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EVALUATING PROCESS FLEXIBILITY IN LOT SIZING PROBLEMS:
AN APPROACH BASED ON MULTICRITERIA DECISION MAKING

Gabriel de Souza Amaro* , Diego Jacinto Fiorotto,
Washington Alves de Oliveira and Leonardo Duarte Tomazeli

Abstract. This paper presents a multicriteria analysis of the process flexibility in the context of the
lot sizing problem with parallel machines. In the standard design for lot sizing problems, each machine
can manufacture all products (total or complete flexibility). However, installing machines with complete
flexibility for several practical applications can be costly. Therefore, it becomes interesting to implement
only a limited amount of machine flexibility, where each machine can produce only a small number of
different products. Recently, some works presented analyses of process flexibility by considering only
the production cost as a criterion. However, the literature lacks a more comprehensive analysis that
considers other essential criteria regarding the problem to compute the value of a flexibility configura-
tion. Thus, we provide a detailed multicriteria analysis based on the TOPSIS method that produces
a ranking of alternatives for the flexibility configurations. Extensive computational experiments and
sensitivity analyses for different scenarios of the lot sizing problem compare individual flexibility con-
figurations and evaluate its advantages in manufacturing planning. The computational results showed
that limited flexibility configurations outperform the total flexibility in all scenarios. Moreover, different
from the studies considering only the total cost as the criterion, investing in flexibility for all capacity
levels has advantages.
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1. Introduction

The intense competition for consumer markets has been placing increasing pressure on the manufacturing
process of companies to produce quickly and customized products. Therefore, optimizing the process becomes
paramount to facing a more complex and volatile environment, including a more diversified product portfolio,
shorter product life cycles, and higher demand volatility [50]. Indeed, the company can increase its competitive-
ness by implementing the operation strategy known as process flexibility to better match supply with uncertain
demand.

In general, the process flexibility results from a company’s ability to build different types of products in
the same manufacturing plant or production facility simultaneously [26]. This adapted manufacturing process
appears in several practical production planning problems. We consider the case of a deterministic multiperiod
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production planning where the products can be manufactured on different resources (plants or machines). In
this situation, the problems are treated as deterministic lot sizing models.

The lot sizing problem with parallel machines involves determining the number of products to be manufac-
tured from each machine in each period of a planning horizon. There are several practical applications where
parallel machines need to be taken into account, for example, the tire industry [25], bottling of liquids [7] and
pharmaceutical industry [14]. In the standard design for lot sizing problems, each machine can manufacture all
products, meaning the total or complete flexibility [17,47]. However, it can be expensive to implement machines
with total flexibility for several practical applications. Thus, it becomes interesting to implement only a limited
amount of machine flexibility so that each machine can produce a reduced part of products [18].

Multiple authors addressed some approaches to analyze the effects of flexibility in the lot sizing problem
by considering only the production total cost (or profit) as a criterion. These works are mainly separated
by stochastic and deterministic approaches. When considering a stochastic environment, the authors assume
that the demand of the items is unknown and present some insights about the value of the process flexibil-
ity [11, 19, 26, 35]. On the other hand, in a deterministic planning environment, the flexibility configuration
decision becomes an operational decision that is taken at the start of the horizon when the demand for the
planning horizon is known [18,42,52]. Although several papers analyze the effect of flexibility, the literature still
lacks a more consistent analysis that considers other essential criteria of the lot sizing problem to determine
whether a flexibility configuration is suitable to be implemented. A flexibility configuration can be defined as a
distribution of links in a bipartite graph between machines/plants and products (see Fig. 1). Some of the flexi-
bility configurations, such as the long-chain configuration, present successful results in terms of the production
cost [26].

Note that although the production costs are a fundamental operational criterion, in real practical production
operational manufacturing systems, other criteria can be important to be taken into account to implement an
obtained solution (production planning). For example, considering the studied problem (lot sizing problem with
parallel machines), besides the production costs, one should be analyzed the backlog, the number of setups, and
the capacity utilization before implementing a solution. More precisely, a solution with the lowest production
costs but with significant levels of backlog, especially for the largest/more critical customers, may not be suitable
as there is a risk of losing these customers. In the same sense, a solution with many setups that consumes a
significant level of the total capacity or with a very high capacity utilization may make it impossible to meet
unexpected demands. Therefore, it is important to study the performance of different flexibility configurations
from a multicriteria perspective.

We observe that there are some papers in the literature applying multicriteria approaches to analyze flexible
manufacturing systems (see, e.g., [1, 2, 27, 32, 39, 41]). These studies are generally related to reconfigurable
manufacturing systems in which the organizations have many options and hence face the problem of evaluating
the feasible alternative configurations before choosing the best one. Our paper differs from these literature studies
by considering a production environment constituted by a planning horizon in which the decisions are related
to the machines that products can/should be produced to obtain the best production planning considering the
criteria used. Therefore, the decisions are related to the amount of machine flexibility. More specifically, this
paper extends the results of Fiorotto et al. [18] by analyzing the process flexibility for the lot sizing problem
based on a ranking of alternatives. The technique for order preference by similarity to ideal solution (TOPSIS)
produces a ranking for the different alternatives of flexibility configurations, allowing to examine the process
flexibility. Note that the TOPSIS method has been successfully used in several studies on industrial sectors [54].

