝑘 = 2, the bound is achieved for the join
graph 𝐺 = 𝐾1 ∨ 𝐶4 since 𝛾×2(𝐺) = 3, 𝛼(𝐺) = 2 and 𝑛(𝐺) = 5.

The next result provides a new upper bound on 𝛾×𝑘(𝐺) in terms of the order and the maximum degree of a
graph 𝐺 with minimum degree 𝛿(𝐺) ≥ 𝑘.

Theorem 3.3. Let 𝑘 ≥ 2 be an integer. For any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘,

𝛾×𝑘(𝐺) ≤ 𝑘∆(𝐺)
𝑘∆(𝐺) + 1

𝑛(𝐺).

Proof. Let 𝐷 be a 𝛾×𝑘(𝐺)-set. We now consider the next subsets of vertices.

𝐷* = {𝑥 ∈ 𝐷 : 𝑁(𝑥) ⊆ 𝐷} and 𝐷= = {𝑥 ∈ 𝐷 : deg𝐷(𝑥) = 𝑘 − 1}.

Notice that 𝐷* ∩𝐷= = ∅ and 𝑁(𝑥) ∩𝐷= ̸= ∅ for any vertex 𝑥 ∈ 𝐷*. This implies that |𝐷*| ≤ (𝑘 − 1)|𝐷=| ≤
(𝑘 − 1)|𝐷 ∖𝐷*|, and as a consequence, |𝐷*| ≤ 𝑘−1

𝑘 |𝐷|.
Moreover, we notice that 𝑉 (𝐺) ∖𝐷 is a dominating set of 𝐺−𝐷*. This implies that

𝑛(𝐺)− |𝐷*|
∆(𝐺) + 1

≤ 𝑛(𝐺)− |𝐷*|
∆(𝐺−𝐷*) + 1

≤ |𝑉 (𝐺) ∖𝐷| = 𝑛(𝐺)− |𝐷|,

and as a consequence, |𝐷*| ≥ |𝐷|(∆(𝐺) + 1)− 𝑛(𝐺)∆(𝐺). Combining the two previous bounds, we obtain that

|𝐷|(∆(𝐺) + 1)− 𝑛(𝐺)∆(𝐺) ≤ 𝑘 − 1
𝑘

|𝐷|,

and as a consequence, |𝐷| ≤ 𝑘Δ(𝐺)
𝑘Δ(𝐺)+1 𝑛(𝐺), which completes the proof. �

In [5], Harary and Haynes showed that 𝛾×𝑘(𝐺) ≥ 𝑘𝑛(𝐺)
Δ(𝐺)+1 for any graph 𝐺 with 𝛿(𝐺) ≥ 𝑘 − 1. The following

result provides a partial refinement of the bound above, which is evidenced only for the graphs 𝐺 satisfying
(∆(𝐺) + 1)|𝑉Δ(𝐺)| < 𝑘𝑛(𝐺), where 𝑉Δ(𝐺) = {𝑣 ∈ 𝑉 (𝐺) : deg𝑉 (𝐺)(𝑣) = ∆(𝐺)}.

Theorem 3.4. Let 𝑘 ≥ 2 be an integer. Let 𝐺 be a graph and let 𝑉Δ(𝐺) = {𝑣 ∈ 𝑉 (𝐺) : deg𝑉 (𝐺)(𝑣) = ∆(𝐺)}.
If 𝛿(𝐺) ≥ 𝑘 − 1, then

𝛾×𝑘(𝐺) ≥ 𝑘𝑛(𝐺)− |𝑉Δ(𝐺)|
∆(𝐺)

·
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Figure 3. A graph 𝐺 with 𝛾×2(𝐺) = 4.

Proof. Given two sets 𝐷1, 𝐷2 ⊆ 𝑉 (𝐺), let 𝐸(𝐷1, 𝐷2) = {𝑢𝑣 ∈ 𝐸(𝐺) : 𝑢 ∈ 𝐷1 and 𝑣 ∈ 𝐷2}. Let 𝐷 be a
𝛾×𝑘(𝐺)-set. Hence,

𝑘(𝑛(𝐺)− |𝐷|) ≤ |𝐸(𝑉 (𝐺) ∖𝐷,𝐷)|

≤
∑︁
𝑣∈𝐷

(deg𝑉 (𝐺)(𝑣)− deg𝐷(𝑣))

≤ |𝐷 ∩ 𝑉Δ(𝐺)|(∆(𝐺)− 𝑘 + 1) + |𝐷 ∖ 𝑉Δ(𝐺)|(∆(𝐺)− 𝑘),

which implies that |𝐷| ≥ 𝑘𝑛(𝐺)−|𝐷∩𝑉Δ(𝐺)|
Δ(𝐺) ≥ 𝑘𝑛(𝐺)−|𝑉Δ(𝐺)|

Δ(𝐺) · Therefore, the proof is complete. �

The bound above is tight for certain values of 𝑘. For instance, when 𝑘 = 2 then the bound is achieved for the
graph 𝐺 given in Figure 3. For this graph, we have that 𝛾×2(𝐺) = 4, |𝑉 (𝐺)| = 7, ∆(𝐺) = 3 and |𝑉Δ(𝐺)| = 2,
which implies that

𝛾×2(𝐺) = 4 =
2|𝑉 (𝐺)| − |𝑉Δ(𝐺)|

∆(𝐺)
>

2|𝑉 (𝐺)|
∆(𝐺) + 1

·

Moreover, the bound is also achieved for any join graph 𝐺 = 𝐾𝑘 ∨ 𝐻, obtained from the complete graph
𝐾𝑘 and any graph 𝐻 of order |𝑉 (𝐻)| = 𝑘 ≥ 2 and ∆(𝐻) < 𝑘 − 1. For this join graph 𝐺, we have that
𝛾×𝑘(𝐺) = |𝑉Δ(𝐺)| = 𝑘, |𝑉 (𝐺)| = 2𝑘 and ∆(𝐺) = 2𝑘 − 1.
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