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OPTIMAL PMU PLACEMENT PROBLEM IN OCTAHEDRAL NETWORKS

Savari Prabhu1,* , S. Deepa2, Rajvikram Madurai Elavarasan3

and Eklas Hossain4

Abstract. Power utilities must track their power networks to respond to changing demand and avail-
ability conditions to ensure effective and efficient operation. As a result, several power companies
employ phase measuring units (PMUs) to check their power networks continuously. Supervising an
electric power system with the fewest possible measurement equipment is precisely the vertex covering
graph-theoretic problem, in which a set 𝐷 is defined as a power dominating set (PDS) of a graph if
it supervises every components (vertices and edges) in the system (with a couple of rules). The 𝛾𝑝(𝐺)
is the minimal cardinality of a PDS of a graph 𝐺. In this present study, the PDS is identified for
octahedral networks.
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1. Introduction

A power network is made up of electrical hubs and transmitting cables that connect them. Electric power
companies must constantly track the condition of their systems. The magnitude of the voltage at loads and the
system process at generators must both be monitored. The placement of PMUs at certain locations within the
device must be controlled. Due to the increasing price of PMUs, it’s critical to employ as little as possible while
still being able to track the entire system. This Power system observability with minimal PMU placement is a
problem that Haynes et al. [19] introduced as a theoretical graph problem and dubbed the power dominating
set (PDS) problem after it was demonstrated in [3].

Let 𝐺 be a connected network with vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). For any 𝑣 ∈ 𝑉 (𝐺) an open
𝑟-neighborhood of 𝑣 is 𝑁𝑟(𝑣) = {𝑢 ∈ 𝑉 (𝐺) : 𝑑𝐺(𝑢, 𝑣) = 𝑟}, where 𝑑𝐺(𝑢, 𝑣) is the distance (number of edges
in 𝑢−𝑣 path) between the 𝑢 to 𝑣. Similarly 𝑁𝑟[𝑣] = 𝑁𝑟(𝑣) ∪ {𝑣}. The degree of 𝑣 in 𝑉 (𝐺) is 𝑑𝐺(𝑣) = |𝑁1(𝑣)|.
Denote [𝛼] := {1, 2, . . . , 𝛼} and [𝛼]0 := {0, 1, 2, . . . , 𝛼}. Also to denote {𝛼 + 1, 𝛼 + 2, . . . , 2𝛼 + 1} we use the
notation [2𝛼 + 1]− [𝛼].
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Figure 1. (a) Unit octahedron; (b) Twin octahedron.

A dominant subset is a proper subset 𝐷 of 𝑉 (𝐺) if any node in 𝑉 (𝐺) that is not in 𝐷 must have at least
one adjacent node in 𝐷. The least cardinality of all possible 𝐷 is 𝛾(𝐺). If all nodes of 𝑉 (𝐺) can be recursively
observed by either domination or propagation, a subset 𝐷 is called PDS (power dominating set).

(1) Rule (i): (Domination)
𝑀(𝐷)← 𝐷 ∪𝑁(𝐷).

(2) Rule (ii): (Propagation)

∃, 𝑣 ∈𝑀(𝐷) s.t. (𝑉 (𝐺)−𝑀(𝐷)) ∩𝑁(𝑣) = {𝑤}
𝑀(𝐷)←𝑀(𝐷) ∪ {𝑤}.

A subset 𝐷 is named as PDS for 𝐺 with 𝑀(𝐷) = 𝑉 (𝐺). The least positive integer representing a PDS is
𝛾𝑝(𝐺).

The problem of finding PDS is NP-complete in general. Even for graph classes like chordal, split and bipartite,
it remains NP-complete [19]. In [1,18,19], various algorithms for computing the PDS for a specific class of graphs
were described. An improved algorithms with complexity results were reported in [18]. This problem is studied for
block graphs [34], circular-arc graphs [25], hypercubes [8,11], grids [16], generalized Petersen graphs [4,9,21,33],
permutaion graphs [32], planar graphs with small diameter [36], maximal planar graphs [15], Knodel graphs and
Hanoi graphs [20], de Bruijn graphs and Kautz graphs [23], regular claw-free graphs [27], and certain chemical
graphs [30]. This problem is also discussed for Cartesian product of graphs in [4,22], tensor and strong product
in [13], corona product and join of graphs in [35], and for some other graph products were discussed in [5]. The
lower bounds for this problem is discussed in [17]. An upper bound for one component graph with 𝑛 > 4 is
presented, and few extremal graphs concerning PDS are characterized in [37]. The Nordhaus–Gaddum results
of this problem were reported in [5].

