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AMBULANCE LOCATION UNDER TEMPORAL VARIATION IN DEMAND
USING A MIXED CODED MEMETIC ALGORITHM

Raviarun A. Nadar1,* , J.K. Jha1 and Jitesh J. Thakkar2

Abstract. Emergency medical services (EMS) are among the most important services in any society
due to their role in saving people’s lives and reducing morbidities. The location of ambulance stations
and the allocation of ambulances to the stations is an important planning problem for any EMS system
to ensure adequate coverage while minimising the response time. This study considers a mixed-integer
programming model that determines the ambulance locations by considering the time of day variations
in demand. The presented model also considers heterogeneous performance measures based on survival
function and coverage for different patient types with varying levels of urgency. A memetic algorithm
based-approach that applies a mixed chromosome representation for solutions is proposed to solve
the problem. Our computational results indicate that neglecting time-dependent variation of demand
can underestimate the number of ambulances required by up to 15% during peak demand. We also
demonstrate the effectiveness of the proposed solution approach in providing good quality solutions
within a reasonable time.
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1. Introduction

Emergency medical services (EMS) are an integral part of modern healthcare systems and are responsible
for providing pre-hospital care and transportation services to both emergency and non-emergency patients.
Providing a timely response to emergency calls requiring urgent medical care can save lives and reduce morbidity
in patients. The response time, i.e. the time taken to respond to emergency calls, plays a vital role in patient
outcomes, necessitating that the ambulances reach the location within the least possible time. The need to
respond to calls in a timely manner leads to the ambulance location problem that requires locating ambulance
stations and allocating ambulances to these stations such that all demand zones can be reached within a specified
time limit. Determining the optimal location of ambulance stations is a strategic-level planning problem, while
the optimal allocation of ambulances to these stations is a tactical planning problem. Despite the difference
in planning levels, these problems have often been studied simultaneously in the literature [56]. The two-level
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nature of the ambulance location is a critical problem since it influences other tactical and operational level
problems such as crew scheduling, relocation, and routing of ambulances.

EMS systems often aim to meet a predefined response time threshold while responding to emergency calls
[73]. Therefore, response time-based measures are the most commonly used performance measure in ambulance
location problems as they are also easy to evaluate [45]. Coverage, which measures the expected number of
calls to be served within a pre-specified response time, is used in the majority of ambulance location studies
[56]. However, some studies have also considered other performance measures such as survival function [30]
and equity [12]. The survival function evaluates EMS system performance based on the probability of patient
survival, while equity considers whether demand from all demand zones is equally served. Since an EMS system
could serve calls of different urgency levels, location models considering heterogeneous performance measures
have been developed [35].

Ambulance location depends on various input factors such as demand arising out of each region, travel time
required to reach each location in the region, and response time requirement that needs to be met to achieve the
target service performance levels. An important factor that requires consideration while locating ambulances
is the probabilistic nature of the problem because ambulances might be busy when a call arrives [22]. Many
ambulance location models estimate an area-specific busy probability assuming all ambulances in a given area
have equal busy probability [38]. Some researchers have relaxed this assumption to consider server-level busy
probability [7]. Another important factor that needs to be considered in determining the location of ambulances
is the uncertainty in input parameters [4]. Demand from each region exhibits temporal variation, i.e. it usually
varies over the day and on various days of the week [11]. Considering an average demand over a period of
time may result in underestimating the number of ambulances required to achieve the required service level,
especially during peak demand periods. Taking into account these variations in demand can improve the overall
allocation of ambulances.

Facility location models, including coverage-based location models, are NP-hard [15,16], due to which many
heuristic and metaheuristic approaches have been proposed to solve these models [17,34,51]. Furthermore, many
real-life urban EMS systems serve a large region with a large population. For example, the case considered in
our test instances is the city of Mumbai, with a population above 12 million and an area of 619 square km
(www.mcgm.gov.in). For such large urban EMS systems, the demand from the region would need to be divided
into a large number of zones for improved accuracy and realism, which will result in large-scale optimisation
problems [51]. Solving such large-scale optimisation problems will require significantly high computational power
and time. Although the location of ambulance stations is a strategic problem, ambulance allocation is a tactical
problem [56]. Therefore, an ambulance location problem is not just required to be solved while initially setting
up an EMS system but frequently on a medium-term basis to redistribute ambulances based on the demand
forecast. Thus, it becomes necessary to develop effective solution approaches that provide quality solutions
within a reasonable time for such realistic problems.

Determining optimal location-allocation of ambulances is thus an important planning problem for the oper-
ation of an EMS system due to their direct impact on the survival probability of patients and the overall
performance of the EMS system. Incorporating the temporal variation in demand is significant due to the
impact on the number of ambulances and ambulance stations required, affecting the busy probability and util-
isation of ambulances. As ambulances serve different types of patients, it is also necessary to consider different
performance measures to evaluate the performance of the EMS system. Further, ambulance location decisions
also affect the operational-level planning of EMS, such as relocation of ambulances and crew scheduling. Based
on these observations, we formulate the following research questions to address in this study.

(i) What is the impact of temporal variation in demand on the number of ambulances and ambulance stations
located compared to considering average demand?

(ii) How does temporal variation in demand affect the number of ambulances and ambulance stations located
compared to considering maximum demand throughout the day?

(iii) How do the busy probability and server utilisation of ambulances vary as demand varies over the day?

www.mcgm.gov.in
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(iv) Can a heuristic approach be developed to solve the ambulance location problem with time-dependent
variation and server-level busy probability for obtaining better solutions within less time than commercial
solvers and the conventional genetic algorithm (GA) for realistic large-scale problem instances?

To address the above research questions, we consider an ambulance location problem that accounts for both
temporal variations in demand and server-level busy probability. We also consider heterogeneous performance
measures for different patient types, including coverage and survival probability-based measures. A memetic
algorithm (MA) based solution approach is developed to solve large-size real-life instances of the problem. The
overall contributions of this work can be summarised as follows.

– Present a model for the location of ambulance stations and allocation of ambulances to the stations, which
accounts for temporal variation in demand and server-level busy probability.

– Develop and implement a novel mixed coded MA-based solution approach to solve large-scale problems,
utilising a combination of integer and real coding for solution representation.

– Analyse the impact of considering variations in demand over the time of day on ambulance allocation
decisions.

The organisation of the remainder of this paper is as follows. Section 2 reviews the existing literature in
the area of ambulance location. Subsequently, Section 3 discusses the problem background and the model
formulation, followed by Section 4 detailing the proposed solution methodology. In Section 5, a detailed summary
of the computational results is presented. Finally, Section 6 presents the conclusions and scope for further
research.

2. Review of literature

A considerable number of papers that study ambulance planning models can be understood from the numer-
ous review papers published related to the topic [4,9]. Brotcorne et al. [9] review ambulance location problems
considering static, probabilistic and dynamic models. Aringhieri et al. [4] review more recent EMS planning
problems across the entire emergency care pathway. Reuter-Oppermann et al. [56] classify EMS planning prob-
lems by focusing on the interdependencies between different planning levels and problems. Bélanger et al. [6]
review EMS planning problems at the tactical and operational levels, focusing on the interaction of various
decisions related to location, relocation, routing and dispatching of ambulances. These review papers provide
a comprehensive overview of the overall research in the area of ambulance location. We present an overview of
the papers more closely related to the present study.

The location set covering model (LSCM) and maximum covering location problem (MCLP) constitute the
earliest major ambulance location models in the literature. Toregas et al. [64] propose LSCM that minimises
ambulances required while covering all demand zones. The MCLP, proposed by Church and ReVelle [14], on the
other hand, tries to maximise the possible coverage given a fixed number of ambulances. Daskin [22] develops a
maximum expected covering location problem (MEXCLP) that addresses the unavailability of ambulances by
explicitly considering the busy fraction of ambulances while maximising the expected coverage value. Larson
[37] introduces a hypercube queuing model that accounts for the busy probability of ambulances. Davis [23]
presents a simulation-based approach that tackles temporal variations in demand and travel time, multiple
casualty accidents, and variations in service time at each incident location. The double standard model (DSM)
addressing the issue of ambulance unavailability by maximising the demand covered by two ambulances for each
location is proposed by Gendreau et al. [31]. Various extensions and improvements to these models have been
developed and presented in the literature are discussed subsequently.

Hogan and Revelle [33] introduce backup coverage models that maximise the backup coverage for demand
zones while enforcing single coverage as a constraint. They analyse the model that considers a trade-off between
primary and backup coverages, which they extend to include multiple coverages. Mandell [40] proposes a covering
model for a two-tiered ambulance system where advanced life support (ALS) and basic life support (BLS) can
serve all calls. A region is considered covered if an ALS is available for service within a pre-specified response
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time. Revelle and Hogan [57] introduce a probabilistic model called the maximum availability location problem
(MALP) to extend the LSCM to account for the busy probability of ambulances. The MALP-I assumes that the
busy probability is the same for all ambulances, which is relaxed to develop the MALP-II by considering area-
specific busy probability. Batta et al. [5] develop an adjusted MEXCLP model that assumes that ambulances
are independent. Marianov and Revelle [42] present an extension to the MALP that relaxes the assumption that
the busy probability of ambulances is independent of each other. They propose a queueing MALP (Q-MALP)
model that calculates server-level busy probability using queueing theory to make the model more realistic.
McLay [44] develops the MEXCLP2 model that extends the MEXCLP to account for two server types.

