Optimal PMU placement problem in octahedral networks
RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3449-3459

Power utilities must track their power networks to respond to changing demand and availability conditions to ensure effective and efficient operation. As a result, several power companies employ phase measuring units (PMUs) to check their power networks continuously. Supervising an electric power system with the fewest possible measurement equipment is precisely the vertex covering graph-theoretic problem, in which a set D is defined as a power dominating set (PDS) of a graph if it supervises every components (vertices and edges) in the system (with a couple of rules). The γ$$(G) is the minimal cardinality of a PDS of a graph G. In this present study, the PDS is identified for octahedral networks.

DOI : 10.1051/ro/2022153
Classification : 05C69, 90C27
Keywords: Dominating set, phase measurement unit, private neighbor, power domination, octahedral network
@article{RO_2022__56_5_3449_0,
     author = {Prabhu, Savari and Deepa, S. and Elavarasan, Rajvikram Madurai and Hossain, Eklas},
     title = {Optimal {PMU} placement problem in octahedral networks},
     journal = {RAIRO. Operations Research},
     pages = {3449--3459},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {5},
     doi = {10.1051/ro/2022153},
     mrnumber = {4494410},
     zbl = {1502.05192},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022153/}
}
TY  - JOUR
AU  - Prabhu, Savari
AU  - Deepa, S.
AU  - Elavarasan, Rajvikram Madurai
AU  - Hossain, Eklas
TI  - Optimal PMU placement problem in octahedral networks
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3449
EP  - 3459
VL  - 56
IS  - 5
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022153/
DO  - 10.1051/ro/2022153
LA  - en
ID  - RO_2022__56_5_3449_0
ER  - 
%0 Journal Article
%A Prabhu, Savari
%A Deepa, S.
%A Elavarasan, Rajvikram Madurai
%A Hossain, Eklas
%T Optimal PMU placement problem in octahedral networks
%J RAIRO. Operations Research
%D 2022
%P 3449-3459
%V 56
%N 5
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022153/
%R 10.1051/ro/2022153
%G en
%F RO_2022__56_5_3449_0
Prabhu, Savari; Deepa, S.; Elavarasan, Rajvikram Madurai; Hossain, Eklas. Optimal PMU placement problem in octahedral networks. RAIRO. Operations Research, Tome 56 (2022) no. 5, pp. 3449-3459. doi: 10.1051/ro/2022153

[1] A. Aazami and K. Stilp, Approximation algorithms and hardness for domination with propagation. SIAM J. Discrete Math. 23 (2009) 1382–1399. | MR | Zbl

[2] M. Arockiaraj, S. Ruth Julie Kavitha, K. Balasubramanian and J. Bao Liu, On certain topological indices of octahedral and icosahedral networks. IET Control Theory App. 12 (2018) 215–220. | MR | Zbl

[3] T. L. Baldwin, L. Mili, M. B. Boisen and R. Adapa, Power system observability with minimal phasor measurement placement. IEEE Trans. Power Syst. 8 (1993) 707–715.

[4] R. Barrera and D. Ferrero, Power domination in cylinders, tori, and generalized petersen graphs. Networks 58 (2011) 43–49. | MR | Zbl

[5] K. F. Benson, D. Ferrero, M. Flagg, V. Furst, L. Hogben and V. Vasilevska, Nordhaus-Gaddum problems for power domination. Discrete Appl. Math. 251 (2018) 103–113. | MR | Zbl

[6] B. Bjorkman, Infectious power domination of hypergraphs. Discrete Math. 343 (2020) 111724. | MR | Zbl

[7] B. Brimkov, J. Carlson, I. V. Hicks, R. Patel and L. Smith, Power domination throttling. Theor. Comput. Sci. 795 (2019) 142–153. | MR | Zbl

[8] D. J. Brueni and L. S. Heath, The PMU placement problem. SIAM J. Discrete Math. 19 (2005) 744–761. | MR | Zbl

[9] G. J. Chang, P. Dorbec, M. Montassier and A. Raspaud, Generalized power domination of graphs. Discrete Appl. Math. 160 (2012) 1691–1698. | MR | Zbl

[10] C. Cheng, C. Lu and Y. Zhou, The k -power domination problem in weighted trees. Theor. Comput. Sci. 809 (2020) 231–238. | MR | Zbl

[11] N. Dean, A. Ilic, I. Ramirez, J. Shen and K. Tian, On the power dominating sets of hypercubes. In: 2011 14th IEEE International Conference on Computational Science and Engineering. IEEE (2011) 488–491.