Straight forward generalization of PDS problem is done in [9] as the 𝑘-PDS problem. It is trivial to note
that when 𝑘 = 1, this problem converges to the original PDS problem and when 𝑘 = 0 it is a traditional
domination problem. This 𝑘-PDS problem is discussed for Sierpiński graphs [12], block graphs [31], regular
graphs [14], certain interconnection networks [29], and weighted trees [10]. In [7], the complexity of power
dominating throttling is discussed. The infectious power domination is introduced in [6], along with a general
bound for determining the influence of particular hypergraph operations.

2. Octahedral and its derived networks

The octahedral structures are introduced in [2]. A platonic solid’s corresponds to a polyhedral graph, which is
called an octahedron graph. The unit octahedron contains 6 vertices and 12 edges. We define a twin octahedron
in OH(𝑛) as two octahedrons sharing exactly one common vertex. The structural graph of the unit octahedron
and twin octahedron and the vertex representations are depicted in Figure 1. For more information on these
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Figure 2. (a) Construction of OH(2); (b) Addressing scheme of OH(2).

graphs, it can be seen from [24,28]. Different ways of connecting unit octahedron derive the varieties of octahedral
structures.

2.1. Octahedral network

An 𝑛-dimensional octahedral network has 27𝑛2 + 3𝑛 vertices and 72𝑛2 edges. It is noted that OH(𝑛) has
6𝑛2 unit octahedron and 3𝑛2 edge-disjoint twin octahedron. Figure 2a gives an idea about the extension of
OH(𝑛) network and its addressing scheme is depicted in Figure 2b. 𝑉 (OH(𝑛)) =

⋃︀2
𝑖=1 𝑃𝑖 ∪

⋃︀2
𝑖=1 𝑄𝑖 where,

𝑃1 = {𝑝𝑖,𝑗 : 𝑖 ∈ [𝑛 + 1] & 𝑗 ∈ [𝑛 + 𝑖 − 1]}, 𝑃2 = {𝑝𝑖,𝑗 : 𝑖 ∈ [2𝑛 + 1] − [𝑛 + 1] & 𝑗 ∈ [3𝑛 − 𝑖 + 1]},
𝑄1 = {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑛] & 𝑗 ∈ [2(𝑛 + 𝑖)]}, and 𝑄2 = {𝑞𝑖,𝑗 : 𝑖 ∈ [2𝑛]− [𝑛] & 𝑗 ∈ [2(3𝑛− 𝑖 + 1)]}.

2.2. Dominated octahedral network

The structural graph of 𝑛 dimensional dominated octahedral network DOH(𝑛), 𝑛 ≥ 2 and its addressing
scheme is portrayed in Figure 3. It has 81𝑛2 − 75𝑛 + 24 vertices and 216𝑛2 − 216𝑛 + 72 edges. It contains
18𝑛2−18𝑛+ 6 unit octahedron and hence 9𝑛2−9𝑛+ 3 twin octahedron. The 𝑉 (DOH(𝑛)) =

⋃︀3
𝑖=1 𝑃𝑖∪

⋃︀3
𝑖=1 𝑄𝑖,

where 𝑃1 = {𝑝𝑖,𝑗 : 𝑖 ∈ [𝑛] & 𝑗 ∈ [3𝑖 − 2]}, 𝑃2 =
{︂

𝑝𝑖,𝑗 : 𝑖 ∈ [3𝑛− 1]− [𝑛] & 𝑗 ∈
[︂

((−1)𝑖−𝑛−1 − 1)
2

+ 3𝑛− 1
]︂}︂

,

𝑃3 = {𝑝𝑖,𝑗 : 𝑖 ∈ [4𝑛 − 1] − [3𝑛 − 1] & 𝑗 ∈ [12𝑛 − 3𝑖 − 2]}, 𝑄1 = {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑛 − 1] & 𝑗 ∈ [6𝑖 − 2]},
𝑄2 = {𝑞𝑖,𝑗 : 𝑖 ∈ [3𝑛− 1]− [𝑛− 1] & 𝑗 ∈ [6𝑛− 2]}, and 𝑄3 = {𝑞𝑖,𝑗 : 𝑖 ∈ [4𝑛− 2]− [3𝑛− 1] & 𝑗 ∈ [24𝑛− 6𝑖− 8]}.