This paper aims to provide a detailed multicriteria analysis for flexibility configurations in different scenarios
of the lot sizing problem with parallel machines. The main contributions include: (i) the use of the TOPSIS
method and the proposition of a multicriteria analysis on the process flexibility; (ii) the examination of different
flexibility configurations to determine the most suitable configuration in a multicriteria perspective; (iii) the
investigation of the ranking of alternatives by performing a sensitivity analysis by varying different parameters
of the model; and (iv) the performing of an extensive computational study to determine the advantages of
different flexibility configurations.
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The remainder of this paper is organized as follows. Section 2 presents a brief literature review on the process
flexibility in lot sizing problems considering a deterministic context. Moreover, it explains some aspects of
multicriteria decision analysis and the TOPSIS method. Section 3 provides a formal description of the steps
to obtain the ranking in the TOPSIS method. Section 4 gives the mathematical formulations for the lot sizing
problem containing a set of constraints that allows setting the different flexibility configurations. Section 5
presents the proposed multicriteria analysis for the process flexibility through computational experiments for
different scenarios and flexibility configurations. The last section summarizes our findings and some clues for
future research.

2. Literature review

2.1. Capacited lot-sizing with multiple resources

There has been a broad effort to expand decision methods and procedures for the lot sizing problems in
the literature. Recently, particular attention has been given to the decision aspects involving the lot sizing
with multiple resources and process flexibility. The class of relevant problems with multiple resources for this
investigation is the lot sizing problems with multiple machines or plants.

Several studies on the lot sizing problem with multiple machines considering total flexibility are found in
the literature. Carreno [7] proposed a heuristic for a lot sizing problem with identical machines, setup times,
and constant demand. Jans [24] developed a reformulation based on the shortest path for the same problem
and proposed new symmetry-breaking constraints. Considering the problem with unrelated parallel resources,
Toledo and Armentano [47] relaxed the capacity constraints and proposed a Lagrangian heuristic to solve the
problem. Mateus et al. [37] proposed an iterative process to generate production plans considering scheduling
constraints. Fiorotto and de Araujo [16] applied a Lagrangian heuristic based on the relaxation of the demand
constraints in order to find good feasible solutions. Fiorotto et al. [17] proposed hybrid methods using Lagrangian
relaxation and Dantzig-Wolfe decomposition and found better lower and upper bounds compared to Toledo and
Armentano [47] and Fiorotto and de Araujo [16]. Recently, Vincent et al. [49] developed a meta-heuristic based
on the relaxation of the capacity constraints to explore the set of solutions and obtain more feasible solutions.

Other relevant studies examine multiple plants with total flexibility. Generally, each plant has its demand,
and there is a possibility of transferring production among the plants, with a due cost [45]. Bhatnagar et al.
[6] presented one of the first studies on a production environment composed of multiple plants. The objective
was to coordinate the production plans in all plants to improve the company’s performance. Matta and Miller
[15] integrated the lot sizing decisions with the transport of the items among the plants of an industry so that
some plants produce intermediate products and others the final products. Guimaraes et al. [21] presented a
formulation for multiple plants in the beverage industry. The authors studied the planning operations that
define the scheduling and size of the production, in which the objective is to satisfy the demand by minimizing
production, overtime, and transfer costs. Carvalho and Nascimento [8] addressed this problem considering that
all plants produce the same items (each one with a single machine) and that the demands must be satisfied
without backlog. Regarding the problem with multiple plants and setup carryover, Carvalho and Nascimento [9]
applied a meta-heuristic approach to finding feasible solutions. The authors pointed out that the set of feasible
solutions becomes significantly bigger considering the possibility of setup carryover.

Jordan and Graves [26] was the first paper considering the efficiency of a limited amount of flexibility for a
manufacturing system with stochastic demand for the automotive industry. After the studies presented by Jordan
and Graves [26], several works were proposed to analyze the value of resource flexibility in the context of
stochastic demand. Koste and Malhotra [30] developed theoretical principles to build measures to quantify the
concept of flexibility. Graves and Tomlin [19] extended the work of Jordan and Graves [26] and proposed new
strategies to implement the notions of flexibility. Bertrand [5] presented a literature review on the concepts of
flexibility and discussed three characteristics of flexibility for the supply chain. Muriel et al. [38] showed that can
be found almost all the benefits of an increase in sales with the chain principle. Moreover, the inventory level
is significantly reduced as more flexibility is added to the system. Mak and Shen [35] pointed out that the long
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Table 1. Literature classification.