The demand for emergency care follows a definite pattern and varies continuously over the day, with low
demand during the night and peak demand during day time [10, 11, 41]. Disregarding this variation in demand
while determining the location of ambulances can result in inaccuracies in estimating the number of ambulances
required to meet the demand. Repede and Bernardo [55], while developing a decision support system for the
Louisville EMS system, present an extension to the MEXCLP to consider time variation in demand. They
solve the model for 35 scenarios of the EMS system with the number of ambulances ranging from 5 to 11.
Rajagopalan et al. [52] develop a dynamic available coverage location model, a multi-period model applicable
for dynamic demand, which accounts for significant changes in demand across different time clusters. Schmid and
Doerner [58] develop a mixed-integer linear programming (MILP) model for multi-period planning of ambulance
locations while ensuring a pre-specified coverage level throughout the planning horizon. They apply the model
for a dataset based on Vienna with potential locations varying from 16 to 163 and 16 available ambulances.
Degel et al. [24] take a data-driven optimisation and develop a model that determines the flexible location
and fleet size based on empirically determined required coverage, which accounts for the time-varying nature of
demand. They demonstrate their approach using the case study of Bochum (Germany), with 163 demand zones,
21 potential ambulance stations and 14 ambulances. Van Den Berg and Aardal [67] also develop a probabilistic
model to account for the time-dependent nature of demand and travel time that, while maximising expected
coverage, minimises the number of stations and relocations required across different periods. They apply their
model to a randomly generated instance with 500 demand zones and 50 potential ambulance stations.

Coverage is the most widely used objective function for evaluating EMS location models. However, it is
ineffective in discerning the impact of differences in response times [45]. Erkut et al. [30] observe that coverage-
based models may locate stations at sites just within the response time limit while increasing coverage to
additional regions resulting in decreased survival probability of patients. To overcome this limitation, they
introduce a maximum survival location problem to maximise the survival function for patients, which measures
the impact of response time on the probability of survival. Erkut et al. [30] solve problems with 180 demand
points, 16 potential stations and up to a maximum of 16 ambulances. Knight et al. [35] propose a maximal
expected survival location model for heterogeneous patients to account for multiple outcome measures for
various patient types and present an approximation methodology that iteratively finds the best solution. They
solve the problem based on EMS in Wales with 18 demand nodes, 11 ambulance stations and 36 ambulances.
An important objective considered in the ambulance literature is equity in service levels between different zones
of a region. Chanta et al. [12] introduce a minimum 𝑝-envy location problem (M𝑝ELP) to maximise service
equity among all zones. M𝑝ELP models equity using envy, a function of the distance of a demand zone from its
nearest and backup stations. Chanta et al. [13] improve the 𝑝-envy model introduced in Chanta et al. [12] by
considering envy as a function of the difference between survival probabilities to capture more accurately the
difference in patient outcomes among different zones.

Leknes et al. [38] formulate a MILP model to consider heterogeneity in demand while accounting for various
outcome measures for multiple patient types. They tested the proposed model on instances based on Trondheim
and Malvik with 67 demand zones and 44 potential station locations and Sør-Trøndelag with 139 demand zones
and 76 potential locations. Yoon and Albert [72] present an EMS system with priority queues for different
patient types by employing multiple types of patients to develop a MILP model for ambulance deployment. The
developed model is studied using a dataset based on Hanover County, with 270 demand nodes, 16 potential
stations and up to 15 ambulances. El Itani et al. [29] extend the MEXCLP to consider the problem of utilising
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additional private ambulances to improve coverage. Andersson et al. [3] extend the model presented by Leknes
et al. [38] to consider various strategic scenarios, including the closure of emergency rooms, usage of designated
vehicles for non-urgent patients, and time-dependent variation in demand. Boutilier and Chan [8] consider the
problem of locating and routing ambulances in a lower-middle-income country setting of Dhaka, Bangladesh.
They use field data and prediction models to handle uncertainty in the data and apply a simulation-based
approach to answer policy-related questions. Nelas and Dias [50] present a location model for an EMS system
with multiple types of ambulances that serve multiple types of patients, explicitly considering the substitutability
between different types of ambulances for different care services and the assignment of ambulances to specific
calls. They applied their model to a dataset based on the Coimbra district (Portugal) for locating 35 ambulances
among 34 potential ambulance stations. Naji et al. [49] propose a two-server dynamic covering location model
to consider two types of patients and two types of servers. Yoon et al. [74] present a stochastic model for joint
location and dispatching of ambulances under demand uncertainty.

Due to the NP-hard nature of the ambulance location problem, solution approaches based on various heuristic
and metaheuristic approaches have been proposed in the literature. Gendreau et al. [31] develop and apply a
solution approach based on tabu-search to a static ambulance location model with double coverage. Doerner
et al. [27] propose an ant colony optimisation-based solution approach to extend the double coverage model and
compare it with the tabu search metaheuristic. Rajagopalan et al. [51] compare four metaheuristic approaches,
including an evolutionary algorithm, tabu search, simulated annealing, and a hybridised hill-climbing algorithm
for solving the MEXCLP. Toro-Dı́az et al. [65] present a GA-based optimisation framework for the location and
dispatching of ambulances simultaneously. Toro-Dı́az et al. [66] propose a tabu search-based heuristic for a model
that considers fairness in large-scale EMS systems. Zhen et al. [76] develop a simulation-optimisation framework
with GA to deploy and relocate ambulances. Akdoğan et al. [2] construct a GA to solve the ambulance location
model based on an approximate queueing model that minimises the system’s response time. Kaveh and Mesgari
[34] present an improved biogeography-based optimisation algorithm for solving the MCLP, which they apply
to solve the ambulance location problem for a real dataset in Tehran.

Table 1 compares selected articles in the literature based on some key features of the models. The table
shows that only Knight et al. [35], Leknes et al. [38], and Andersson et al. [3] consider both server-level busy
probability and heterogeneous performance measures (coverage and survival function). However, Knight et al.
[35] and Leknes et al. [38] do not consider temporal variation in demand, while Andersson et al. [3] consider
stations to be fixed in their time-dependent model. Among the papers that consider relocation of ambulances
based on temporal variation, none consider server-level busy probability or survival-based objective. Table 1 also
shows the different solution approaches applied to solve the ambulance location problems. Based on our literature
review, we identified a need to analyse the impact of temporal variation in demand on the number of ambulances
located while incorporating server-level busy probability and heterogeneous performance measures. Therefore,
we propose a time-dependent maximum expected performance location problem for heterogeneous patients
that accounts for the time-dependent variation in demand and estimates station-specific busy probabilities.
The proposed problem also considers an objective function based on the combination of coverage and survival
function for different patient types. A mixed-integer non-linear programming (MINLP) model is presented and
converted to a MILP model by linearising the non-linear constraints. A memetic algorithm-based approach is
proposed to solve the model as the presented model is difficult to solve using commercial optimisation solvers.

3. Problem description

The problem we address in this work is characterised by a set of demand zones (nodes), where each zone
represents a neighbourhood from where calls for ambulances are received. The calls received from demand zones
can be of three types (A, B, and C) with varying levels of urgency [35]. Type A calls are time-critical emergency
calls, where reaching the patient location within the shortest possible time is important for patient survival.
Type B calls are emergency calls that need immediate transportation but are not life-threatening, and type C
calls require non-emergency transportation. The arrival rate for each type of call from each zone is assumed to
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Table 1. Comparison of selected relevant articles with the current work.

Performance measure
Author(s) Coverage

based
Survival
function-
based

Temporal
demand
variation

Flexible station
location and fleet
size (Relocation)

Server-
specific busy
probability

Solution approach

Church and
ReVelle [14]

X Greedy algorithms

Daskin [22] X Heuristic
Batta et al. [5] X Heuristic
Repede and
Bernardo [55]

X X X –

Erkut et al.
[30]

X Commercial solver

Rajagopalan
et al. [52]

X Tabu search heuristic

McLay [44] X Commercial solver
Schmid and
Doerner [58]

X X X Variable neighbour-
hood search

Knight et al.
[35]

X X X Iterative approach

Degel et al.
[24]

X X X Commercial solver

Van Den Berg
and Aardal
[67]

X X X Commercial solver

Leknes et al.
[38]

X X X Commercial solver

Yoon and
Albert [72]

X X Branch and Benders
cut

Kaveh and
Mesgari [34]

X Improved
biogeography-based
optimisation

Boutilier and
Chan [8]

X X X Simulation and
heuristic

Nelas and
Dias [50]

X X X Commercial solver

Yoon et al.
[74]

X X Simulation
optimisation

This work X X X X X Memetic algorithm

be known. The planning horizon is divided into a set of periods, and each period is associated with different
call arrival rates for each zone. A set of potential sites are available where ambulance stations can be located. A
fleet of identical ambulances is available, and these ambulances need to be assigned to the selected ambulance
stations, where multiple ambulances can be assigned to each station.

Demand for ambulances from a zone can be assigned to two (primary and secondary) nearest ambulance
stations. Primary and secondary stations are ranked as one and two, respectively, to indicate the priority of
stations in sending an ambulance to the demand zone. If all ambulances at the primary station are busy, the
demand will be satisfied from the secondary station. Thus, the proposed problem consists of three simultaneous
decisions related to ambulance planning: (i) to select the optimal sites for ambulance stations from the available
potential sites, (ii) to assign demand for ambulances from each zone to primary and secondary stations, and
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(iii) to allocate ambulances to each station. The objective function of the model is formulated to maximise the
sum of the survival function for type A calls and the coverage for type B and type C calls for all ambulance
station locations.

3.1. Assumptions

The proposed problem makes the following assumptions to formulate the model.

(i) All ambulances are identical and can serve all call types.
(ii) The complete demand for a zone is assumed to be served by ambulances from either a primary or secondary

station since other stations covering the demand zone will be located considerably far away in most cases
[38].

(iii) The service time for an ambulance includes the time taken to return to the base station, travel time from
the station to the patient location, then to the hospital, and time spent at the patient location (On-scene
time).

(iv) To simplify the model, the maximum number of ambulances assigned to a station is assumed to be the
same for all stations. However, it can be easily relaxed by defining the input parameter 𝐴max separately
for each location 𝑗 as 𝐴𝑗

max.