2.3. Rectangular octahedral network of Type I and Type II

In line with [26], we introduce the rectangular octahedral network in this subsection. The rectangular octahe-
dral network of Type I denoted by ROH1(𝑚, 𝑛) is derived by arranging octahedron in a two-dimensional plane
so that the first octahedron whose apex is facing down. Rectangular octahedral network of Type II denoted by
ROH2(𝑚, 𝑛) is derived by presenting octahedrons in a two-dimensional plane similar to ROH1(𝑚, 𝑛) with the
condition that the first octahedron, which is the north west corner most unit octahedron whose apex should be
facing the top. Rectangular octahedral network of Type I has 1

2 (9𝑚𝑛 + 2𝑚 + 𝑛 − 1) vertices and Type II has
1
2 (9𝑚𝑛+2𝑚+𝑛+1) vertices for 𝑚 even and 𝑛 odd. For other cases, both Type I and Type II has 1

2 (9𝑚𝑛+2𝑚+𝑛)
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Figure 3. (a) Construction of DOH(2); (b) Addressing Scheme of DOH(2).
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Figure 4. (a) ROH1(3, 9); (b) ROH1(3, 8); (c) ROH1(4, 9); (d) ROH1(4, 8).

vertices. Both types of these structures have 12𝑚𝑛 edges. Different cases of ROH1(𝑚, 𝑛) and their addressing
schemes are portrayed in Figure 4. It is clear that ROH1(𝑚, 𝑛) ∼= ROH2(𝑚, 𝑛) for all 𝑚 and 𝑛 except 𝑚 even and
𝑛 odd. The non-isomorphic case is depicted in Figure 5. The vertex set of Type I rectangular octahedral network
𝑉

(︀
ROH1(𝑚, 𝑛)

)︀
= 𝑃 ∪ 𝑄, where, 𝑃 =

{︁
𝑝𝑖,𝑗 : 𝑖 ∈ [𝑚 + 1] & 𝑗 ∈

[︁𝑛

2

]︁}︁
, 𝑄 = {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑚] & 𝑗 ∈ [𝑛 + 1]}, for 𝑛

even and 𝑃 =
{︂

𝑝𝑖,𝑗 : 𝑖 ∈ [𝑚 + 1] & 𝑗 ∈
[︂
𝑛 + (−1)𝑖

2

]︂}︂
, 𝑄 = {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑚] & 𝑗 ∈ [𝑛 + 1]}. for 𝑛 odd.

The vertex set 𝑉
(︀
ROH2(𝑚, 𝑛)

)︀
= 𝑃 ∪ 𝑄, where 𝑃 =

{︂
𝑝𝑖,𝑗 : 𝑖 ∈ [𝑚 + 1] & 𝑗 ∈

[︂
𝑛− (−1)𝑖

2

]︂}︂
and 𝑄 =

{𝑞𝑖,𝑗 : 𝑖 ∈ [𝑚] & 𝑗 ∈ [𝑛 + 1]} for non-isomorphic case of Type II rectangular octahedral network.

3. Main results

Theorem 3.1. Let 𝐺 be any octahedral structure, 𝐻 be the edge disjoint subgraph of 𝐺 isomorphic to twin
octahedron and 𝐷 be the PDS of 𝐺. Then 𝑉 (𝐻) ∩𝐷 ̸= ∅.

Proof. Since 𝐻 is an edge-disjoint subgraph of 𝐺, the nodes 𝑎, 𝑏, 𝑐, 𝑑 are the only nodes through which the rest of
the graph is connected to 𝐻. See Figure 6. Suppose the contrary that there exists an 𝐻 such that 𝐷∩𝑉 (𝐻) = ∅.
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Figure 5. ROH2(4, 7).

Figure 6. Edge disjoint subgraph 𝐻 of 𝐺.