Data Problem Method solution
KPI
analysis

Observations

Jordan and
Graves [26]

Stochastic Production planning Simulation tool No Single-criterion

Graves and
Tomlin [19]

Stochastic Production planning Simulation tool Yes Single-criterion

Gurumurthi
and Benjaafar
[22]

Stochastic Queuing Simulation tool No Single-criterion

Jans and
Degraeve [25]

Stochastic
Parallel lot-sizing Dynamic programming

No
Single-criterion

and scheduling Lagrange relaxation applied problem
Muriel et al.
[38]

Stochastic Production planning Simulation tool Yes Single-criterion

Mak and
Shen [35]

Stochastic Production planning
Lagrange relaxation

No Single-criterion
simulation tool

Andradóttir
et al. [3]

Stochastic Queuing Analytic insights No Single-criterion

Xiao et al.
[52]

Stochastic
Parallel lot-sizing Metaheuristic

No
Single-criterion

and scheduling Lagrange relaxation applied problem
Wu et al. [51] Deterministic Parallel lot-sizing Dantzig–Wolfe decompositions No Single-criterion
Fiorotto et al.
[18]

Deterministic Parallel lot-sizing Solver Yes Single-criterion

chain configuration does not present good results for non-homogeneous scenarios. Gurumurthi and Benjaafar
[22] presented computational results considering a problem with queuing systems. The results showed that a
non-chained configuration performed better than the long chain in asymmetric systems. Andradóttir et al. [3]
also confirmed that although the long chain configuration is desirable in homogeneous scenarios, it does not
perform well when the data are heterogeneous.

Although the lot sizing problem with multiple machines with a limited amount of flexibility considering a
deterministic environment is a natural and more realistic extension of the standard assumption (each machine
can produce all items), there are few studies on this topic. Jans and Degraeve [25] considered in the tire
industry a problem where not all types of heaters can produce every type of tire. Xiao et al. [52] studied
the capacity lot sizing problem with parallel resources in the semiconductor industry, where not all resources
are eligible to produce all items. A proposed hybrid heuristic based on Lagrangian relaxation and simulated
annealing outperformed the numerical results obtained by the standalone Lagrangian relaxation algorithm and
the standalone simulated annealing algorithm most of the time. Wu et al. [51] proposed different mathematical
formulations for this problem and analyzed the decomposition of items and periods for these formulations.
Moreover, the authors obtained insights into which setup variables assumed value one and used this information
to develop a branching strategy.

Recently, Fiorotto et al. [18] addressed the process flexibility and the chaining principle in lot sizing problems
by analyzing the value of the resource flexibility in balanced systems (the number of items and resources is
equal). The comparison of different limited flexibility configurations concluded that the benefits of the best
long-chain and the total flexibility configurations are practically the same. Finally, they also pointed out that
the importance of flexibility value increases when the data are heterogeneous.

Table 1 presents a classification of the papers cited in this literature review that involve the study of machine
flexibility. Note that the studies considering machine flexibility applied to the lot sizing problems with a deter-
ministic context started in 2018. Furthermore, few studies have analyzed the effect of flexibility on some key
performance indicators (KPI). Finally, no paper performed a multicriteria analysis of the different flexibility
configurations. Therefore, this research adds to the literature on lot sizing problems with multiple machines and
limited flexibility by considering a multicriteria perspective.
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2.2. Brief review of the TOPSIS method

The field of multiple criteria decision analysis (MCDA) or multiple criteria decision making (MCDM) is a
full-grown segment of operations research that explicitly evaluates multiple criteria in decision making (both
in everyday life and in particular settings such as business, industrial engineering, and medicine). MCDA is
a generic term for all methods that can assist the decision-maker according to its preferences in problems
with more than one conflicting criterion. Researches in MCDA have produced many applied and theoretical
papers and books consisting of several approaches (see Mardani et al. [36], Roy [44], and the references therein).
Köksalan et al. [29] described the early history of initial conceptions for MCDA that separately tracked the
origins of decision utility theory and mathematical programming with multiple objectives.

The MCDA approaches, methods, and techniques are diverse and based on the following straightforward
essential ingredients: a finite or an infinite set of actions (alternatives, solutions), at least two criteria, and at least
one decision-maker. Given these essential elements, it regards the designing of mathematical and computational
tools for solving problems regarding the choice of preferred alternatives, the classification of alternatives in a
small number of categories, and the ranking of alternatives in a subjective judgment order [34]. These methods
can also be viewed as a way of dealing with intractable problems by splitting them into smaller parts. After
weighing some criteria and making previous judgments about the smaller parts, these are regrouped to present
a broad overview to assist the decision-maker.

Pomerol and Barba-Romero [40] stated that an aggregation method is compensatory when the increase in
the value of one alternative, relative to one criterion, can compensate for the decrease relative to another
criterion. In contrast, in the non-compensatory methods, the performance of one specific criterion does not
influence the performance of another criterion [20,23]. Some of the compensatory methods are based on referent
points that evaluate a relative distance from an “ideal” alternative. Note that the decision-maker would choose
the ideal alternative without hesitation. However, in general, this fictitious “ideal” does not figure among the
possible choices, and the decision-maker must look for an alternative that is as close as possible to the ideal
alternative [40]. Indeed, one of the most popular procedures among those based-referent points is the TOPSIS
method.

Hwang and Yoon [23] and Yoon and Hwang [53] proposed and improved the TOPSIS method to assist
in choosing the most desirable alternative with a finite number of criteria that makes full use of attribute
information and provides a ranking of alternatives. As a popular MCDA method, TOPSIS has received much
interest from researchers, and practitioners. Behzadian et al. [4] performed a state-of-the-art literature survey
to categorize and interpret the studies on TOPSIS applications and methodologies. The classification scheme
for this review contains a set of scholarly papers from 2000 to 2012 distributed into nine application areas,
which revealed successful applications for the TOPSIS method in a wide range of areas and industrial sectors
with varying terms and subjects. These studies make the TOPSIS method workable in handling practical and
theoretical problems, such as supply chain management and logistics; design, engineering, and manufacturing
systems; business and marketing management; health, safety, and environment management. And other fields
such as agriculture, education, and sports.