3.2. Mathematical formulation

In this section, we formulate the proposed problem as an MINLP model to determine the optimal location
of stations, assignment of demand zones to stations and ambulance allocation to stations by maximising the
weighted sum of survival probability and coverage for all stations. The non-linearity of the model arises due to
station-specific service rates and busy probability. The non-linear equations are then linearised in Section 3.2.4
using Special Ordered Set 2 (SOS2) type variables.

3.2.1. Notation

Sets

𝐼 Set of demand zones, 𝑖 ∈ 𝐼
𝐽 Set of potential stations for ambulances, 𝑗 ∈ 𝐽
𝑇 Set of time periods, 𝑡 ∈ 𝑇
𝑅 Set of ranking of stations, 𝑟 ∈ 𝑅 = {1, 2}, 1 = primary and 2 = secondary
𝐻 Set of different types of calls, ℎ ∈ 𝐻

Parameters

𝐷𝑖ℎ𝑡 Number of calls associated with call type ℎ from demand zone 𝑖 during period 𝑡
𝑊𝑖𝑗ℎ Performance weight related to demand zone 𝑖 if covered by station 𝑗 for call type ℎ
𝐴total Total number of ambulances available
𝑍max Maximum number of stations that can be located
𝐴max Maximum number of ambulances that can be assigned to a station
𝜆𝑖𝑡 Number of calls per unit time received from demand zone 𝑖 during period 𝑡
𝑇𝑖𝑗 Travel time for an ambulance at station 𝑗 to reach demand zone 𝑖
𝑆𝑖𝑗 Service time to serve a call from demand zone 𝑖 from an ambulance at station 𝑗

Decision variables

𝑥𝑗𝑡 1 if a station is located at location 𝑗 during period 𝑡, 0 otherwise
𝑦𝑗𝑡 Number of ambulances allocated to station 𝑗 during period 𝑡
𝑑𝑖𝑗𝑟𝑡 Proportion of demand from demand zone 𝑖 covered by station 𝑗 with rank 𝑟 during period 𝑡
𝜌𝑖𝑗𝑡 1 indicates station 𝑗 is the primary station for demand zone 𝑖 during period 𝑡, 0 otherwise
𝜃𝑗𝑡 Number of calls received per unit time at station 𝑗 during period 𝑡
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Table 2. Performance weight (𝑊𝑖𝑗ℎ) values for different types of calls.

Call type Performance weight (𝑊𝑖𝑗ℎ)

A
4

1 + 𝑒−0.679+0.262𝑇𝑖𝑗

B
1, if 𝑇𝑖𝑗 < 12
0, otherwise

C
1, if 𝑇𝑖𝑗 < 20
0, otherwise

𝜇𝑗𝑡 Service rate at station 𝑗 during period 𝑡
𝑟𝑗𝑠𝑡 Number of ambulances relocated from station 𝑗 to station 𝑠 during period 𝑡

3.2.2. Objective function

Maximise
∑︁
𝑡∈𝑇

∑︁
𝑖∈𝐼

∑︁
𝑗∈𝐽

∑︁
𝑟∈𝑅

∑︁
ℎ∈𝐻

𝐷𝑖ℎ𝑡𝑊𝑖𝑗ℎ𝑑𝑖𝑗𝑟𝑡. (3.1)

The objective function in (3.1) maximises the total performance measure value of the station locations in all
periods. The performance measures are defined as a function of the mean travel time 𝑇𝑖𝑗 from station 𝑗 to zone
𝑖. For type A calls, a survival function-based performance measure given by the formula 𝐻(𝑡) = 1

1+𝑒−0.679+0.262𝑇𝑖𝑗

is used [25]. However, any similar monotonically decreasing function can be utilised, as the optimal location of
stations is insensitive to the parameters of the survival function [30]. For type B and type C calls, a coverage-
based binary performance measure is used, i.e. 𝐻(𝑡) = 1 or 0, depending on whether 𝑇𝑖𝑗 is less than or greater
than the response time threshold defined. The value of 𝑊𝑖𝑗ℎ in the objective function is calculated by multiplying
𝐻(𝑡) by a weightage value of 4 for type A calls and 1 for call types B and C to prioritise type A calls [35]. The
performance weight values (𝑊𝑖𝑗ℎ) for all three types of calls are summarised in Table 2.

3.2.3. Constraints

∑︁
𝑗∈𝐽

𝑥𝑗𝑡 ≤ 𝑍max ∀𝑡 ∈ 𝑇 (3.2)

∑︁
𝑗∈𝐽

𝑦𝑗𝑡 ≤ 𝐴total ∀𝑡 ∈ 𝑇 (3.3)

𝑦𝑗𝑡 ≤ 𝐴max𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.4)∑︁
𝑗∈𝐽

𝜌𝑖𝑗𝑡 = 1 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (3.5)

𝜌𝑖𝑗𝑡 ≥ 𝑑𝑖𝑗1𝑡 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.6)
1− 𝜌𝑖𝑗𝑡 ≥ 𝑑𝑖𝑗2𝑡 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.7)∑︁
𝑗∈𝐽

𝑑𝑖𝑗1𝑡 ≥
∑︁
𝑗∈𝐽

𝑑𝑖𝑗2𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (3.8)

∑︁
𝑗∈𝐽

∑︁
𝑟∈𝑅

𝑑𝑖𝑗𝑟𝑡 = 1 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (3.9)

∑︁
𝑖∈𝐼

(𝜆𝑖𝑡𝜌𝑖𝑗𝑡 + 𝜆𝑖𝑡𝑑𝑖𝑗2𝑡) = 𝜃𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.10)



AMBULANCE LOCATION UNDER TEMPORAL VARIATION IN DEMAND USING A MIXED CODED MA 2975

𝜇𝑗𝑡 =
∑︀

𝑖∈𝐼

∑︀
𝑟∈𝑅 𝜆𝑖𝑑𝑖𝑗𝑟𝑡∑︀

𝑖∈𝐼

∑︀
𝑟∈𝑅 𝜆𝑖𝑆𝑖𝑗𝑑𝑖𝑗𝑟𝑡

∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.11)

𝜋𝑗𝑡 = 𝑓(𝜇𝑗𝑡, 𝜃𝑗𝑡, 𝑦𝑗𝑡) ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 |𝑡 < 𝑇 (3.12)
𝑑𝑖𝑗𝑟𝑡 ≤ 1− 𝜋𝑗𝑡 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽, ∀𝑟 ∈ 𝑅, ∀𝑡 ∈ 𝑇 (3.13)

𝑦𝑗𝑡 +
∑︁
𝑠∈𝐽

𝑟𝑠𝑗𝑡 −
∑︁
𝑠∈𝐽

𝑟𝑗𝑠𝑡 = 𝑦𝑗(𝑡+1) ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 |𝑡 < 𝑇 (3.14)

𝑦𝑗|𝑇 | +
∑︁
𝑠∈𝐽

𝑟𝑗𝑠|𝑇 | −
∑︁
𝑠∈𝐽

𝑟𝑠𝑗|𝑇 | = 𝑦𝑗1 ∀𝑗 ∈ 𝐽. (3.15)

Constraints (3.2) and (3.3) ensure that the number of stations and ambulances allocated in any period is
less than the maximum number allowed, respectively. Constraint (3.4) limits the number of ambulances within
the maximum limit at each station. Constraints (3.5)–(3.9) are coverage constraints, where constraint (3.5)
ensures that one primary station is assigned to every demand zone. Constraint (3.6) ensures that demand can
be allocated to a station with rank 1 only if it is the primary station for the corresponding zone during that
period. Constraint (3.7) ensures that the primary and secondary stations for any demand zone are different in
every period, while constraint (3.8) ensures that the primary station has a higher demand proportion allocated
compared to the secondary station. Constraint (3.9) ensures that the total demand from each zone is covered
in each period, i.e. the total proportion of demand allocated to both primary and secondary stations is equal
to 1.

Equation (3.10) represents the aggregate arrival rate associated with station 𝑗 during period 𝑡. In equation
(3.10), 𝜌𝑖𝑗𝑡 is used to calculate the arrival rate for a primary station since all calls arrive at the primary station
first. In contrast, 𝑑𝑖𝑗2𝑡 is used for a secondary station since only calls diverted from the primary station arrive
at the secondary station. Equation (3.11) represents the aggregate service rate associated with station 𝑗 during
period 𝑡. Equation (3.12) represents the busy probability of ambulances at a station as a function of arrival
rate, service rate and number of ambulances at that station during each period. The value of 𝜋𝑗𝑡 is calculated
by assuming each station as an 𝑀/𝑀/𝑐-loss queueing system using the Erlang loss formula. Constraint (3.13)
ensures that the probability of availability of ambulances at a station should be greater than the proportion
of demand allocated to the station. Constraints (3.14) and (3.15) represent the balance between the number
of ambulances being relocated to different stations from each station from one period to the next. A dummy
station is considered to account for the unused ambulances from one period to another.

3.2.4. Linearisation of the formulation

The formulation presented above has two non-linear equations, equations (3.11) and (3.12), which are lin-
earised using SOS2 type variables [38, 68]. The notation of parameters and variables used for linearisation is
presented in Table 3.

To linearise equation (3.11), the numerator
∑︀

𝑖∈𝐼

∑︀
𝑟∈𝑅 𝜆𝑖𝑑𝑖𝑗𝑟𝑡, which represents aggregate demand at station

𝑗, is divided into 𝑝 breakpoint values given by 𝐸𝑝 =
{︀
𝐸1, 𝐸2, . . . , 𝐸|𝑝|

}︀
, where 𝐸1 and 𝐸|𝑝| are the minimum and

the maximum possible values for aggregate demand. Similarly, the denominator
∑︀

𝑖∈𝐼

∑︀
𝑟∈𝑅 𝜆𝑖𝑆𝑖𝑗𝑑𝑖𝑗𝑟𝑡, which

represents aggregate service time, is divided into 𝑞 breakpoint values represented by 𝐹𝑞 =
{︀
𝐹1, 𝐹2, . . . , 𝐹|𝑞|

}︀
.

