Evaluating process flexibility in lot sizing problems: an approach based on multicriteria decision making
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 3187-3217

This paper presents a multicriteria analysis of the process flexibility in the context of the lot sizing problem with parallel machines. In the standard design for lot sizing problems, each machine can manufacture all products (total or complete flexibility). However, installing machines with complete flexibility for several practical applications can be costly. Therefore, it becomes interesting to implement only a limited amount of machine flexibility, where each machine can produce only a small number of different products. Recently, some works presented analyses of process flexibility by considering only the production cost as a criterion. However, the literature lacks a more comprehensive analysis that considers other essential criteria regarding the problem to compute the value of a flexibility configuration. Thus, we provide a detailed multicriteria analysis based on the TOPSIS method that produces a ranking of alternatives for the flexibility configurations. Extensive computational experiments and sensitivity analyses for different scenarios of the lot sizing problem compare individual flexibility configurations and evaluate its advantages in manufacturing planning. The computational results showed that limited flexibility configurations outperform the total flexibility in all scenarios. Moreover, different from the studies considering only the total cost as the criterion, investing in flexibility for all capacity levels has advantages.

DOI : 10.1051/ro/2022139
Classification : 90-05, 90-08, 90-10
Keywords: Lot sizing problems, process flexibility, multicriteria analysis, TOPSIS method
@article{RO_2022__56_4_3187_0,
     author = {de Souza Amaro, Gabriel and Fiorotto, Diego Jacinto and Alves de Oliveira, Washington and Tomazeli, Leonardo Duarte},
     title = {Evaluating process flexibility in lot sizing problems: an approach based on multicriteria decision making},
     journal = {RAIRO. Operations Research},
     pages = {3187--3217},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022139},
     mrnumber = {4475691},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022139/}
}
TY  - JOUR
AU  - de Souza Amaro, Gabriel
AU  - Fiorotto, Diego Jacinto
AU  - Alves de Oliveira, Washington
AU  - Tomazeli, Leonardo Duarte
TI  - Evaluating process flexibility in lot sizing problems: an approach based on multicriteria decision making
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3187
EP  - 3217
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022139/
DO  - 10.1051/ro/2022139
LA  - en
ID  - RO_2022__56_4_3187_0
ER  - 
%0 Journal Article
%A de Souza Amaro, Gabriel
%A Fiorotto, Diego Jacinto
%A Alves de Oliveira, Washington
%A Tomazeli, Leonardo Duarte
%T Evaluating process flexibility in lot sizing problems: an approach based on multicriteria decision making
%J RAIRO. Operations Research
%D 2022
%P 3187-3217
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022139/
%R 10.1051/ro/2022139
%G en
%F RO_2022__56_4_3187_0
de Souza Amaro, Gabriel; Fiorotto, Diego Jacinto; Alves de Oliveira, Washington; Tomazeli, Leonardo Duarte. Evaluating process flexibility in lot sizing problems: an approach based on multicriteria decision making. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 3187-3217. doi: 10.1051/ro/2022139

[1] Y. Ali, M. Haroon and M. Abdullah, A. U. Khan, The best manufacturing procedure for the commercial production of urea: using ahp based topsis. Int. J. Anal. Hierarchy Process 11 (2019) 313–330. | DOI

[2] E. Amici, F. Campana and E. Mancini, A computer-aided design module to analyze manufacturing configurations of bent and hydroformed tubes. J. Manuf. Sci. Eng. 129 (2007) 979–983. | DOI

[3] S. Andradóttir, H. Ayhan and D. G. Down, Design principles for flexible systems. Prod. Oper. Manage. 22 (2013) 1144–1156. | DOI

[4] M. Behzadian, S. K. Otaghsara, M. Yazdani and J. Ignatius, A state-of the-art survey of TOPSIS applications. Expert Syst. App. 39 (2012) 13051–13069. | DOI

[5] J. W. M. Bertrand, Supply chain design: flexibility considerations. Handb. Oper. Res. Manage. Sci. 11 (2003) 133–198.