Case 1. 𝑁(𝐷) ∩ 𝑉 (𝐻) = ∅.
Here {𝑎, 𝑏, 𝑐, 𝑑} are not dominated. Suppose that they are observed by propagation, then the vertices
{𝑥, 𝑥′, 𝑥′′, 𝑎′, 𝑏′, 𝑐′, 𝑑′} cannot be observed by propagation as at least three vertices of this set are adja-
cent to each vertex in {𝑎, 𝑏, 𝑐, 𝑑}. This is the reason for failure of propagation at {𝑎, 𝑏, 𝑐, 𝑑}. Therefore 𝐷
must contain some vertices of 𝐻. A contradiction.

Case 2. 𝑁(𝐷) ∩ 𝑉 (𝐻) ̸= ∅.
Here {𝑎, 𝑏, 𝑐, 𝑑} are dominated. But due to the fact that 𝑑𝐺(𝑢) ≥ 4, for 𝑢 ∈ {𝑎, 𝑏, 𝑐, 𝑑}, the propagation at 𝑢
fails. There fore the vertices {𝑥, 𝑥′, 𝑥′′, 𝑎′, 𝑏′, 𝑐′, 𝑑′} are not observed. This contradicts the assumption of 𝐷.

�
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3.1. Power domination in octahedral structures

Theorem 3.2. For 𝑛 ≥ 1, 𝛾𝑝(OH(𝑛)) = 3𝑛2.

Proof. Let 𝐷 be the PDS of OH(𝑛). Since there are 3𝑛2 copies of twin octahedron in OH(𝑛). By Theorem 3.1, 𝐷
must have at least 3𝑛2 vertices. Therefore |𝐷| ≥ 3𝑛2. The reverse inequality is clear from the following choices.

Case 1. 𝑛 odd.
For this case the PDS 𝐷 =

⋃︀2
𝑖=1 𝐷𝑃

𝑖 ∪
⋃︀2

𝑖=1 𝐷𝑄
𝑖 , where 𝐷𝑃

1 = {𝑝𝑖,𝑛+𝑗 : 𝑖 ∈ [𝑛+ 1]−{1} & 𝑗 ∈ [𝑖−1]}, 𝐷𝑃
2 =

{𝑝𝑛+𝑖+1,𝑛+𝑗 : 𝑖 ∈ [𝑛−1] & 𝑗 ∈ [𝑛−𝑖]}, 𝐷𝑄
1 = {𝑞𝑖,2𝑗 : 𝑖 ∈ [𝑛] & 𝑗 ∈ [𝑛]}, and 𝐷𝑄

2 = {𝑞𝑛+𝑖,2𝑗 : 𝑖 ∈ [𝑛] & 𝑗 ∈ [𝑛]}.
See Figure 7a.

Case 2. 𝑛 even.
For this the PDS is 𝐷 =

⋃︀2
𝑖=1 𝐷𝑃

𝑖 ∪
⋃︀2

𝑖=1 𝐷𝑄
𝑖 , where 𝐷𝑃

1 = {𝑝𝑖,𝑗+1 : 𝑖 ∈ [𝑛 + 1] − {1} & 𝑗 ∈ [𝑖 − 1]},
𝐷𝑃

2 = {𝑝𝑛+𝑖+1,𝑗+1 : 𝑖 ∈ [𝑛 − 1] & 𝑗 ∈ [𝑛 − 𝑖]}, 𝐷𝑄
1 =

{︁
𝑞𝑖,2𝑗 , 𝑞𝑖,𝑛+2𝑖+2𝑗−1 : 𝑖 ∈ [𝑛] & 𝑗 ∈

[︁𝑛

2

]︁}︁
, and 𝐷𝑄

2 ={︀
𝑞𝑛+𝑖,2𝑗 , 𝑞𝑛+𝑖,4𝑛−2𝑖−2𝑗+3 : 𝑖 ∈ [𝑛] & 𝑗 ∈

[︀
𝑛
2

]︀}︀
. See Figure 7b.

�

Theorem 3.3. For 𝑛 ≥ 1, 𝛾𝑝(DOH(𝑛)) = 9𝑛2 − 9𝑛 + 3.