Then, 𝜈𝑝𝑗𝑡 and 𝜔𝑞𝑗𝑡 are defined as two SOS2 variables to approximate the numerator and denominator, respec-
tively. Defining the variable 𝜈𝑝𝑗𝑡 as SOS2 is implicitly equivalent to defining

∑︀
𝑝∈𝑃 𝜈𝑝𝑗𝑡 = 1,∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 , and

at most, only two consecutive values of 𝜈𝑝𝑗𝑡 can be non-zero for each station 𝑗 in period 𝑡 [68]. Suppose for any
station 𝑗 and period 𝑡 if the value of

∑︀
𝑖∈𝐼

∑︀
𝑟∈𝑅 𝜆𝑖𝑡𝑑𝑖𝑗𝑟𝑡 = 𝐸̂, then two consecutive values 𝜈𝑝′𝑗𝑡 and 𝜈(𝑝′+1)𝑗𝑡

will be chosen such that 𝐸𝑝′𝜈𝑝′𝑗𝑡 + 𝐸(𝑝′+1)𝜈(𝑝′+1)𝑗𝑡 ≥ 𝐸̂ using constraint (3.16) to approximate the numerator
of equation (3.11). Similarly, constraint (3.17) together with constraint (3.23) approximates the denominator of
equation (3.11) using 𝜔𝑞𝑗𝑡. Equations (3.18) and (3.19) integrate both the SOS2 variables using the breakpoint
variable 𝜁𝑝𝑞𝑗𝑡. Constraint (3.20) ensures that the breakpoint variable 𝜁𝑝𝑞𝑗𝑡 = 1 if station 𝑗 is selected and 0,
otherwise. Finally, equation (3.21) calculates the value of 𝜇𝑗 using the breakpoint value. Thus, the non-linear
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Table 3. Summary of linearisation parameters and variables.

𝑃 Set of breakpoints for aggregate call arrival rate, 𝑝 ∈ 𝑃
𝑄 Set of breakpoints for aggregate call service time, 𝑞 ∈ 𝑄
𝑈 Set of breakpoints associated with service rate for discretising available probability of

ambulances,𝑢 ∈ 𝑈
𝑉 Set of breakpoints associated with arrival rate for discretising available probability of ambulances,

𝑣 ∈ 𝑉
𝐸𝑝 Aggregate demand associated with breakpoint 𝑝
𝐹𝑞 Aggregate service time associated with breakpoint 𝑞
𝐾𝑢 Service rate associated with breakpoint 𝑢
𝐿𝑣 Arrival rate associated with breakpoint 𝑣
𝑃𝑢𝑣𝑘 Busy probability associated with breakpoints 𝑢 and 𝑣, when 𝑘 number of ambulances are allocated

at a station
𝜈𝑝𝑗𝑡 SOS2 variable related to breakpoint 𝑝 for service rate linearisation at station 𝑗 during period 𝑡
𝜔𝑞𝑗𝑡 SOS2 variable related to breakpoint 𝑞 for service rate linearisation at station 𝑗 during period 𝑡
𝜁𝑝𝑞𝑗𝑡 Breakpoint variable associated with service rate linearisation at station 𝑗 during period 𝑡
𝛽𝑣𝑗𝑡 SOS2 variable related to breakpoint 𝑣 for arrival rate linearisation at station 𝑗 during period 𝑡
𝜑𝑢𝑗𝑡 SOS2 variable related to breakpoint 𝑢 for service rate linearisation at station 𝑗 during period 𝑡
𝛼𝑢𝑣𝑗𝑡 Breakpoint variable associated with available probability linearisation during period 𝑡
𝛿𝑗𝑘𝑡 1 if there are more than 𝑘 ambulances at station 𝑗 during period 𝑡, 0 otherwise

value of 𝜇𝑗 is approximated using four neighbourhood points obtained from constraints (3.16) and (3.17).

∑︁
𝑝∈𝑃

𝐸𝑝𝜈𝑝𝑗𝑡 ≥
∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

𝜆𝑖𝑡𝑑𝑖𝑗𝑟𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.16)

∑︁
𝑞∈𝑄

𝐹𝑞𝜔𝑞𝑗𝑡 ≥
∑︁
𝑖∈𝐼

∑︁
𝑟∈𝑅

𝜆𝑖𝑡𝑆𝑖𝑗𝑑𝑖𝑗𝑟𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.17)

∑︁
𝑞∈𝑄

𝜁𝑝𝑞𝑗𝑡 = 𝜈𝑝𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑝 ∈ 𝑃, ∀𝑡 ∈ 𝑇 (3.18)

∑︁
𝑝∈𝑃

𝜁𝑝𝑞𝑗𝑡 = 𝜔𝑞𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑞 ∈ 𝑄, ∀𝑡 ∈ 𝑇 (3.19)

∑︁
𝑝∈𝑃

∑︁
𝑞∈𝑄

𝜁𝑝𝑞𝑗𝑡 = 𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.20)

𝜇𝑗 =
∑︁
𝑝∈𝑃

∑︁
𝑞∈𝑄

𝐸𝑝

𝐹𝑞
𝜁𝑝𝑞𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.21)

{𝜈1𝑗𝑡, 𝜈2𝑗𝑡,...,𝜈𝑝𝑗𝑡} is SOS2 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.22)
{𝜔1𝑗𝑡, 𝜔2𝑗𝑡,...,𝜔𝑞𝑗𝑡} is SOS2 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.23)∑︁
𝑣∈𝑉

𝐿𝑣𝛽𝑣𝑗𝑡 ≥ 𝜃𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.24)∑︁
𝑢∈𝑈

𝐾𝑢𝜑𝑢𝑗𝑡 ≥ 𝜇𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.25)∑︁
𝑢∈𝑈

𝛼𝑢𝑣𝑗𝑡 = 𝛽𝑣𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑣 ∈ 𝑉, ∀𝑡 ∈ 𝑇 (3.26)∑︁
𝑣∈𝑉

𝛼𝑢𝑣𝑗𝑡 = 𝜑𝑢𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑢 ∈ 𝑈, ∀𝑡 ∈ 𝑇 (3.27)
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𝑢∈𝑈

∑︁
𝑣∈𝑉

𝛼𝑢𝑣𝑗𝑡 = 𝑥𝑗𝑡 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.28)

{𝛽1𝑗𝑡, 𝛽2𝑗𝑡,...,𝛽𝑝𝑗𝑡} is SOS2 ∀𝑗 ∈ 𝐽, ∀𝑡 ∈ 𝑇 (3.29)
{𝜑1𝑗𝑡, 𝜑2𝑗𝑡,...,𝜑𝑞𝑗𝑡} is SOS2 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇. (3.30)

For equation (3.12), we first divide the possible service rate and arrival rate values into 𝑢 and 𝑣 breakpoint
values given by 𝐾𝑢 =

{︀
𝐾1, 𝐾2, . . . ,𝐾|𝑢|

}︀
and 𝐿𝑣 =

{︀
𝐿1, 𝐿2, . . . , 𝐿|𝑣|

}︀
, respectively. Next, we calculate the

busy probability 𝑃𝑢𝑣𝑘 of ambulances for each breakpoint 𝑢 and 𝑣 using equation (3.31), assuming 𝑀/𝑀/𝑐-loss
queueing system.

𝑃𝑢𝑣𝑘 =
(𝜌𝑢𝑣)𝑘

𝑘!∑︀𝑘
𝑙=0

(𝜌𝑢𝑣)𝑙

𝑙!

, (3.31)

where 𝜌𝑢𝑣 = 𝐿𝑢

𝐾𝑢
and 𝑘 is the number of ambulances. Then, constraints (3.25) and (3.26) introduce two SOS2

variables 𝛽𝑣𝑗𝑡 and 𝜑𝑢𝑗𝑡 for approximating arrival and service rates, respectively. Equations (3.27)–(3.29) combine
the SOS2 variables 𝛽𝑣𝑗𝑡 and 𝜑𝑢𝑗𝑡 using 𝛼𝑢𝑣𝑗𝑡. The relationship of variable 𝛿𝑖𝑗𝑟𝑡 with the number of ambulances
allocated is defined in constraint (3.32). Then, constraint (3.13) is expressed in the form of constraint (3.33).
The term 𝛿𝑗𝑘𝑡 ensures that constraint (3.33) holds only when 𝑘 ambulances are located at station 𝑗 during
period 𝑡.

𝐴max∑︁
𝑘=0

𝛿𝑗𝑘𝑡 ≤ 𝑦𝑗𝑡 ∀𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 (3.32)

𝑑𝑖𝑗𝑟𝑡 − 𝛿𝑗𝑘𝑡 ≤ 1−
∑︁
𝑢∈𝑈

∑︁
𝑣∈𝑉

𝑃𝑢𝑣𝑘𝛼𝑢𝑣𝑗𝑡 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑟 ∈ 𝑅, 𝑡 ∈ 𝑇, 𝑘 = 0, 1, . . . , 𝐴max. (3.33)

The objective function (3.1) subject to constraints (3.2)–(3.10), and constraints (3.12)–(3.30), along with
constraints (3.32) and (3.33), present the complete mathematical formulation of the proposed ambulance location
problem. The presented model incorporates time-dependent variation in demand and allows the relocation of
ambulances from one period to another to tackle the variation in demand. Another key feature of the proposed
formulation is incorporating the server-level busy probability of ambulances to accurately capture the impact
on actual coverage and survival probability of patients. However, this makes the model non-linear, which is
linearised with the help of SOS2 type variables and breakpoint values. The linearised model consists of the
linear objective function and constraints, making the model solvable by commercial MILP solvers. However,
the problem is complex because of a large number of binary variables and integer variables used to represent
the selection of ambulance stations, the primary station of demand zones, the number of ambulances allocated
and the number of relocations. Additionally, the linearisation of constraints adds many SOS2 type variables, a
collection of binary variables with a special structure. Thus, the proposed problem is more realistic and complex.

