Ambulance location under temporal variation in demand using a mixed coded memetic algorithm
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2967-2997

Emergency medical services (EMS) are among the most important services in any society due to their role in saving people’s lives and reducing morbidities. The location of ambulance stations and the allocation of ambulances to the stations is an important planning problem for any EMS system to ensure adequate coverage while minimising the response time. This study considers a mixed-integer programming model that determines the ambulance locations by considering the time of day variations in demand. The presented model also considers heterogeneous performance measures based on survival function and coverage for different patient types with varying levels of urgency. A memetic algorithm based-approach that applies a mixed chromosome representation for solutions is proposed to solve the problem. Our computational results indicate that neglecting time-dependent variation of demand can underestimate the number of ambulances required by up to 15% during peak demand. We also demonstrate the effectiveness of the proposed solution approach in providing good quality solutions within a reasonable time.

DOI : 10.1051/ro/2022140
Classification : 90B06, 90B80, 90C11, 90C30, 90C90
Keywords: Emergency medical service planning, ambulance planning, location-allocation, memetic algorithm, operations research in health services
@article{RO_2022__56_4_2967_0,
     author = {Nadar, Raviarun A. and Jha, J. K. and Thakkar, Jitesh J.},
     title = {Ambulance location under temporal variation in demand using a mixed coded memetic algorithm},
     journal = {RAIRO. Operations Research},
     pages = {2967--2997},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022140},
     mrnumber = {4474360},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022140/}
}
TY  - JOUR
AU  - Nadar, Raviarun A.
AU  - Jha, J. K.
AU  - Thakkar, Jitesh J.
TI  - Ambulance location under temporal variation in demand using a mixed coded memetic algorithm
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2967
EP  - 2997
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022140/
DO  - 10.1051/ro/2022140
LA  - en
ID  - RO_2022__56_4_2967_0
ER  - 
%0 Journal Article
%A Nadar, Raviarun A.
%A Jha, J. K.
%A Thakkar, Jitesh J.
%T Ambulance location under temporal variation in demand using a mixed coded memetic algorithm
%J RAIRO. Operations Research
%D 2022
%P 2967-2997
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022140/
%R 10.1051/ro/2022140
%G en
%F RO_2022__56_4_2967_0
Nadar, Raviarun A.; Jha, J. K.; Thakkar, Jitesh J. Ambulance location under temporal variation in demand using a mixed coded memetic algorithm. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2967-2997. doi: 10.1051/ro/2022140

[1] A. Aghighi, A. Goli, B. Malmir and E. B. Tirkolaee, The stochastic location-routing-inventory problem of perishable products with reneging and balking. J. Ambient Intell. Humaniz. Comput. (2021) 1–20.

[2] M. A. Akdoğan, Z. P. Bayındır and C. Iyigun, Locating emergency vehicles with an approximate queuing model and a meta-heuristic solution approach. Transp. Res. Part C: Emerg. Technol. 90 (2018) 134–155. | DOI

[3] H. Andersson, T. A. Granberg, M. Christiansen, E. S. Aartun and H. Leknes, Using optimization to provide decision support for strategic emergency medical service planning – three case studies. Int. J. Med. Inf. 133 (2020) 103975. | DOI

[4] R. Aringhieri, M. E. Bruni, S. Khodaparasti and J. T. Van Essen, Emergency medical services and beyond: addressing new challenges through a wide literature review. Comput. Oper. Res. 78 (2017) 349–368. | MR | Zbl | DOI

[5] R. Batta, J. M. Dolan and N. N. Krishnamurthy, The maximal expected covering location problem: revisited. Transp. Sci. 23 (1989) 277–287. | MR | Zbl | DOI

[6] V. Bélanger, A. Ruiz and P. Soriano, Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles. Eur. J. Oper. Res. 272 (2019) 1–23. | MR | Zbl | DOI

[7] F. Borrás and J. T. Pastor, The ex-post evaluation of the minimum local reliability level: an enhanced probabilistic location set covering model. Ann. Oper. Res. 111 (2002) 51–74. | MR | Zbl | DOI

[8] J. J. Boutilier and T. C. Chan, Ambulance emergency response optimization in developing countries. Oper. Res. 68 (2020) 1315–1334. | MR | Zbl | DOI

[9] L. Brotcorne, G. Laporte and F. Semet, Ambulance location and relocation models. Eur. J. Oper. Res. 147 (2003) 451–463. | MR | Zbl | DOI