Proof. Let 𝐷 ⊆ 𝑉 (DOH(𝑛)) be the PDS.
There are 9𝑛2 − 9𝑛 + 3 copies of twin octahedron in DOH(𝑛). By Theorem 3.1, every twin octahedron must

contribute one vertex to 𝐷. Hence |𝐷| ≥ 9𝑛2 − 9𝑛 + 3.
Now let us prove the reverse inequality by exhibiting the PDS of cardinality 9𝑛2 − 9𝑛 + 3.
The PDS of dominated octahedral network DOH(2) is depicted in Figure 8. The set 𝐷 =

⋃︀3
𝑖=1 𝐷𝑃

𝑖 ∪
⋃︀3

𝑖=1 𝐷𝑄
𝑖

exhibits the PDS for DOH(𝑛), where 𝐷𝑃
1 = {𝑝𝑖,3𝑗−1 : 𝑖 ∈ [𝑛] − {1} & 𝑗 ∈ [𝑖 − 1]}, 𝐷𝑃

2 = {𝑝𝑛+2𝑖−1,3𝑗−2 : 𝑖 ∈
[𝑛] & 𝑗 ∈ [𝑛]} ∪ {𝑝𝑛+2𝑖,3𝑗−1 : 𝑖 ∈ [𝑛 − 1] & 𝑗 ∈ [𝑛 − 1]}, 𝐷𝑃

3 = {𝑝3𝑛+𝑖−1,3𝑗−1 : 𝑖 ∈ [𝑛 − 1] & 𝑗 ∈ [𝑛 − 𝑖]},
𝐷𝑄

1 = {𝑞𝑖,3𝑗 : 𝑖 ∈ [𝑛 − 1] & 𝑗 ∈ [2𝑖 − 1]}, 𝐷𝑄
2 = {𝑞𝑖,3𝑗 : 𝑖 ∈ [3𝑛 − 1] − [𝑛 − 1] & 𝑗 ∈ [2𝑛 − 1]}, and

𝐷𝑄
3 = {𝑞𝑖,3𝑗 : 𝑖 ∈ [4𝑛− 2]− [3𝑛− 1] & 𝑗 ∈ [8𝑛− 2𝑖− 3]}. �

Theorem 3.4. Let 𝐺 be a rectangular octahedron network ROH1(𝑚, 𝑛), 𝑚, 𝑛 ≥ 1. Then 𝛾𝑝(𝐺) =⎧⎪⎨⎪⎩
𝑚𝑛 + 1

2
: 𝑚 odd and 𝑛 odd

𝑚𝑛

2
: otherwise.

Proof. The proof is arranged as follows.

Case 1. 𝑛 odd.
Let 𝑉 (𝐺) =

{︁
𝑝𝑖,𝑗 : 𝑖 ∈ [𝑚 + 1], 𝑗 ∈

[︁
𝑛+(−1)𝑖

2

]︁}︁
∪ {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛 + 1]}.

Case 1.1. 𝑚 is odd.
Here we have 𝑚𝑛−1

2 edge-disjoint twin octahedron and one edge-disjoint unit octahedron. By Theorem 3.1,
we have 𝛾𝑝(𝐺) ≥ 𝑚𝑛−1

2 + 1. To prove the reverse inequality by exhibiting PDS in 𝐺. The following

set 𝐷 = 𝐷𝑃 ∪ 𝐷𝑄 ∪
{︁

𝑝𝑚+1, 𝑛+1
2

}︁
exhibits the PDS, where 𝐷𝑃 =

{︀
𝑝2𝑖,𝑗 : 𝑖 ∈

[︀
𝑚−1

2

]︀
, 𝑗 = 𝑛+1

2

}︀
and

𝐷𝑄 =
{︀
𝑞𝑖,2𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈

[︀
𝑛−1

2

]︀}︀
.

Case 1.2. 𝑚 is even.
Since 𝑚 is even, there are 𝑚𝑛

2 twin octahedron. By Theorem 3.1, we have 𝛾𝑝(𝐺) ≥ 𝑚𝑛
2 . The PDS

𝐷 =
{︀
𝑝2𝑖,𝑗 : 𝑖 ∈

[︀
𝑚
2

]︀
, 𝑗 = 𝑛+1

2

}︀
∪

{︀
𝑞𝑖,2𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈

[︀
𝑛−1

2

]︀}︀
is an evidence for the reverse inequality

𝛾𝑝(𝐺) ≤ 𝑚𝑛
2 .
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Figure 7. Power dominating set in octahedral network (a) OH(3); (b) OH(2).
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Figure 8. Power dominating set in dominated octahedral network DOH(2).