As both the objective function and constraints are linear, the problem remains feasible for all positive values
of demand and travel time. However, the linearisation of busy probability and service rate introduces additional
artificial variables and parameters that need to be determined to maintain the feasibility of the model. The
breakpoint parameter 𝐸𝑝 represents the numerator of the service rate. Therefore, the range of the parameter
needs to be chosen such that the problem is feasible, as given in equation (3.34). Similarly, the range of the
parameter 𝐹𝑞 is given in equation (3.35). The parameter 𝐿𝑣 represents the total arrival rate for each station in
each period and therefore has the same range of values as 𝐸𝑝, as shown in equation (3.36).

𝐸1 = 0 and 𝐸|𝑝| = max
∀𝑡

∑︁
𝑖∈𝐼

𝜆𝑖𝑡 (3.34)

𝐹1 = 0 and 𝐹|𝑞| = max
∀𝑡

∑︁
𝑖∈𝐼

𝜆𝑖𝑡𝑆𝑖𝑗 (3.35)
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𝐿1 = 0 and 𝐿|𝑣| = max
∀𝑡

∑︁
𝑖∈𝐼

𝜆𝑖𝑡. (3.36)

The parameter 𝐾𝑢 represents the service rate of the ambulance stations for each period, given by the range in
equation (3.37).

𝐾1 = 0 and 𝐾|𝑢| =
1

max∀𝑖,𝑗 𝑆𝑖𝑗
· (3.37)

Within the above ranges of the parameters and limits of the assumptions highlighted in Section 3.1, the
proposed model remains feasible and can be applied to any EMS system with a given set of demand zones and
potential sites for location of ambulance stations.

4. Solution methodology

Our initial experiments show that the problem is not easily solvable for medium and large-sized instances. In
our trial runs, using randomly generated data for instances with more than 30 zones, we could not get feasible
solutions even after 12 h of using the commercial solver. This can be explained based on the observation that
considering multiple periods in a day increases the solution space exponentially. The basic location-allocation
problem of locating 𝑚 servers in 𝑛 available sites has a solution space of 𝑚𝑛 [51]. Considering 𝑟 different
periods increases the possible solution space to mr𝑛𝑟. This rapid increase in solution space combined with
the introduction of individual station-level busy probability and relocation-related constraints increases the
complexity of the problem. Especially as the number of demand zones, potential locations and periods increases,
the computational time required to obtain even a good quality feasible solution increases rapidly. Therefore,
we develop a metaheuristic-based solution approach to solve the problem. Several authors [43,76] have applied
various metaheuristic approaches to solve ambulance location problems. In this work, we adopt a MA-based
approach, which improves the GA by embedding a local search routine.

MA is a population-based metaheuristic that combines natural adaptation with individual learning acquired
by the members of population [36]. MA expedites the process of finding the global optima and avoids premature
convergence by balancing the exploration of the search space using GA while enabling the exploitation of the
current neighbourhood using local search. MA has been successfully applied in solving various combinatorial
problems such as scheduling [70], vehicle routing [47], assignment problems [46], supply chain network design [69]
and location routing [1,48]. MA has also been used in solving healthcare planning problems such as ambulance
routing [28,75] and home healthcare planning [32]. Memetic algorithms presented in the literature generally use
binary or integer coding for solution representation. Real-coded memetic algorithms have also been presented
to solve optimisation problems with continuous variables [36,39]. Like a location routing problem that combines
strategic level facility location problem [19, 20] and tactical level routing problem [61], an ambulance location-
allocation problem combines strategic and tactical level decisions. The problem presented in this work involves
a combination of decisions, including station location, demand allocation and ambulance allocation. Therefore,
we adopt a mixed coded solution representation in the proposed algorithm to combine binary coding for station
location and real coding for demand allocation decisions. However, mixed coding using a combination of binary
and integer representation has been used in MA for location routing problems [26,71].

The overall solution framework based on the memetic algorithm is presented in Figure 1. Initial solutions are
generated using a heuristic approach that randomly allocates demand from different zones to stations, ensuring
the diversity of solutions. Individual solutions are evaluated based on the fitness function corresponding to the
value of the objective function of the problem. Initial solutions are ranked based on their fitness values, and
a selection procedure is applied to choose parent chromosomes that are subject to crossover and mutation to
produce offspring. A local search is applied to the offspring solutions to improve the quality of these solutions. A
pre-specified set of such offspring is generated during an iteration to generate a pool of offspring by repeatedly
selecting a pair of parents from the initial population. These offspring replace the worst-ranked solution among
the current generation. The complete procedure is repeated until a fixed number of iterations or convergence is
reached. Subsequent sections detail the major phases involved in the application of MA.
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Initialise solution 

Randomly select locations and determine demand allocated to each location 

Selection 

Randomly select parent chromosomes 

Crossover 

- Apply single-point crossover on the station vector 

- Apply BLX-α crossover for the demand vector 

Mutation 

Apply mutation on offspring solutions 

Local search 

Apply local search on offspring and obtain a local optimal solution 

Evaluation 

Evaluate the fitness value of the offspring population and compare it with the 

current generation 

Replacement 

Replace the worst solutions from the current generation with offspring 

Improvement in last k iterations < ϵ  

or 

Time limit exceeded? 

Report the best solution 

No 

Yes 

Figure 1. Overall solution framework based on memetic algorithm.
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Station Vector         S(x) 2 3 5 2 2 5 5 2

Demand Vector      D(x) 0.855 0.145 0.920 0.080 0.745 0.255 0.655 0.345

Zone 1 Zone 2 Zone 1 Zone 2

Period 1 Period 2

Figure 2. Chromosome representation of an individual solution.

4.1. Chromosome representation of a solution

One of the most critical points in the design of MA is the representation of each solution in the form
of a chromosome. A mixed coded representation is proposed where each chromosome depicting a solution is
represented as a combination of two vectors, namely station vector and demand vector, to accommodate both
continuous and discrete variables in the model. The station vector S(x) represents the station assigned to
each demand zone (which is a discrete variable), and demand vector D(x) represents the fraction of demand
from a zone that is being served by the corresponding station (which is a continuous variable). The number
of ambulances allocated to a station depends on the total demand allocated to that station. The proposed
chromosome representation is illustrated in Figure 2. The first element in the station vector represents that
station 2 is the primary station and station 3 is the secondary station for zone 1 during period 1. Similarly,
station 2 is the primary station and station 5 is the secondary station for zone 1 during period 2. The demand
vector represents that 85.5% of calls from zone 1 during the first period are expected to be covered by primary
station 2, while 14.5% of calls are covered by secondary station 3.

4.2. Selection, crossover and mutation

Selection is an important phase of the MA process. It is necessary to select good chromosomes from the
existing population to generate good quality offspring while maintaining diversity in the solution pool to explore
a larger solution space. Various selection procedures exist, such as tournament selection, roulette wheel selection,
rank selection, and Boltzmann selection [53]. The procedure employed in this work is adapted from the ranking
selection procedure suggested by Reeves [54]. We first order all the individuals from the current population in
ascending order of their objective function value, considering their feasibility. The solutions with no constraint
violations are ranked higher than those with violations (i.e., infeasible solutions) irrespective of their objective
function value. The probability of selection of each individual is then given by the formula 𝑃 (𝑘) = 2𝑘

𝑀(𝑀+1) ,
where 𝑘 is the position of the chromosome in the ordered list of objective values, and 𝑀 is the population
size. The advantage of this procedure is that while being simple to implement, it gives a higher preference to
the solution with better objective function value and lesser constraint violations. The solution with the best
fitness value has 𝑀 times higher probability than the lowest-ranked solution and two times the probability of
the median value.

The two individual chromosomes selected during the selection phase are recombined to produce new offspring
during the crossover phase. We apply a single point crossover separately on the station vector and the BLX-
𝛼 crossover for the demand vector. A single point is randomly chosen for the station vector, and the parent
chromosomes are swapped along this point to produce station vectors for the child chromosome. The BLX-𝛼
crossover for the demand vector part of the chromosome is performed as follows.
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Step 1. Consider 𝑑𝑖1 and 𝑑𝑖2 to be the two demand proportion values in the 𝑖th location of parent 1 and parent
2, respectively.

Step 2. Determine 𝑑min = min{𝑑𝑖1, 𝑑𝑖2} and 𝑑max = max{𝑑𝑖1, 𝑑𝑖2}.
Step 3. Calculate range 𝐼 = 𝑑max − 𝑑min.
Step 4. Generate a random number in the range 𝑑𝑖 = [𝑑min − 𝐼𝛼, 𝑑max + 𝐼𝛼], where 𝛼 ∈ [0, 1].
Step 5. If the random number lies outside the range of the demand proportion value, i.e. [0, 1], then select

another random number.

The mutation operator in MA is used to prevent the solution from converging to local optima by reducing
the convergence rate. In our problem, we apply two separate operators for mutation on the station and demand
vectors. For the station vector, we randomly remove one station location from all existing station allocations
and replace it with a station chosen from the set of potential locations that are not allocated. This allows the
introduction of a new station allocation into the solution, thus diversifying the solution. For the demand vector,
we simply replace the existing value of a given chromosome element with a random value in the feasible range
for that element.

4.3. Local search

Local search is an optimisation technique that tries to generate a local optimal solution by exploring the
neighbourhood of a given solution. A neighbourhood of a solution is explored by performing a few modifications
to the initial solution. We apply multiple neighbourhood exploration procedures to explore the neighbourhood
more efficiently and avoid rapid convergence to some local optima. Different neighbourhood operators applied
in the proposed algorithm are detailed below.