[10] K. Cantwell, P. Dietze, A. E. Morgans and K. Smith, Ambulance demand: random events or predicable patterns? Emerg. Med. J. 30 (2013) 883–887. | DOI

[11] K. Cantwell, A. Morgans, K. Smith, M. Livingston, T. Spelman and P. Dietze, Time of day and day of week trends in EMS demand. Prehosp. Emerg. Care 19 (2015) 425–431. | DOI

[12] S. Chanta, M. E. Mayorga, M. E. Kurz and L. A. Mclay, The minimum p -envy location problem: a new model for equitable distribution of emergency resources. IIE Trans. Healthc. Syst. Eng. 1 (2011) 101–115. | DOI

[13] S. Chanta, M. E. Mayorga and L. A. Mclay, Improving emergency service in rural areas: a bi-objective covering location model for EMS systems. Ann. Oper. Res. 221 (2014) 133–159. | MR | Zbl | DOI

[14] R. Church and C. Revelle, The maximal covering location problem. In: Papers of the Regional Science Association. Vol. 32, Springer-Verlag (1974) 101–118. | DOI

[15] J. Current, M. Daskin and D. Schilling, Discrete network location models. Facility Locat.: App. Theory 1 (2002) 81–118. | MR | Zbl | DOI

[16] S. K. Das and S. K. Roy, An approximation approach for fixed-charge transportation-p-facility location problem. In: International Conference on Logistics and Supply Chain Management. Springer, Cham (2020).

[17] S. K. Das and S. K. Roy, Effect of variable carbon emission in a multi-objective transportation- p -facility location problem under neutrosophic environment. Comput. Ind. Eng. 132 (2019) 311–324. | DOI

[18] S. K. Das, S. K. Roy and G. W. Weber, Application of type-2 fuzzy logic to a multiobjective green solid transportation–location problem with dwell time under carbon tax, cap, and offset policy: fuzzy versus nonfuzzy techniques. IEEE Trans. Fuzzy Syst. 28 (2020) 2711–2725. | DOI

[19] S. K. Das, S. K. Roy and G. W. Weber, An exact and a heuristic approach for the transportation- p -facility location problem. Comput. Manage. Sci. 17 (2020) 389–407. | MR | Zbl | DOI

[20] S. K. Das, S. K. Roy and G. W. Weber, Heuristic approaches for solid transportation- p -facility location problem. Cent. Eur. J. Oper. Res. 28 (2020) 939–961. | MR | Zbl | DOI

[21] S. K. Das, M. Pervin, S. K. Roy and G. W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. (2021) 1–27. | MR | Zbl

[22] M. S. Daskin, A maximum expected covering location model: formulation, properties and heuristic solution. Transp. Sci. 17 (1983) 48–70. | DOI

[23] S. G. Davis, Analysis of the deployment of emergency medical services. Omega 9 (1981) 655–657. | DOI

[24] D. Degel, L. Wiesche, S. Rachuba and B. Werners, Time-dependent ambulance allocation considering data-driven empirically required coverage. Health Care Manage. Sci. 18 (2015) 444–458. | DOI

[25] V. J. De Maio, I. G. Stiell, G. A. Wells, D. W. Spaite and Ontario Prehospital Advanced Life Support Study Group, Optimal defibrillation response intervals for maximum out-of-hospital cardiac arrest survival rates. Ann. Emerg. Med. 42 (2003) 242–250. | DOI

[26] H. Derbel, B. Jarboui, S. Hanafi and H. Chabchoub, Genetic algorithm with iterated local search for solving a location-routing problem. Expert Syst. Appl. 39 (2012) 2865–2871. | DOI

[27] K. F. Doerner, W. J. Gutjahr, R. F. Hartl, M. Karall and M. Reimann, Heuristic solution of an extended double-coverage ambulance location problem for Austria. Cent. Eur. J. Oper. Res. 13 (2005) 325–340. | Zbl

[28] A. El Fallahi and I. Sefrioui, A linear programming model and memetic algorithm for the Emergency Vehicle Routing. In: 2019 4th World Conference on Complex Systems (WCCS). IEEE (2019). | DOI

[29] A. El Itani, F. Ben Abdelaziz and H. Masri, A bi-objective covering location problem: case of ambulance location in the Beirut area, Lebanon. Manage. Decis. 57 (2019) 432–444. | DOI

[30] E. Erkut, A. Ingolfsson and G. Erdoğan, Ambulance location for maximum survival. Nav. Res. Log. 55 (2008) 42–58. | MR | Zbl | DOI