Zavadskas et al. [54] reviewed the developments of TOPSIS techniques from 2000 to 2015 and observed that
some key advantages of TOPSIS are its ability to deal with different types of values and address rank reversal
issues. Lima-Junior and Carpinetti [33] presented an approach that uses the performance metrics of the supply
chain operations reference (SCOR) model to evaluate the suppliers regarding cost and delivery performance. The
proposed method combined two fuzzy-TOPSIS models to indicate the need for improvements for the suppliers.
From an illustrative application based on a manufacturing environment, the authors described the advantages
of the combination between the SCOR and fuzzy-TOPSIS.

Chen [10] analyzed the effects of a series of data normalization approaches on the integrated Entropy and
TOPSIS method. It found that normalization can impact the decision result by strongly influencing the diversity
of attribute data (DAD). DAD affects the contribution of attributes to each alternative’s distance from the
positive ideal and negative ideal alternative. Lima Silva and Almeida Filho [13] proposed variants of the TOPSIS
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method for sorting problems that prevent ranking reversal. The named TOPSIS-Sort-B improved the previous
version of TOPSIS-Sort for sorting problems, including a step for determining a domain for each criterion and
a normalized interval addressed to problems with boundary profiles. A numerical application for the proposed
methods estimated the degree of economic freedom of 180 countries and assigned them to five pre-defined
ordered classes.

These reported successful applications are examples that justify the choice of the TOPSIS method as a helpful
tool to assist in the interpretation of diverse conflicting objectives of lot sizing problems in terms of the process
flexibility.

3. Formulation for TOPSIS method

TOPSIS is a ranking method whose standard approach searches for alternatives that should have the shortest
distance from the positive ideal alternative and the farthest distance from the negative ideal alternative [23].
The ideal alternative maximizes the benefit criteria and minimizes the cost criteria, whereas the negative-ideal
alternative maximizes the cost criteria and minimizes the benefit criteria [4]. To apply the TOPSIS method
each attribute value takes either monotonically increasing or monotonically decreasing utility.

Let 𝐷 = (𝑥𝑖𝑗) be the standard decision matrix, where each row 𝑖 of 𝐷 is part of the set of alternatives,
𝑖 = 1, . . . , 𝑚̄, each column 𝑗 of 𝐷 belongs to the set of criteria, 𝑗 = 1, . . . , 𝑛̄, and 𝑥𝑖𝑗 registers the rating of the
alternative 𝐴𝑖 according to criterion 𝐶𝑗 . And let 𝑤𝑗 be the individual weight for each criterion 𝐶𝑗 , 𝑗 = 1, . . . , 𝑛̄,
satisfying

∑︀𝑛̄
𝑗=1 𝑤𝑗 = 1.

The criteria are generally classified into benefit and cost, where the benefit criterion indicates that a higher
value is better while the cost criterion is valid the reverse. Since, in general, the entries of the decision matrix 𝐷
originate from different sources, creating the normalized decision matrix is necessary. This procedure attempts
to transform the various attribute dimensions into nondimensional attributes, allowing comparison across the
attributes. One approach is to take the rating of each criterion divided by the norm ℓ2 of the total rating vector
of this criterion. The approach used takes the rating of each criterion divided by the Euclidean norm (ℓ2) of the
total rating vector of this criterion (the Euclidean norm associates a real number for each vector 𝑥 ∈ 𝑅𝑛, and
can be interpreted geometrically as the length vector 𝑥).

Let 𝑅 = (𝑟𝑖𝑗) be the normalized decision matrix, where 𝑟𝑖𝑗 = 𝑥𝑖𝑗/
√︁∑︀𝑚̄

𝑖=1 𝑥2
𝑖𝑗 for each 𝑖 = 1, . . . , 𝑚̄, and

𝑗 = 1, . . . , 𝑛̄. The matrix 𝑅 represents the relative rating of the alternatives. And, let 𝑃 = (𝑝𝑖𝑗) be the weighted
normalized decision matrix, where 𝑝𝑖𝑗 = 𝑤𝑗𝑟𝑖𝑗 for each 𝑖 = 1, . . . , 𝑚̄, and 𝑗 = 1, . . . , 𝑛̄. Similarly with Hwang
and Yoon [23] and Krohling et al. [31], the TOPSIS method is described in the following steps.

Step 1. Identify the positive ideal alternative 𝐴+ (benefits) and the negative ideal alternative 𝐴− (costs) as
follows.