4.3.1. For station vector

Swap stations: we select two random elements representing two zones on the station vector and swap the stations
allocated at these locations on the chromosome to generate a new solution.

Replace: in this operator, we select an element on the station vector, and it is replaced by a station that is
allocated to at least one of the other zones.

4.3.2. For demand vector

Since the demand vector is a continuous variable, a fixed step random search is applied to determine the local
optima in this case. Once the local search is applied to the station vector, we change an element of the current
solution by a small step in a random direction to generate a new solution. If the new solution is better than the
original one, it is updated, and the next improvement is applied.

5. Computational results

Computational experiments were carried out on the dataset generated based on the urban location of Mumbai
in India. The results were used to analyse the performance of the proposed solution approach and the impact of
temporal variation in demand on the ambulance location decisions. We first describe the details related to various
input parameters in Section 5.1, followed by the summary of results and related discussion in Sections 5.2 and 5.3.

5.1. Generating input data

This section presents the details related to various input parameters such as potential sites for station loca-
tions, demand, travel time, and service time for the dataset generated.
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Figure 3. Region of interest with potential locations for ambulance stations.

5.1.1. Demand zones and base locations

To make the dataset realistic, the region was divided into smaller demand zones from where the calls for
ambulances arise. Potential base locations for ambulances were selected by considering various public places
such as railway stations, shopping malls, public hospitals, and schools/colleges. Figure 3 shows all the different
selected potential locations for the region of Mumbai under consideration. These locations were considered since
the potential locations need to provide some basic features such as parking space for ambulances, security for
ambulances and equipment, and electrical supply for recharging or operating equipment. The coordinates of the
selected locations were obtained using the QGIS software. A subset of these potential locations and demand
zones were considered to generate smaller test instances of the problem.

5.1.2. Call demand

We considered five randomly simulated values for total demand to create five test instances. The total demand
is then divided among 144 zones such that demand is approximately proportional to the population of each
zone. The smaller problem instances are generated by considering only a subset of the zones. The variation in
demand data over a day is considered by breaking the day into four periods: morning (6.00 am to 12.00 pm),
afternoon (12.00 pm to 06.00 pm), evening (6.00 pm to 12.00 am) and night (12.00 am to 06.00 am). The total
demand is divided into three types, type A, type B, and type C calls, based on their requirements for response
time within which they need to be covered. The demand was also separated by the day of the week as weekdays
and weekends, as weekends tend to have slightly lower demand and less pronounced peak demand.
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5.1.3. Travel and service time

The mean service time needed to serve any demand location from an ambulance station depends on the
travel time from the station to the patient location, on-scene time, travel time from the scene to the nearest
hospital and then back to the base station. To obtain a better approximation of the travel time, a large number
of random points were simulated using the QGIS software for the location of calls. The time taken to reach
these locations and then to the nearest hospital is determined based on the distance between locations. The
time spent at a patient location is assumed to be a constant value of 15 min [38]. The total service time was
calculated by adding the on-scene time to all travel time components from leaving a station until the ambulance
returns to the station.

The computational tests were performed on a PC with Intel(R) Core (TM) i5-4570T CPU @2.90 Hz and
8 GB of memory. The MILP model used for comparison was implemented using IBM ILOG CPLEX in concert
technology with Java. The proposed MA was implemented using MATLAB 2018b. Parameter settings for the
proposed MA and the GA used for comparison were obtained using multiple trial runs. The optimal population
size was 12, with a crossover probability of 0.90% and a mutation probability of 0.05%. The selection procedure
was repeated to obtain an offspring pool of 8 solutions in each iteration. A maximum time limit of 7200 s is
considered for all computational experiments as both MA and GA converged within this time for even large
instances. The same time limit is also used for CPLEX, as trial runs longer than 7200 s did not result in any
meaningful improvement in the objective function value for medium and large-size instances.

5.2. Performance of the proposed approach compared to CPLEX and GA

To validate the effectiveness of our proposed solution approach, we compared the performance of the pro-
posed approach with the exact solutions obtained using CPLEX and a GA-based approach. Various small-size
instances were developed from our initial dataset by varying the number of demand zones from 5 to 15, station
locations from 10 to 30, and considering five different total demand values for each case. Table 4 summarises the
results obtained for these test instances from CPLEX, GA and MA. From Table 4, we observe that although
CPLEX could find an optimal solution for most instances, the time taken to reach the optimal solution increases
drastically as the problem size increases. While it only takes less than 41 s to reach optimality for all instances
with five demand zones, CPLEX could not find the optimal solution within the specified time limit of 7200 s for
any instances with 15 zones. Both GA and MA could find optimal solutions for some of the small-size instances.
As problem size increases, both GA and MA converge to a solution within 2% of the CPLEX solution but take
significantly less CPU time than CPLEX. For most instances, the difference between GA and MA is less than
1%, with MA slightly outperforming GA in all instances.

Medium-size instances of the problem were generated by varying the number of demand zones from 20 to
60, potential station locations from 40 to 124, and considering five different total demand values for each case.
Table 5 summarises the results for the medium-sized instances for comparing the proposed approach with
CPLEX and GA. From Table 5, we observe that CPLEX was able to find feasible solutions within the time
limit for only three instances out of the total 25 instances, while both MA and GA were able to find feasible
solutions for all instances. As there is inherent uncertainty in MA and GA, five trials of each instance were
solved. The average solution value and the best solution out of the five trials are reported in Table 5. Similarly,
the table also reports the percentage improvement in the best objective value found using MA compared to the
exact approach and GA. The proposed MA-based approach found a slightly better solution than GA for almost
all instances, with the difference varying in the range 0–3%.

Large-size problem instances were considered with more than 80 demand zones and 150 potential locations.
Table 6 summarises the results for the large-size problem instances reporting the best solution found and the
average of five trials found using MA and GA. CPLEX is not included in the comparison as it was unable to
find a feasible solution for any of the instances within the given time limit. Among both GA and MA, there
was a clear difference in the best solution found, as the memetic-based approach consistently converged to a
better solution than GA. The difference between both algorithms varied up to 15%, with MA outperforming
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Table 4. Comparison of the proposed approach with exact approach and GA for small-size
instances.

Exact approach
Best objective

value
CPU time(s) % Gap between

Instance Instance
details

Total
demand

Best
objective
value

%
Solution
gap

GA MA Exact GA MA Exact
and
GA

Exact
and
MA

GA
and
MA

1 Zones =
05
Locations
= 10

3836 4698 0 4698 4698 41 79 83 0 0 0
2 3820 4723 0 4723 4723 26 78 74 0 0 0
3 7843 9735 0 9735 9735 36 77 85 0 0 0
4 4332 5349 0 5349 5349 28 81 77 0 0 0
5 8221 9996 0 9996 9996 22 75 71 0 0 0
6 Zones =

08
Locations
= 15

6862 8322 0 8322 8322 307 120 140 0 0 0
7 6871 8340 0 8340 8340 174 124 191 0 0 0
8 13 679 16 979 0 16 965 16 979 118 138 188 0.08 0 −0.08
9 7839 9454 0 9454 9454 149 225 191 0 0 0
10 14 255 17 263 0 17 177 17 263 356 306 197 0.50 0 −0.50
11 Zones =

10
Locations
= 20

8805 10 953 0 10 890 10 797 264 419 299 0.57 1.42 0.85
12 8853 10 957 0 10 806 10 876 648 340 420 1.38 0.74 −0.65
13 17 624 21 969 0 21 740 21 680 1607 443 456 1.04 1.32 0.28
14 9930 12 413 0 12 277 12 391 672 395 432 1.09 0.17 −0.93
15 17 814 22 360 0 22 148 22 360 764 447 445 0.95 0 −0.96
16 Zones =

12
Locations
= 25

6862 8480 0 8383 8395 1434 443 572 1.14 1.00 −0.14
17 6871 8525 0 8360 8328 2107 453 660 1.94 2.32 0.39
18 13 679 19 025 0 18 635 18 718 5722 632 727 2.05 1.61 −0.45
19 7839 9680 0 9490 9495 1823 563 572 1.97 1.92 −0.05
20 14 255 19 719 0 19 220 19 373 3533 352 661 2.53 1.75 −0.79
21 Zones =

15
Locations
= 30

12 584 15 474 0.75 14 970 15 392 7232 668 864 3.26 0.53 −2.82
22 12 929 15 638 0.22 14 670 15 565 7201 701 763 6.19 0.47 −6.10
23 25 409 35 352 1.04 35 374 34 952 7239 528 879 −0.06 1.13 1.19
24 14 204 17 246 3.15 17 151 17 259 7205 569 859 0.55 −0.08 −0.63
25 30 394 36 608 1.16 36 486 36 858 7202 657 862 0.33 −0.68 −1.02

GA in 21 out of 25 instances. This difference is significant compared to the difference observed between both
the algorithms in medium and small-size instances. Thus, MA outperforms GA for both medium and large-size
instances in the best solution found, and the improvement is also higher as the problem size increases.

Figure 4 presents a typical convergence behaviour of MA compared to GA for one of the instances where
both algorithms achieved the optimal solution provided by CPLEX. Figure 4 shows that MA converges to the
best solution in significantly fewer iterations than GA. A similar difference in performance was observed in
other instances for both algorithms. This difference could be attributed to the local search embedded in MA,
which increases the CPU time for each iteration but improves the objective function value. The increase in time
required can be observed in Figure 5, which shows the convergence of GA and MA with respect to CPU time
for the same problem instance. It is observed that even though MA takes almost 67% fewer iterations to achieve
the same objective value but the difference in CPU time for both algorithms is negligible.