[31] M. Gendreau, G. Laporte and F. Semet, Solving an ambulance location model by tabu search. Locat. Sci. 5 (1997) 75–88. | Zbl | DOI

[32] G. Hiermann, M. Prandtstetter, A. Rendl, J. Puchinger and G. R. Raidl, Metaheuristics for solving a multimodal home-healthcare scheduling problem. Cent. Eur. J. Oper. Res. 23 (2015) 89–113. | MR | Zbl | DOI

[33] K. Hogan and C. Revelle, Concepts and applications of backup coverage. Manage. Sci. 32 (1986) 1434–1444. | DOI

[34] M. Kaveh and M. S. Mesgari, Improved biogeography-based optimization using migration process adjustment: an approach for location-allocation of ambulances. Comput. Ind. Eng. 135 (2019) 800–813. | DOI

[35] V. A. Knight, P. R. Harper and L. Smith, Ambulance allocation for maximal survival with heterogeneous outcome measures. Omega 40 (2012) 918–926. | DOI

[36] N. Krasnogor and J. Smith, A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 9 (2005) 474–488. | DOI

[37] R. C. Larson, A hypercube queuing model for facility location and redistricting in urban emergency services. Comput. Oper. Res. 1 (1974) 67–95. | DOI

[38] H. Leknes, E. S. Aartun, H. Andersson, M. Christiansen and T. A. Granberg, Strategic ambulance location for heterogeneous regions. Eur. J. Oper. Res. 260 (2017) 122–133. | MR | Zbl | DOI

[39] M. Lozano, F. Herrera, N. Krasnogor and D. Molina, Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12 (2004) 273–302. | DOI

[40] M. B. Mandell, Covering models for two-tiered emergency medical services systems. Locat. Sci. 6 (1998) 355–368. | DOI

[41] R. Manfredini, O. La Cecilia, B. Boari, J. Steliu, V. Michelini, P. Carli, C. Zanotti, M. Bigoni and M. Gallerani, Circadian pattern of emergency calls: implications for ED organization. Am. J. Emerg. Med. 20 (2002) 282–286. | DOI

[42] V. Marianov and C. Revelle, The queueing maximal availability location problem: a model for the siting of emergency vehicles. Eur. J. Oper. Res. 93 (1996) 110–120. | Zbl | DOI

[43] R. Mccormack and G. Coates, A simulation model to enable the optimization of ambulance fleet allocation and base station location for increased patient survival. Eur. J. Oper. Res. 247 (2015) 294–309. | Zbl | DOI

[44] L. A. Mclay, A maximum expected covering location model with two types of servers. IIE Trans. 41 (2009) 730–741. | DOI

[45] L. A. Mclay and M. E. Mayorga, Evaluating emergency medical service performance measures. Health Care Manage. Sci. 13 (2010) 124–136. | DOI

[46] P. Merz and B. Freisleben, Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4 (2000) 337–352. | DOI

[47] D. M. Miranda, R. S. De Camargo, S. V. Conceição, M. F. Porto and N. T. Nunes, A metaheuristic for the rural school bus routing problem with bell adjustment. Expert. Syst. Appl. 180 (2021) 115086. | DOI

[48] A. Nadizadeh and A. S. Zadeh, A bi-level model and memetic algorithm for arc interdiction location-routing problem. Comput. Appl. Math. 40 (2021) 1–44. | MR | Zbl | DOI

[49] H. Z. Naji, M. Al-Behadili and F. Al-Maliky, Two server dynamic coverage location model under stochastic travel time. Int. J. Appl. Comput. Math. 7 (2021) 1–19. | MR | Zbl

[50] J. Nelas and J. Dias, Optimal emergency vehicles location: an approach considering the hierarchy and substitutability of resources. Eur. J. Oper. Res. 287 (2020) 583–599. | MR | Zbl | DOI

[51] H. K. Rajagopalan, F. E. Vergara, C. Saydam and J. Xiao, Developing effective meta-heuristics for a probabilistic location model via experimental design. Eur. J. Oper. Res. 177 (2007) 83–101. | Zbl | DOI

[52] H. K. Rajagopalan, C. Saydam and J. Xiao, A multiperiod set covering location model for dynamic redeployment of ambulances. Comput. Oper. Res. 35 (2008) 814–826. | Zbl | DOI

[53] R. Reeves, Genetic algorithms Part A: Background. 28 (2003).