[12] P. Dorbec and S. Klavžar, Generalized power domination: propagation radius and sierpiski graphs. Acta Appl. Math. 134 (2014) 75–86. | MR | Zbl

[13] P. Dorbec, M. Mollard, S. Klavžar and S. Špacapan, Power domination in product graphs. SIAM J. Discrete Math. 22 (2008) 554–567. | MR | Zbl

[14] P. Dorbec, M. A. Henning, C. Löwenstein, M. Montassier and A. Raspaud, Generalized power domination in regular graphs. SIAM J. Discrete Math. 27 (2013) 1559–1574. | MR | Zbl

[15] P. Dorbec, A. González and C. Pennarun, Power domination in maximal planar graphs. Discrete Math. Theor. Comput. Sci. 21 (2019) 1–24. | MR | Zbl

[16] M. Dorfling and M. A. Henning, A note on power domination in grid graphs. Discrete Appl. Math. 154 (2006) 1023–1027. | MR | Zbl

[17] D. Ferrero, L. Hogben, F. H. J. Kenter and M. Young, Note on power propagation time and lower bounds for the power domination number. J. Comb. Optim. 34 (2017) 736–741. | MR | Zbl

[18] J. Guo, R. Niedermeier and D. Raible, Improved algorithms and complexity results for power domination in graphs. Algorithmica 52 (2008) 177–202. | MR | Zbl

[19] T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and M. A. Henning, Domination in graphs applied to electric power networks. SIAM J. Discrete Math. 15 (2002) 519–529. | MR | Zbl

[20] A. M. Hinz, S. Varghese and A. Vijayakumar, Power domination in Knödel graphs and hanoi graphs. Discussiones Math. Graph Theory 38 (2018) 63. | MR | Zbl

[21] L. Kang, E. Shan and M. Zhao, Power domination in the generalized petersen graphs. Discuss. Math. Graph Theory 40 (2020) 695–712. | MR | Zbl

[22] K. M. Koh and K. W. Soh, On the power domination number of the cartesian product of graphs. AKCE Int. J. Graphs Comb. 16 (2019) 253–257. | MR | Zbl

[23] J. Kuo and W.-L. Wu, Power domination in generalized undirected De Bruijn graphs and Kautz graphs. Discrete Math. Algorithms App. 07 (2015) 1550003. | MR | Zbl

[24] M.-Y. Li and S. C. Sevov, Mellitate-based coordination polymers with a recurring motif: controlling dimensionality with secondary ligands. CrystEngComm 15 (2013) 5107.

[25] C.-S. Liao and D. T. Lee, Power domination in circular-arc graphs. Algorithmica 65 (2013) 443–466. | MR | Zbl

[26] J.-B. Liu, M. K. Shafiq, H. Ali, A. Naseem, N. Maryam and S. S. Asghar, Topological indices of mth chain silicate graphs. Mathematics 7 (2019) 42.

[27] C. Lu, R. Mao and B. Wang, Power domination in regular claw-free graphs. Discrete Appl. Math. 284 (2020) 401–415. | MR | Zbl

[28] J. J. Perry Iv, J. A. Perman and M. J. Zaworotko, Design and synthesis of metal-organic frameworks using metal–organic polyhedra as supermolecular building blocks. Chem. Soc. Rev. 38 (2009) 1400.

[29] R. S. Rajan, J. Anitha and I. Rajasingh, 2-power domination in certain interconnection networks. Proc. Comput. Sci. 57 (2015) 738–744.

[30] S. Stephen, B. Rajan, J. Ryan, C. Grigorious and A. William, Power domination in certain chemical structures. J. Discrete Algorithms 33 (2015) 10–18. | MR | Zbl

[31] C. Wang, L. Chen and C. Lu, k -power domination in block graphs. J. Comb. Optim. 31 (2016) 865–873. | MR | Zbl

[32] S. Wilson, Power domination on permutation graphs. Discrete Appl. Math. 262 (2019) 169–178. | MR | Zbl

[33] G. Xu and L. Kang, On the power domination number of the generalized petersen graphs. J. Comb. Optim. 22 (2011) 282–291. | MR | Zbl

[34] G. Xu, L. Kang, E. Shan and M. Zhao, Power domination in block graphs. Theor. Comput. Sci. 359 (2006) 299–305. | MR | Zbl

[35] I. Yuliana, I. H. Agustin and D. A. R. Wardani, On the power domination number of corona product and join graphs. J. Phys. Conf. Ser. 1211 (2019) 012020.

[36] M. Zhao and L. Y. Kang, Power domination in planar graphs with small diameter. J. Shanghai Univ. 11 (2007) 218–222. | MR | Zbl

[37] M. Zhao, L. Kang and G. J. Chang, Power domination in graphs. Discrete Math. 306 (2006) 1812–1816. | MR | Zbl

Cité par Sources :