[6] R. Bhatnagar, P. Chandra and S. K. Goyal, Models for multi-plant coordination. Eur. J. Oper. Res. 67 (1993) 141–160. | DOI

[7] J. J. Carreno, Economic lot scheduling for multiple products on parallel identical processors. Manage. Sci. 36 (1990) 348–358. | Zbl | DOI

[8] D. M. Carvalho and M. C. V. Nascimento, Lagrangian heuristics for the capacitated multi-plant lot sizing problem with multiple periods and items. Comput. Oper. Res. 71 (2016) 137–148. | MR | Zbl | DOI

[9] D. M. Carvalho and M. C. V. Nascimento, A kernel search to the multi-plant capacitated lot sizing problem with setup carry-over. Comput. Oper. Res. 100 (2018) 43–53. | MR | Zbl | DOI

[10] P. Chen, Effects of normalization on the entropy-based TOPSIS method. Expert Syst. App. 136 (2019) 33–41. | DOI

[11] X. Chen, T. Ma, J. Zhang and Y. Zhou, Optimal design of process flexibility for general production systems. Oper. Res. 67 (2019) 516–531. | MR | Zbl

[12] J. C. De Borda, Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des Sciences pour 1781. Paris (1784).

[13] D. F. De Lima Silva and A. T. De Almeida Filho, Sorting with TOPSIS through boundary and characteristic profiles. Comput. Ind. Eng. 141 (2020) 106–328. | DOI

[14] R. De Matta and M. Guignard, The performance of rolling production schedules in a process industry. IIE Trans. 27 (1995) 564–573. | DOI

[15] R. De Matta and T. Miller, Production and inter-facility transportation scheduling for a process industry. Eur. J. Oper. Res. 158 (2004) 72–88. | MR | Zbl | DOI

[16] D. J. Fiorotto and S. A. De Araujo, Reformulation and a lagrangian heuristic for lot sizing problem on parallel machines. Ann. Oper. Res. 31 (2014) 213–217. | MR | Zbl

[17] D. J. Fiorotto, R. Jans and S. A. De Araujo, Hybrid methods for lot sizing on parallel machines. Comput. Oper. Res. 63 (2015) 136–148. | MR | Zbl | DOI

[18] D. J. Fiorotto, R. Jans and S. A. De Araujo, Process flexibility and the chaining principle in lot sizing problems. Int. J. Prod. Econ. 204 (2018) 244–263. | DOI

[19] S. C. Graves and B. T. Tomlin, Process flexibility in supply chains. Manage. Sci. 49 (2003) 907–919. | Zbl | DOI

[20] S. Greco, J. Figueira and M. Ehrgott, Multiple Criteria Decision Analysis. Springer, New York (2016). | Zbl | DOI

[21] L. Guimarães, D. Klabjan and B. Almada-Lobo, Annual production budget in the beverage industry. Eng. App. Artif. Intell. 25 (2012) 229–241. | DOI

[22] S. Gurumurthi and S. Benjaafar, Modeling and analysis of flexible queueing systems. Nav. Res. Logistics (NRL) 51 (2004) 755–782. | MR | Zbl | DOI

[23] C. L. Hwang and K. Yoon, Multiple Attribute Decision Making: Methods and Applications. Springer-Verlag, New York (1981). | MR | Zbl | DOI

[24] R. Jans, Solving lot-sizing problems on parallel identical machines using symmetry-breaking constraints. INFORMS J. Comput. 21 (2009) 123–136. | MR | Zbl | DOI

[25] R. Jans and Z. Degraeve, An industrial extension of the discrete lot sizing and scheduling problem. IEE Trans. 36 (2004) 47–58. | DOI

[26] W. C. Jordan and S. C. Graves, Principles on the benefits of manufacturing process flexibility. Manage. Sci. 41 (1995) 577–594. | Zbl | DOI

[27] E. E. Karsak and E. Tolga, Fuzzy multi-criteria decision-making procedure for evaluating advanced manufacturing system investments. Int. J. Prod. Econ. 69 (2001) 49–64. | DOI

[28] M. G. Kendall, A new measure of rank correlation. Biometrika 30 (1938) 81–93. | Zbl | DOI

[29] M. Köksalan, J. Wallenius and S. Zionts, Multiple Criteria Decision Making: From Early History to the 21st Century. World Scientific (2011). | DOI

[30] L. L. Koste and M. K. Malhotra, A theoretical framework for analyzing the dimensions of manufacturing flexibility. J. Oper. Manage. 18 (1999) 75–93. | DOI

[31] R. A. Krohling, R. Lourenzutti and M. Campos, Ranking and comparing evolutionary algorithms with hellinger-TOPSIS. Appl. Soft Comput. 37 (2015) 217–226. | DOI

[32] A. U. R. Lateef-Ur-Rehman, Manufacturing configuration selection using multicriteria decision tool. Int. J. Adv. Manuf. Technol. 65 (2013) 625–639. | DOI

[33] F. R. Lima-Junior and L. C. Ribeiro Carpinetti, Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management. Int. J. Prod. Econ. 174 (2016) 128–141. | DOI