[54] R. Reeves, A genetic algorithm for flowshop sequencing. Comput. Oper. Res. 22 (1995) 5–13. | Zbl | DOI

[55] J. F. Repede and J. J. Bernardo, Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur. J. Oper. Res. 75 (1994) 567–581. | DOI

[56] M. Reuter-Oppermann, P. L. Van Den Berg and J. L. Vile, Logistics for emergency medical service systems. Health Syst. 6 (2017) 187–208. | DOI

[57] C. Revelle and K. Hogan, The maximum availability location problem. Transp. Sci. 23 (1989) 192–200. | MR | Zbl | DOI

[58] V. Schmid and K. F. Doerner, Ambulance location and relocation problems with time-dependent travel times. Eur. J. Oper. Res. 207 (2010) 1293–1303. | MR | Zbl | DOI

[59] L. Shaw, S. K. Das and S. K. Roy, Location-allocation problem for resource distribution under uncertainty in disaster relief operations. Soc.-Econ. Planning Sci. 82 (2022) 101232. | DOI

[60] B. Tirkolaee and N. S. Aydin, Integrated design of sustainable supply chain and transportation network using a fuzzy bi-level decision support system for perishable products. Expert. Syst. Appl. 195 (2022) 116628. | DOI

[61] E. B. Tirkolaee, A. Goli and A. Mardani, A novel two-echelon hierarchical location-allocation-routing optimization for green energy-efficient logistics systems. Ann. Oper. Res. (2021) 1–29. | MR | Zbl

[62] B. Tirkolaee, A. Goli, S. Gütmen, G. W. Weber and K. Szwedzka, A novel model for sustainable waste collection arc routing problem: pareto-based algorithms. Ann. Oper. Res. (2022) 1–26. | MR | Zbl

[63] E. B. Tirkolaee and A. E. Torkayesh, A cluster-based stratified hybrid decision support model under uncertainty: sustainable healthcare landfill location selection. Appl. Intell. (2022) 1–20.

[64] C. Toregas, R. Swain, C. Revelle and L. Bergman, The location of emergency service facilities. Oper. Res. 19 (1971) 1363–1373. | Zbl | DOI

[65] H. Toro-Díaz, M. E. Mayorga, S. Chanta and L. A. Mclay, Joint location and dispatching decisions for emergency medical services. Comput. Ind. Eng. 64 (2013) 917–928. | DOI

[66] H. Toro-Díaz, M. E. Mayorga, L. A. Mclay, H. K. Rajagopalan and C. Saydam, Reducing disparities in large-scale emergency medical service systems. J. Oper. Res. Soc. 66 (2015) 1169–1181. | DOI

[67] P. L. Van Den Berg and K. Aardal, Time-dependent MEXCLP with start-up and relocation cost. Eur. J. Oper. Res. 242 (2015) 383–389. | MR | Zbl | DOI

[68] H. P. Williams, Model Building in Mathematical Programming. John Wiley & Sons (2013). | Zbl

[69] E. Yadegari, A. Alem-Tabriz and M. Zandieh, A memetic algorithm with a novel neighborhood search and modified solution representation for closed-loop supply chain network design. Comput. Ind. Eng. 128 (2019) 418–436. | DOI

[70] X. Yan and X. Gu, Bi-objective no-wait multiproduct multistage product scheduling problem with flexible due dates based on MOIDE-MA. Comput. Oper. Res. 137 (2022) 105543. | MR | Zbl | DOI

[71] X. Yang, N. Bostel and P. Dejax, A MILP model and memetic algorithm for the hub location and routing problem with distinct collection and delivery tours. Comput. Ind. Eng. 135 (2019) 105–119. | DOI

[72] S. Yoon and L. A. Albert, An expected coverage model with a cutoff priority queue. Health Care Manage. Sci. 21 (2018) 517–533. | DOI

[73] S. Yoon and L. A. Albert, Dynamic dispatch policies for emergency response with multiple types of vehicles. Transp. Res. Part E: Logistics Transp. Rev. 152 (2021) 102405. | DOI

[74] S. Yoon, L. A. Albert and V. M. White, A stochastic programming approach for locating and dispatching two types of ambulances. Transp. Sci. 55 (2021) 275–296. | DOI

[75] Z. Zhang, M. Liu and A. Lim, A memetic algorithm for the patient transportation problem. Omega 54 (2015) 60–71. | DOI

[76] L. Zhen, K. Wang, H. Hu and D. Chang, A simulation optimization framework for ambulance deployment and relocation problems. Comput. Ind. Eng. 72 (2014) 12–23. | DOI

Cité par Sources :