𝐴+ =
(︀
𝑝+
1 , . . . , 𝑝+

𝑛̄

)︀𝑇
, where 𝑝+

𝑗 =
(︂

max
𝑖=1,...,𝑚̄

{𝑝𝑖𝑗}, if 𝑗 ∈ 𝐽1

)︂
∨

(︂
min

𝑖=1,...,𝑚̄
{𝑝𝑖𝑗}, if 𝑗 ∈ 𝐽2

)︂
; (3.1)

𝐴− =
(︀
𝑝−1 , . . . , 𝑝−𝑛̄

)︀𝑇
, where 𝑝−𝑗 =

(︂
min

𝑖=1,...,𝑚̄
{𝑝𝑖𝑗}, if 𝑗 ∈ 𝐽1

)︂
∨

(︂
max

𝑖=1,...,𝑚̄
{𝑝𝑖𝑗}, if 𝑗 ∈ 𝐽2

)︂
, (3.2)

where 𝐽1 ⊆ {1, . . . , 𝑛̄} and 𝐽2 ⊆ {1, . . . , 𝑛̄} represent benefit and cost criteria, respectively, and 𝐽1 ∩ 𝐽2 = ∅.
Step 2. Calculate the separation measures from the positive ideal alternative 𝐴+ and the negative ideal alter-

native 𝐴− for each alternative 𝐴𝑖, respectively as follows.

𝑑+
𝑖 =

⎯⎸⎸⎷ 𝑛̄∑︁
𝑗=1

(︀
𝑝𝑖𝑗 − 𝑝+

𝑗

)︀2
, 𝑖 = 1, . . . , 𝑚̄; (3.3)

𝑑−𝑖 =

⎯⎸⎸⎷ 𝑛̄∑︁
𝑗=1

(︀
𝑝𝑖𝑗 − 𝑝−𝑗

)︀2
, 𝑖 = 1, . . . , 𝑚̄. (3.4)
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Step 3. Calculate the relative closeness coefficient 𝜀𝑖 of each alternative 𝐴𝑖 with respect to the positive ideal
alternative as follows.

𝜀𝑖 =
𝑑−𝑖

𝑑+
𝑖 + 𝑑−𝑖

· (3.5)

Step 4. Rank the alternatives according to the relative closeness coefficients.

Note that 𝜀𝑖 = 1 if 𝐴𝑖 = 𝐴+, and 𝜀𝑖 = 0 if 𝐴𝑖 = 𝐴−. The best alternatives are those that have higher value
𝜀𝑖, and therefore should be chosen.

4. Mathematical formulations for the lot sizing problem with process
flexibility

Fiorotto et al. [18] proposed some formulations for the lot-sizing problem with process flexibility in which
multiple resources have a limited amount of flexibility to be used. In this section, we first present a formulation
of the lot sizing problem with unrelated parallel machines considering a limited amount of flexibility where a
specific machine can produce only a small number of types of products. This formulation allows us to find the
optimal total cost given a specific flexibility configuration. Next, we present a formulation that considers the
possibility of investing in flexibility and determines the optimal flexibility configuration for a given number of
links or a limited budget.

For the first mathematical formulation of the problem, consider the following parameters and variables:

𝐼 = {1, ..., 𝑛}: set of items;
𝐽 = {1, ..., 𝑟}: set of machines;
𝑇 = {1, ...,𝑚}: set of periods;
𝐼𝑗 : set of items i that can be produced on machine j;
𝐽𝑖: set of machines j that can produce item i;
𝑑𝑖𝑡: demand of item i in period t;
𝑠𝑑𝑖1𝑚: sum of the demand for item i from period 1 until period 𝑚;
ℎ𝑐𝑖𝑡: unit inventory cost of item i in period t;
𝑏𝑐𝑖𝑡: unit backlog cost of item i in period t;
𝑠𝑐𝑖𝑗𝑡: setup cost for item i on machine j in period t;
𝑣𝑐𝑖𝑗𝑡: production cost of item i on machine j in period t;
𝑠𝑡𝑖𝑗𝑡: setup time for item i on machine j in period t;
𝑣𝑡𝑖𝑗𝑡: production time of item i on machine j in period t;
𝐶𝑎𝑝𝑗𝑡: capacity (in units of time) of machine j in period t.

The decision variables are then defined as follows:

𝑥𝑖𝑗𝑡: quantity (lot-size) of item 𝑖 to be produced on machine 𝑗 in period 𝑡;
𝑦𝑖𝑗𝑡: binary setup variable, indicating if machine 𝑗 is configured for production or not of item 𝑖 in period 𝑡;
𝑠𝑖𝑡: inventory of item i at the end of period t;
𝑏𝑖𝑡: backlog of item i at the end of period t.

The mathematical formulation of the problem is then as follows:

Min
∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐽

∑︁
𝑖∈𝐼𝑗

(𝑠𝑐𝑖𝑗𝑡𝑦𝑖𝑗𝑡 + 𝑣𝑐𝑖𝑗𝑡𝑥𝑖𝑗𝑡) +
∑︁
𝑡∈𝑇

∑︁
𝑖∈𝐼

(ℎ𝑐𝑖𝑡𝑠𝑖𝑡 + 𝑏𝑐𝑖𝑡𝑏𝑖𝑡) (4.1)

s.t. 𝑠𝑖(𝑡−1) − 𝑏𝑖(𝑡−1) +
∑︁
𝑗∈𝐽𝑖

𝑥𝑖𝑗𝑡 = 𝑑𝑖𝑡 + 𝑠𝑖𝑡 − 𝑏𝑖𝑡, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇 ; (4.2)

𝑥𝑖𝑗𝑡 ≤ min{(𝐶𝑎𝑝𝑗𝑡 − 𝑠𝑡𝑖𝑗𝑡)/𝑣𝑡𝑖𝑗𝑡, 𝑠𝑑𝑖1𝑚}𝑦𝑖𝑗𝑡, 𝑖 ∈ 𝐼𝑗 , 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 ; (4.3)
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𝑖∈𝐼𝑗

(𝑠𝑡𝑖𝑗𝑡𝑦𝑖𝑗𝑡 + 𝑣𝑡𝑖𝑗𝑡𝑥𝑖𝑗𝑡) ≤ 𝐶𝑎𝑝𝑗𝑡, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 ; (4.4)

𝑦𝑖𝑗𝑡 ∈ {0, 1}, 𝑥𝑖𝑗𝑡 ≥ 0, 𝑖 ∈ 𝐼𝑗 , 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 ; (4.5)
𝑠𝑖𝑡 ≥ 0, 𝑠𝑖0 = 𝑠𝑖𝑚 = 0, 𝑏𝑖𝑡 ≥ 0, 𝑏𝑖0 = 0, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇. (4.6)

The objective function (4.1) minimizes the total costs, which consists of production, setup, inventory, and
backlog costs. Constraints (4.2) ensure that demand is met for each period. Demand that cannot be satisfied
on time can be backlogged. The setup constraints (4.3) do not allow any production unless a setup is done.
The capacity constraints (4.4) limit the sum of the total setup and production times. Finally, constraints (4.5)
and (4.6) define the variable domains.

The first formulation finds the optimal cost from a fixed flexibility configuration. However, the next formula-
tion also gives the flexibility configuration. Therefore, it includes the chance to invest in different flexibilities by
upgrading a machine for a specific product. The structure of a flexibility configuration derives from various links
(levels of the global budget), each choice is a binary variable, and there is a global budget on the investment
decisions.

For the second mathematical formulation, consider the following additional parameters and variables:

𝑓𝑐𝑖𝑗 : flexibility investment cost for producing item i on machine j;
𝐹max: global budget (number of links) to invest in flexibility.

The additional decision variables are then defined as follows:

𝑧𝑖𝑗 : binary variable, indicating that machine j can produce item i or not.

The mathematical formulation consists of the objective function (4.1) and the constraints (4.2)–(4.6) of the
previous formulation replacing the sets 𝐼𝑗 and 𝐽𝑖 by 𝐼 and 𝐽 , respectively. In addition, we have the following
constraints:

𝑦𝑖𝑗𝑡 ≤ 𝑧𝑖𝑗 , 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑡 ∈ 𝑇 ; (4.7)∑︁
𝑗∈𝐽

∑︁
𝑖∈𝐼

𝑓𝑐𝑖𝑗𝑧𝑖𝑗 ≤ 𝐹max; (4.8)

𝑧𝑖𝑗 ∈ {0, 1}, 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽. (4.9)

Constraints (4.7) ensure that a machine can be set up to produce a specific item in a specific period only if this
machine has the flexibility to produce this item. Constraint (4.8) limits the budget (number of links) available
for investing in flexibility. Note that in this formulation, the flexibility investment is modeled as part of a budget
constraint instead of putting it in the objective function. Remark that companies can put restrictions on the
number of machine-product combinations, which is modeled as a special case of our global budget constraint.
Observe that if 𝐹max = 𝑛2, then we have the total flexibility configuration. We emphasize that we chose the
budget constraint approach instead of considering the flexibility investment as part of the objective function
because it is the way found to analyze the effect of varying the amount of flexibility and develop the multicriteria
study of the flexibility configurations.

5. Multicriteria analysis of flexibility configurations

We analyze the concept of process flexibility in a deterministic lot sizing context considering a multicriteria
perspective. The objective of the experiments presented in this section is to analyze the effect of considering
several criteria when analyzing the value of different flexibility configurations compared to the study proposed
by Fiorotto et al. [18] in which only one criterion (total cost) is used to determine the value of the flexibility
configurations. All chosen criteria are computed directly from the structure of each solution (number of setups,
backlog, etc.) presented by Fiorotto et al. [18] to make this comparison.
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5.1. Setup of the computational tests

Using the ideas proposed by Fiorotto et al. [18], we adapted a standard synthetic data set proposed by Trigeiro
et al. [48]. We used the problem sets 𝐹1−𝐹20 and 𝐺51−𝐺60. The 𝐹1−𝐹20 set contains 20 instances with 6
items and 15 periods. The 𝐺51−𝐺55 set consists of 5 instances with 12 items and 15 periods, and 𝐺56−𝐺60 set
consists of 5 instances with 24 items and 15 periods. For each of the 30 problem instances, we created identical
parallel machine problems, i.e., the capacities are the same for each machine, and for a given item, the setup
time, unit production time, and setup cost are the same on each machine. The backlog cost for each item is
equal to 300, which is 100 times the average inventory holding cost, and the setup times are equal to zero.
For 𝐹1−𝐹20, 𝐺51−𝐺55 and 𝐺56−𝐺60, the original capacity level was set at 728, 1456 and 2912, respectively.
In this paper, the capacity levels for the parallel machine case were based on preliminary tests and varied
from 40 to 140 to have a broad range of problems so that the solutions have different levels of backlog. By
changing the capacity level, each original single-machine test problem resulted in 12 different parallel machine
test problems. As a result, 360 different test problems were created. The generated instances are available on
https://www.github.com/gsamaro/trigeiro_fdata.