[34] F. A. Lootsma, Multi-Criteria Decision Analysis Via Ratio and Difference Judgement. Vol. 29. Springer Science & Business Media (2007). | MR

[35] H. Y. Mak and Z. J. Max Shen, Stochastic programming approach to process flexibility design. Flexible Serv. Manuf. J. 21 (2009) 75–91. | Zbl | DOI

[36] A. Mardani, A. Jusoh, K. Nor, Z. Khalifah, N. Zakwan and A. Valipour, Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Econ. Res.-Ekonomska Istraživanja 28 (2015) 516–571. | DOI

[37] G. R. Mateus, M. G. Ravetti, M. C. De Souza and T. M. Valeriano, Capacitated lot sizing and sequence dependent setup scheduling: an iterative approach for integration. J. Scheduling 13 (2010) 245–258. | MR | Zbl | DOI

[38] A. Muriel, S. Anand and Y. Zhang, Impact of partial manufacturing flexibility on production variability. Manuf. Serv. Oper. Manage. 8 (2006) 192–205. | DOI

[39] I. Patiniotakis, D. Apostolou, Y. Verginadis, N. Papageorgiou and G. Mentzas, Assessing flexibility in event-driven process adaptation. Inf. Syst. 81 (2019) 201–219. | DOI

[40] J. C. Pomerol and S. Barba-Romero, Multicriterion Decision in Management: Principles and Practice. Vol. 25. Springer Science & Business Media (2012).

[41] A. U. Rehman, S. H. Mian, U. Umer and Y. S. Usmani, Strategic outcome using fuzzy-AHP-based decision approach for sustainable manufacturing. Sustainability 11 (2019) 6040. | DOI

[42] M. Rowshannahad, S. Dauzere-Peres and B. Cassini, Capacitated qualification management in semiconductor manufacturing. Omega 54 (2015) 50–59. | DOI

[43] B. Roy, Méthodologie multicritère d’aide à la décision. Editions Economica (1985).

[44] B. Roy, Paradigms and challenges. In: Multiple Criteria Decision Analysis: State of the Art Surveys, Springer (2005) 3–24. | Zbl

[45] M. Sambasivan and S. Yahya, A Lagrangean-based heuristic for multi-plant, multi-item, multi-period capacitated lot-sizing problems with inter-plant transfers. Comput. Oper. Res. 32 (2005) 537–555. | Zbl | DOI

[46] C. Shi, Y. Wei and Y. Zhong, Process flexibility for multiperiod production systems. Oper. Res. 67 (2019) 1300–1320. | MR | Zbl | DOI

[47] F. M. B. Toledo and V. A. Armentano, A lagrangian-based heuristic for the capacitated lot-sizing problem in parallel machines. Eur. J. Oper. Res. 175 (2006) 1070–1083. | MR | Zbl | DOI

[48] W. W. Trigeiro, L. J. Thomas and J. O. Mcclain, Capacitated lot sizing with setup times. Manage. Sci. 35 (1989) 353–366. | DOI

[49] B. Vincent, C. Duhamel, L. Ren and N. Tchernev, A population-based metaheuristic for the capacitated lot-sizing problem with unrelated parallel machines. Int. J. Prod. Res. 58 (2020) 6689–6706. | DOI

[50] X. Wang and J. Zhang, Process flexibility: a distribution-free bound on the performance of k -chain. Oper. Res. 63 (2015) 555–571. | MR | Zbl | DOI

[51] T. Wu, Z. Liang and C. Zhang, Analytics branching and selection for the capacitated multi-item lot sizing problem with nonidentical machines. INFORMS J. Comput. 30 (2018) 236–258. | MR | Zbl | DOI

[52] J. Xiao, H. Yang, C. Zhang, L. Zheng and J. N. D. Gupta, A hybrid Lagrangian-simulated annealing-based heuristic for the parallel-machine capacitated lot-sizing and scheduling problem with sequence-dependent setup times. Comput. Oper. Res. 63 (2015) 72–82. | MR | Zbl | DOI

[53] K. P. Yoon and C. L. Hwang, Multiple Attribute Decision Making: An Introduction. Vol. 104, Sage Publications (1995). | DOI

[54] E. K. Zavadskas, A. Mardani, Z. Turskis, A. Jusoh and K. M. D. Nor, Development of TOPSIS method to solve complicated decision-making problems – an overview on developments from 2000 to 2015. Int. J. Inf. Technol. Decis. Making 152016 (2000) 645–682.

Cité par Sources :