Case 2. 𝑛 even.
Let 𝑉 (𝐺) = {𝑝𝑖,𝑗 : 𝑖 ∈ [𝑚 + 1], 𝑗 ∈

[︀
𝑛
2

]︀
} ∪ {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛 + 1]} with cardinality 1

2 (9𝑚𝑛 + 2𝑚 + 𝑛)
and 12𝑚𝑛 edges. The proof is similar to the rest of the choice of values of 𝑚 and 𝑛 along with the PDS
𝐷 =

{︀
𝑞𝑖,2𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈

[︀
𝑛
2

]︀}︀
.

�

Theorem 3.5. Let 𝐺 be a rectangular octahedron network ROH2(𝑚, 𝑛), 𝑚, 𝑛 ≥ 1 with 𝑚 even and 𝑛 odd. Then

𝛾𝑝(𝐺) =
𝑚𝑛 + 2

2
.

Proof. Let 𝑉 (𝐺) =
{︁

𝑝𝑖,𝑗 : 𝑖 ∈ [𝑚 + 1], 𝑗 ∈
[︁

𝑛−(−1)𝑖

2

]︁}︁
∪ {𝑞𝑖,𝑗 : 𝑖 ∈ [𝑚], 𝑗 ∈ [𝑛 + 1]}.

Since 𝑛 is odd, there are 𝑛−1
2 twin octahedrons in the first and last row of the 𝑉 (𝐺) and one unit

octahedron in each of these rows. Hence there are 𝑚𝑛−2
2 twin octahedrons in ROH2(𝑚, 𝑛) say TO1,

TO2, . . . TO 𝑚𝑛−2
2

. The 𝑉 (𝐺) r
⋃︀𝑚𝑛−2

2
𝑖=1 𝑉 (TO𝑖) = 𝑆1 ∪ 𝑆2, where 𝑆1, 𝑆2 ∈

{︁
{𝑁 [𝑝1,1] ∪𝑁 [𝑞1,1] r {𝑞1,2}},
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𝑁

[︁
𝑝1, 𝑛+1

2

]︁
∪𝑁 [𝑞1,𝑛+1] r {𝑞1,𝑛}

}︁
, {𝑁 [𝑝𝑚+1,1] ∪ 𝑁 [𝑞𝑚,1] r {𝑞𝑚,2}},

{︁
𝑁

[︁
𝑝𝑚+1, 𝑛+1

2

]︁
∪𝑁 [𝑞𝑚,𝑛+1] r {𝑞𝑚,𝑛}

}︁}︁
.

Assume 𝐷 =
{︁

𝑝2𝑖+1,𝑗 : 𝑖 ∈
[︀

𝑚
2 − 1

]︀
& 𝑗 = 𝑛+1

2

}︁
∪

{︁
𝑞𝑖,2𝑗 : 𝑖 ∈ [𝑚] & 𝑗 ∈

[︀
𝑛−1

2

]︀}︁
, such that

𝑀 [𝐷] = 𝑉 (𝐺) r {𝑆1 ∪ 𝑆2}. Since 𝑆1 ∩ 𝑆2 = ∅, we have 𝛾𝑝(𝐺) = |𝐷|+ 2. Which results 𝛾𝑝(𝐺) ≤ 𝑚𝑛+2
2 .

To prove the reverse inequality 𝛾𝑝(𝐺) ≥ 𝑚𝑛+2
2 , assume the contrary that 𝛾𝑝(𝐺) = 𝑚𝑛

2 . It is clear by structure,
there are 𝑚𝑛

2 − 1 twin octahedrons. By Theorem 3.1, any PDS 𝐷 must contain 𝑚𝑛
2 − 1 vertices. The remaining

one vertex is not sufficient to power dominate the vertices of 𝑆1 and 𝑆2 due to the fact that 𝑆1 ∩ 𝑆2 = ∅, a
contradiction. �

4. Conclusion

This investigation offers exhaustive work on the power domination problem of various networks. It also
discusses the optimal PMU placement problem in octahedral networks. The lower bound is attained using
edge-disjoint subgraph-technique, and the upper bound is obtained by exhibiting the PDS in an octahedral
network. Using these techniques, the tasks mentioned above of placing optimal PMU placement problem with
more accurate, optimal and reliable. The problem of placing optimal PMUs for other networks are under
investigation.
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