In order to apply the TOPSIS method, we consider eight alternatives and five criteria. More specifically,
for each instance, we ranked eight alternatives of flexibility configurations named Dedicated, Cluster, Random,
Long chain, Best chain, 𝐹max 1, 𝐹max 2, and Total flexibility (Fig. 1 illustrates these alternatives). The criteria
are the total cost, capacity utilization, total backlog, the total number of setups, and the amount of flexibility
considered on each of the eight alternatives of flexibility configurations. The criteria were chosen to take into
account different aspects of the analyzed flexibility configurations. Note that other operational criteria could
be used, for example, inventory level, percentage of demand satisfied on time, etc. However, we have limited
our choice according to the criteria most considered in practice for operational decision-making, i.e., amount
of setup, total backlog, level of flexibility, total production costs, and capacity utilization. Observe that these
criteria are the indicators used by most papers proposed in the literature in order to analyze the solution of the
production plan problems [18,38,46,47].

Observe that when solving a specific instance with the mathematical formulation (4.1)–(4.6), the general
solution given by the objective function is only the total cost of the production planning (which is the criterion
used by Fiorotto et al. [18] and only one of the five criteria that are considered in this study). However, the
other considered criteria are related to operational issues of the production planning and can be calculated
with the generated solution of the mathematical formulation. The values of the other criteria are calculated as
follows: let CU𝑖𝑗 =

(︁(︁∑︀
𝑖∈𝐼𝑗

(𝑠𝑡𝑖𝑗𝑡𝑦𝑖𝑗𝑡 + 𝑣𝑡𝑖𝑗𝑡𝑥𝑖𝑗𝑡)
)︁
/𝐶𝑎𝑝𝑗𝑡

)︁
× 100, therefore, the capacity utilization is given by

CU =
(︁∑︀

𝑗∈𝐽

∑︀
𝑡∈𝑇 CU𝑖𝑗

)︁
/|𝐽 ||𝑇 |; the total backlog is calculated by Back =

(︀∑︀
𝑖∈𝐼

∑︀
𝑡∈𝑇 𝑏𝑖𝑡

)︀
; the total number

of setups is given by NS =
(︁∑︀

𝑡∈𝑇

∑︀
𝑗∈𝐽

∑︀
𝑖∈𝐼𝑗

𝑦𝑖𝑗𝑡

)︁
; and finally, the level of flexibility directly computed by

amount of links of the considered alternative (flexibility configuration).
According to Roy [43] a set of criteria must be exhaustive, i.e., none of the attributes that discriminate the

alternatives can be forgotten. In order to analyze whether the criteria used are appropriate, we have compared
the results of the paper (considering all the five criteria) with the results of TOPSIS considering four criteria
(amount of setup, total backlog, level of flexibility, and capacity utilization) and with only two criteria (total
production costs and level of flexibility) using the well-known Kendall–Tau distance [28]. From the results,
we conclude that the five criteria, although not independent, are discriminant of the alternatives. They can
be considered together without generating distortion in the analysis to represent different possibilities of the
decision maker’s choice.

It is also important to see that, in general, the capacity utilization should be at an intermediate level because
when the capacity utilization is very low, there is a considered amount of idle fixed assets, which is not desirable
(since it represents idle money). On the other hand, when the capacity utilization is very high, there is no
time to deal with any unforeseen events (such as a machine breakdown). However, in the studied problem, it
is considered that there is not enough capacity to meet the demand on time, i.e., it is known in advance that

https://www.github.com/gsamaro/trigeiro_fdata
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Figure 1. Flexibility configurations for an example with 6 items and 6 machines. (a) Dedicated.
(b) Cluster 6 links added. (c) Long chain 6 links added. (d) 𝐹max 1 3 links added. (e) 𝐹max 2 6
links added. (f) Total 30 links added.

the solutions present some amount of backlog. Therefore, in this specific scenario, we would like to maximize
capacity utilization to reduce the number of backlogged items.

Figure 1 illustrates the flexibility configurations analyzed from the TOPSIS method in this section. The
figure refers to an instance containing six items and six machines. The Dedicated configuration is a pattern as
Figure 1a, where each machine can produce only one item (the number of links of this configuration is equal
to the number of items). The Cluster configuration appears in Figure 1b, where the pattern contains 3 clusters
of 2 machines (the number of additional links on the Dedicated configuration is equal to the number of items).
The pattern in Figure 1c is the Long chain configuration, for which excepting Machine 1 that produces Item 1
and 𝑛 = 6, each Machine 𝑖 produces Items 𝑖 and 𝑖 − 1 (the number of additional links of this configuration is
equal to the Cluster configuration in Fig. 1b). The Total flexibility configuration is as Figure 1f, where all the
flexibility links inform that each machine can produce all items. The configurations in Figures 1d and 1e do not
follow a typical pattern. Instead, they are the configurations the solver obtains at the optimal solution when
the total number of allowed links (parameter 𝐹max) is 𝑛 + 𝑛/2 and 2𝑛, respectively. The parameter 𝐹max will
lend its name to these configurations, i.e., Configuration 𝐹max 1 refers to 𝐹max = 𝑛 + 𝑛/2, and Configuration
𝐹max 2 refers to 𝐹max = 2𝑛. Here, the solver gives the optimal flexibility configurations related to the fixed total
number of links. This figure is extended in a straightforward way in the case of 12 and 24 machines.