5.3. Impact of temporal variation in demand

To illustrate the impact of temporal variation in demand, we compare results obtained from three different
models that locate ambulances based on three scenarios. Model 1 takes into account the temporal variation in
demand and determines the optimal locations for stations and the allocation of ambulances to each station in
each period. In model 2, the call arrival rate is considered equal to the average call arrival rate in a day. In
model 3, we assume the same call arrival rate as in the peak period during all periods. Both model 2 and model
3 determine a single set of station locations and ambulance allocations throughout the day. The comparison of
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Figure 4. Comparison of the convergence behaviour of GA and MA.

Figure 5. Comparison of GA and MA based on running time and best fitness value achieved.
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Table 5. Comparison of the proposed approach with exact approach and GA for medium-size
instances.

Exact approach GA MA
Improvement in
objective (%)

Instance Instance
details

Total
demand

Best
objective
value

%
Solution
gap

Best
objective
value

Average
objective
value

Best
objective
value

Average
objective
value

Exact
approach

GA

1 Zones =
20
Locations
= 42

64 694 94 504 1.1 91 125 88 530 93 715 93 607 −0.84 2.76
2 62 874 − − 92 775 89 826 94 064 93 885 1.37
3 143 178 − − 214 285 174 392 214 625 214 204 0.16
4 71 483 106 840 2.0 101 879 51 789 104 348 99 419 −2.39 2.37
5 149 997 192 660 18.6 215 696 214 136 216 677 213 039 11.08 0.45
6 Zones =

25
Locations
= 60

78 089 − − 115 267 114 004 116 562 58 322 1.11
7 81 174 − − 114 971 114 154 118 168 117 502 2.71
8 176 673 − − 263 478 257 665 265 651 263 629 0.82
9 91 049 − − 129 652 127 949 133 503 131 081 2.88
10 190 006 − − 274 332 264 918 277 939 275 952 1.30
11 Zones =

40
Locations
= 80

174 392 − − 246 653 241 950 251 613 245 579 1.97
12 161 055 − − 231 221 230 054 237 451 234 757 2.62
13 379 531 − − 539 077 521 883 546 444 545 600 1.35
14 186 901 − − 273 622 269 199 277 968 276 481 1.56
15 420 800 − − 596 849 580 878 606 484 581 486 1.59
16 Zones =

50
Locations
= 110

272 854 − − 378 332 367 176 389 511 381 539 2.87
17 254 087 − − 351 887 342 875 354 253 352 979 0.67
18 594 067 − − 837 795 829 052 855 970 855 506 2.12
19 292 656 − − 426 530 420 980 427 560 418 427 0.24
20 636 705 − − 897 666 867 988 916 770 890 755 2.08
21 Zones =

60
Locations
= 124

314 947 − − 466 501 454 246 466 634 455 211 0.03
22 318 491 − − 466 191 462 018 471 637 458 158 1.15
23 703 324 − − 1 013 358 1 005 939 1 030 817 1 014 168 1.69
24 349 541 − − 509 364 507 221 519 448 517 353 1.94
25 776 626 − − 1 090 746 1 084 069 1 121 543 1 084 446 2.75

these models is carried out based on the number of stations and ambulances located and the variation in the
busy probability of ambulances.

The summary of variation in calls considered across each period for different patient types is presented in
Table 7. Maximum demand occurs during the day, and minimum demand is considered during the night on
weekdays and weekends. Overall demand is lower during weekends compared to weekdays. Figure 6 plots the
percentage difference between the actual call arrival rate and the average call arrival rate in each period. A larger
percentage difference indicates that the expected call rate will be higher than the planned demand, which will
lead to a decrease in ambulance availability. It can be seen that the maximum difference between the average
and actual call arrival rates occurs during weekday afternoons (12.00 pm to 6 pm), as the overall demand is
highest during this period. Almost 25% of the calls could be underserved during this peak demand period, while
the expected overall under-coverage is about 12% of the total calls across all periods.

Table 8 presents the number of stations and ambulances located using model 1 for the input demand given in
Table 7. As expected, the estimated number of ambulances required varies with the variation in demand, and the
highest number of ambulances is allocated during the peak period. Also, the number of stations located follows
a pattern similar to the variation in the number of ambulances. The maximum number of stations allocated
is 51, with the allocation of 80 ambulances to these stations, while at the lowest demand period, 47 stations
and 66 total ambulances are allocated. Variations in the number of ambulance stations can be implemented
in the EMS system using temporary station locations during peak demand periods [55]. Under this approach,
ambulances can initially be located at permanent stations and then relocated to a temporary station to manage
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Table 6. Comparison of the proposed approach with GA for large-size instances.

GA MA % Gap
between
GA and
MA

Instance
Instance
details

Total
demand

Best
objective
value

Average
objective in
five trials

Best
objective
value

Average
objective in
five trials

1 Zones =
80
Locations
= 150

345 709 536 969 516 690 575 708 546 446 6.73
2 362 989 556 551 539 785 584 573 561 102 4.79
3 827 851 1 252 533 1 189 177 1 333 141 1 286 743 6.05
4 415 081 621 505 602 323 663 001 649 572 6.26
5 866 980 1 399 043 1 325 918 1 369 257 1 330 662 −2.18
6 Zones =

100
Locations
= 160

441 446 672 864 664 561 712 563 700 750 5.57
7 444 629 694 126 671 141 720 237 697 769 3.63
8 934 001 1 411 343 1 347 745 1 538 981 1 493 137 8.29
9 491 647 685 397 645 430 802 107 779 788 14.55
10 920 042 1 287 920 1 267 128 1 469 789 1 453 901 12.37
11 Zones =

120
Locations
= 200

470 669 659 592 659 379 749 388 737 595 11.98
12 512 552 828 374 811 179 783 864 781 086 −5.68
13 1 161 223 1 587 678 1 549 776 1 883 961 1 718 104 15.73
14 584 676 954 293 836 460 917 378 878 309 −4.02
15 1 089 063 1 744 428 1 653 375 1 768 342 1 543 951 1.35
16 Zones =

125
Locations
= 240

522 204 758 748 746 089 846 067 789 065 10.32
17 482 946 747 045 734 157 782 902 752 639 4.58
18 1 131 377 1 841 172 1 799 957 1 863 475 1 851 694 1.20
19 527 280 758 086 752 361 871 205 859 561 12.98
20 1 204 515 1 880 338 1 779 590 1 988 320 1 939 944 5.43
21 Zones =

144
Locations
= 284

532 109 865 638 847 598 857 886 820 576 −0.90
22 622 232 858 919 828 739 998 650 945 910 13.99
23 1 376 777 2 022 112 2 009 823 2 251 549 2 202 046 10.19
24 612 138 907 186 903 841 1 012 163 954 005 10.37
25 140 9636 2 145 203 2 031 059 2 266 980 2 227 874 5.37

Table 7. Distribution of total calls across periods and different call types for a sample instance.

Period Type A Type B Type C Total
% of
Total
calls

Weekday

Morning 10 899 22 432 30 764 64 095 18.54
Afternoon 12 645 26 040 35 712 74 397 21.52
Evening 12 510 25 748 35 309 73 567 21.28
Night 5737 11 808 16 195 33 740 9.76

Weekend

Morning 4495 9255 12 696 26 446 7.65
Afternoon 4479 9221 12 642 26 342 7.62
Evening 5164 10 623 14 567 30 354 8.78
Night 2851 5869 8048 16 768 4.85

Total calls 58 780 120 996 165 933 345 709 100
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Figure 6. Percentage deviation between actual and average call arrival rates in each period.

Table 8. Number of stations and ambulances located using model 1.

Period Total calls Stations Ambulances
Busy
fraction

Weekday

Morning 64 095 48 73 0.1930
Afternoon 74 397 51 80 0.2108
Evening 73 567 50 78 0.2112
Night 33 740 49 67 0.1170

Weekend

Morning 26 446 48 74 0.1969
Afternoon 26 342 48 76 0.1932
Evening 30 354 49 77 0.2186
Night 16 768 47 66 0.1438

additional demand. Table 8 also shows the mean value of the busy fraction for each period, i.e. the probability
that no ambulance will be available when a call arrives. It is observed that the busy probability value increases
when demand is high and decreases for periods when demand is low. Thus, it indicates that despite a higher
number of ambulances located, there is a higher probability that calls will be lost due to the unavailability of
ambulances during the peak demand period. It can be inferred that allocating a fixed number of ambulances
based on average demand as in model 2 would lead to even higher busy fractions and a higher probability of
calls lost.

Figure 7 shows the comparison between the number of stations located in all three models. As model 2 assumes
an average call arrival rate for all periods, it results in a significantly lower number of ambulance stations than
model 3. The number of stations located by model 3 is almost equal to that of model 1 during the peak demand
period. Figure 8 shows a similar comparison for the number of ambulances allocated in each period. It can be
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Figure 7. Variation in the number of stations located by model 1 compared to models 2 and 3.

observed that model 2 again results in an underestimation of ambulances during the peak period, while model
3 locates almost the same number of ambulances as in model 1 during the peak period. Another important
observation is that model 1 allocates significantly fewer ambulances during low-demand periods than the other
two models. Figure 8 also shows the variation in the average arrival rate of calls for each period. The number
of ambulances allocated follows a pattern similar to the variation in call arrival rate, indicating model 1 assigns
ambulances proportional to the demand arriving during each period.

Figure 9 depicts the comparison between the mean busy probability obtained using models 1 and 2, along
with the percentage difference between both values. A positive difference in the figure indicates that model
1 has a higher busy fraction, and a negative difference indicates otherwise. The busy fraction was calculated
assuming each station to be an 𝑀/𝑀/𝑐-loss queueing system. It is observed that model 1 results in a lower
mean busy probability value during peak periods while slightly higher busy probability during the periods of
low demand compared to model 2. Figure 10 shows the comparison between models 1 and 2 based on mean
server utilisation across different periods. A pattern similar to that of busy probability is observed with slightly
lower utilisation for model 1 during higher demand periods and higher utilisation during lower demand periods.
This is expected as model 1 allocates fewer ambulances during the low demand period and more ambulances
during other periods. This shows that using average demand throughout the day will result in significantly
higher utilisation of ambulances and busy probability during peak periods. As maximum demand occurs during
peak periods, this will lead to increased total lost calls.

Figure 11 shows the comparison of busy probabilities for models 1 and 3. As model 3 assumes a maximum
call arrival rate for all periods, a higher number of ambulances are allocated, which results in a lower busy
fraction during all periods. This low busy fraction comes at the expense of lower resource utilisation, as shown
in Figure 12. Figure 12 compares the mean server utilisation for both cases throughout the day, and it is clearly
seen that the utilisation is significantly higher in all periods for model 1. Thus, locating ambulances assuming
maximum demand as in model 3 definitely provides a good estimate of the maximum number of stations and
ambulances required with lower busy probabilities. However, taking into account temporal variation leads to
better resource utilisation with a slightly higher busy probability during the lower demand periods, such as night
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Figure 8. Variation in the number of ambulances located by model 1 compared to models 2 and 3.
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Figure 10. Comparison of variation in mean server utilisation for models 1 and 2.
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Figure 11. Comparison of variation in busy probability for models 1 and 3.
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Figure 12. Comparison of variation in mean server utilisation for models 1 and 3.

and weekends. This is an important consideration since keeping all ambulances operational during low-demand
periods will require additional ambulance crew members, resulting in significantly higher operational costs.
From Figure 8, it can be observed that model 1 requires 67 ambulances to be located during weekday nights,
while model 3 results in 81 ambulances, which is a significant difference. Thus, model 1 with temporal variation
provides a balance between ambulance availability during peak demand periods and resource utilisation during
low demand periods.

Table 9 presents the number of stations and ambulances located using model 1 during the peak demand
period compared to model 2 (average demand) for large problem instances. It also presents the percentage
difference between both cases. The table shows that the number of ambulances and ambulance stations located
is significantly higher for model 1 during peak demand. Model 3 is not considered in comparison since the
ambulance locations and the number of ambulances obtained using model 3 are similar to values obtained
during the peak period using model 1. The number of ambulances required during peak demand is 3.5–15%
higher than that determined assuming average demand (model 2), with an average difference of 9.6% between
both cases. Table 9 also shows the percentage difference between the maximum demand and average demand
values for each instance. It is interesting to note that the difference between the numbers of stations located for
both cases was significantly lower and varies in the range 1–5% in most instances, with an average difference
of 3.6%. Therefore, we can conclude that temporal variation in demand significantly affects the number of
ambulances required, although the impact is lower on the number of stations required.

Based on our results, we can make various key conclusions that can provide insights to decision-makers (DM)
of EMS systems. Our model can be applied to EMS systems where multiple ambulances are located at the same
station. The model allows DM to determine the optimal sites for the ambulance stations and the number of
ambulances allocated to each station. Additionally, DM can also determine the preference order of stations for
each zone, i.e. the rank of stations. Overall, the proposed model allows DM to determine the best allocation of
available ambulances to maximise the coverage and survival probability of patients of different types. Our results
show that considering temporal variation in demand provides a better estimate of the number of ambulances
required compared to considering average demand. At the same time, considering temporal variation results in
increased utilisation of ambulances compared to considering only the peak demand. Therefore, DM should not
only focus on average demand or maximum demand over the day but also consider the hourly variation while
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Table 9. Comparison of stations and ambulances located for large problem instances.

% Difference
between peak
and average
demand

Number of stations located Number of ambulances allocated

Instance
Problem
data

Model 1
(peak
demand)

Model 2
(average
demand)

%
Difference

Model 1
(peak
demand)

Model 2
(average
demand)

%
Difference

1 Zones =
80
Locations
= 150

18.2 51 48 5.9 80 73 9.2
2 20.8 56 53 5.4 84 81 4.0
3 20.6 46 45 2.2 74 69 7.2
4 19.1 66 63 4.5 106 92 15.5
5 23.0 55 54 1.8 82 79 3.5
6 Zones =

100
Locations
= 160

20.5 63 61 3.2 97 94 3.7
7 19.4 76 73 3.9 115 105 9.8
8 16.9 69 67 2.9 112 104 7.4
9 22.2 70 67 4.3 121 105 15.2
10 21.1 76 74 2.6 111 106 5.0
11 Zones =

120
Locations
= 200

20.5 95 91 4.2 158 140 13.3
12 25.8 91 87 4.4 149 135 10.8
13 23.9 91 87 4.4 144 136 5.9
14 26.2 80 79 1.3 145 128 13.1
15 25.3 82 81 1.2 145 134 8.4
16 Zones =

125
Locations
= 240

19.5 92 89 3.3 148 138 7.6
17 23.3 96 91 5.2 154 138 11.4
18 21.6 101 94 6.9 167 146 14.2
19 21.1 97 93 4.1 166 147 12.9
20 21.6 104 103 1.0 157 149 5.4
21 Zones =

144
Locations
= 284

20.6 96 93 3.1 175 161 9.0
22 25.1 138 127 8.0 224 191 17.1
23 25.5 113 110 2.7 190 172 10.3
24 17.2 119 117 1.7 211 188 12.5
25 22.8 96 95 1.0 167 156 7.1

Average 3.6 9.6

estimating the ambulances required. An important observation from our result is that the number of ambulance
stations located and the optimal location of the stations do not significantly vary over the day. However, the
number of ambulances allocated to stations varies up to 15% with the variation in demand. Thus, DM can fix
the optimal location of stations while varying the number of ambulances to balance the total coverage achieved
and the number of relocations.

Busy probability of ambulances is affected by the variation in demand and is observed to be high during
the afternoon and evening compared to the night and morning. Therefore, DM can utilise the proposed model
to solve for the different maximum number of ambulances to determine the optimal number of ambulances
that minimise the overall busy probability. Further, the proposed model provides the number of ambulances
required during each period, which allows DM to determine the number of EMS crews required to be assigned
to each station. This also allows DM to determine the schedule of the crews to operate the required number
of ambulances during each period. Ultimately, we can say that our study will enable DM in the decision-
making process to determine the optimal allocation of ambulance stations, ambulances, and the preference
order of stations that maximise the performance of an EMS system while improving busy probability and server
utilisation. Additionally, our model provides a framework for the operational level decisions of relocation of
ambulances and scheduling of ambulance crews. We also demonstrate the effectiveness of the MA compared to
the exact solver and GA for solving different size instances of the proposed problem. The exact solver is unable
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to provide feasible solutions for the problem within a reasonable time, while the memetic algorithm converges
to a good quality solution within significantly less computational time compared to both the exact solver and
GA.

6. Conclusions

In this paper, we present a location model for ambulances that accounts for the time-dependent nature of
EMS demand along with server-level busy probability. An MINLP model is developed that accounts for the
spatio-temporal variation in demand while considering heterogeneous performance measures, namely coverage
and survival function, for different call types. The presented non-linear model is then linearised using SOS2
variables and breakpoint values to transform into a MILP model. We divided the day into four blocks of six
hours with different call arrival rates to account for temporal variation with the minimum call rate during the
night (12.00 am to 6.00 am) and maximum call rate during the day (12.00 pm to 6.00 pm). Similarly, the variation
in demand during different days of the week is also considered by dividing a week into weekdays and weekends
with different call arrival rates for both cases. To test the model, we generated various test instances by dividing
an urban region into different demand zones and identifying potential station locations within the region. A
memetic algorithm-based solution approach is proposed since commercial MILP solver (CPLEX) could not even
find feasible solutions for most medium and large-size problem instances within a reasonable time.

Our results indicate that the solution generated by the proposed memetic algorithm is within 3% of the
optimal solution for all the instances for which CPLEX was able to solve to optimality and with significantly
less run time than CPLEX. The proposed MA-based approach also outperformed GA in terms of the best
objective value for most test instances. We compared the results obtained using the time-dependent model with
two models considering average and peak call rates. Computational results show that neglecting time-dependent
variation and considering an average call arrival rate can result in an underestimation of ambulances required by
up to 15% during peak demand. This can lead to a loss of significant demand due to a higher busy probability
during the peak period while there is excess capacity during the low demand periods. Contrarily, considering a
peak arrival rate for all periods provides a better estimate of the maximum number of stations and ambulances
required and results in lower busy probability but has significantly low resource utilisation for all periods. Thus,
considering temporal variation balances ambulance availability during peak periods and resource utilisation for
the periods with low demand. Our results illustrate the need for considering the time-varying nature of demand
and also demonstrate the effectiveness of the proposed solution approach.

Although this work addresses various research gaps in ambulance location models to develop a model that
is applicable for more realistic and complex EMS systems, there are some limitations of our work that can be
considered for future research. In this work, we have not considered the impact of variations in demand due
to seasonal factors, which could play an important role in locating ambulances. Uncertainty in travel time,
especially in urban regions, is another aspect that can be explored. Incorporating uncertainty in data through
fuzzy logic or grey numbers and leveraging big data to model stochastic parameters can also be applied to
develop decision support systems [18,63]. Equity is another important issue in EMS planning, as heterogeneity
in demand can result in an unequal allocation of resources. Incorporating equity-based objective function along
with coverage and survival function-based objectives can be an interesting research direction. Developing multi-
objective models with different performance measures and solution approaches to obtain Pareto solutions can
be another possible direction for further research [21, 59, 60, 62]. Integrating the strategic and tactical level
ambulance location problems with operational level problems, such as routing and relocation, is necessary
to develop a complete framework for EMS planning decisions. Our model assumes that all ambulances are
homogeneous, but the EMS systems generally utilise multiple types of ambulances. Evaluating the impact of
various types of EMS vehicles is also an important aspect as it requires different dispatch policies for individual
patients. Design of experiments based approach can be applied to fine-tune the parameters of the proposed
solution approach. Another possible direction of further research is developing an exact solution approach
exploiting the problem structure to improve the solution quality.
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