We also consider the Random flexibility configuration in which there is no pattern, and the links are added
randomly. In the Random flexibility configuration, the number of additional links on the Dedicated configuration
is again equal to the number of items. We also observe that there are many possible Long chain configurations
by changing the sequence of the items. Therefore, the performance of the best of them is also analyzed, i.e., the
Best chain configuration.

We observe that the formulation (4.1)–(4.6) with the appropriate configuration of the links is used to analyze
the following cases: Dedicated, Cluster, Random, Long chain, Best chain, and Total flexibility. And, equations
(4.1)–(4.6) and (4.7)–(4.9) form the formulation used to analyze the case where process flexibility is a decision
variable (configurations 𝐹max 1 and 𝐹max 2). Note that in constraints (4.8) the set 𝑓𝑐𝑖𝑗 is fixed to one, and 𝐹max

is equal to the number of links that are allowed to add. It limits the total number of links that can be used, i.e.,
imposing a limit on the number of machine-product combinations that are allowed. To run the computational
tests, the weights of the criteria were considered equal for all criteria for most analyzed experiments. However,
in order to analyze different types of solutions, a section with different variations for the weights of the criteria
is considered. Finally, The tests were done on a computer with 2 Intel(R) Xeon(R) X5675 processors, 3.07 GHz
with 96 GB of RAM and the Linux operating system. Moreover, when solving the formulations, we have limited
the computational time for each instance to 3 h (10 800 s).
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5.2. Computational results

A set of the decision matrices provides the input data for the TOPSIS method. Each decision matrix 𝐷 = (𝑥𝑖𝑗)
used in the computational experiments is presented in Tables 2 and B.1–B.14. Table 2 is showed in this section
to give the details of the experiments, and the other tables appear in Appendix B. Each table gives six decision
matrices according to the considered capacity levels, i.e., 40, 60, 80, 100, 120, and 140. Table 2 illustrates the six
decision matrices for the instances with 12 items and machines for the base case experiments, and the decision
matrices for 6 and 24 items and machines are presented in Tables B.1 and B.2 of Appendix B, respectively. For
each capacity level, the table contains five columns of criteria. Each column gives the average of the relative
upper bounds (columns UB), capacity utilization (columns CU), the total backlog (columns Back), the total
number of setups (columns NS), and the total number of links allowed (columns NL) found for the instances
and flexibility configurations. Note that we set the total cost of the Dedicated configuration as the referential
value (equal to 100%) and calculate the upper bounds of the other flexibility configurations related to these
values. The symbols Min and Max indicate the cost criterion and benefit criterion in the TOPSIS method,
respectively. Moreover, the table also gives the standard deviation (S.E.) and the coefficient of variation (C.V.)
of each criterion.

We use as an example the decision matrix 𝐷 = (𝑥𝑖𝑗) for the capacity level 100 in Table 2 to illustrate how
to calculate the positive ideal alternative 𝐴+ and the negative ideal alternative 𝐴− along with the simulation
experiments. The range for the criterion UB (cost criterion) in the first column of the decision matrix is
[30.7, 100.0], then the range for the first column of the normalized decision matrix 𝑅 = (𝑟𝑖𝑗) is [0.09, 0.30],

where 𝑟𝑖1 = 𝑥𝑖1/
√︁∑︀𝑚̄

𝑖=1 𝑥2
𝑖1. Considering the same weight for the five criteria, then 𝑤1 = 0.2 and we obtain the

range [𝑝+
1 , 𝑝−1 ] = [0.018, 0.060] for the first column of the weighted normalized decision matrix 𝑃 = (𝑝𝑖𝑗). Hence,

the last range is used to select the first component of 𝐴+ and 𝐴−.
Table 2 shows that some criteria present the same value (are tied) for all flexibility configurations and the

amount of ties varies according to the capacity levels. More specifically, for low capacity levels, only one criterion
presents equal values (CU). However, for high capacity levels (equal to 140), three of the five criteria have the
same values for all flexibility configurations. It is also important to note that, as expected, in terms of the total
cost (column UB), the Total flexibility presents the best values (lowest values) for all capacity levels. And the
Total and Dedicated configurations are opposite each other in the total number of links. The overall average of
the optimality gap is 2.7% (see all information about the value of the gap in Table A.1 of Appendix A).

Table 3 presents the position obtained for each flexibility configuration applying the TOPSIS method for all
instances and capacity levels. Besides to presenting the numerical position, a color system was used to facilitate
the visualization of the positions obtained for each flexibility configuration, i.e., it starts with dark green for the
first position and goes to dark pink for the last position. Note that for the instances with 6 items and machines
and the capacity level equal to 140, the Dedicated configuration is ranked in the first position, followed by
𝐹max 1 and 𝐹max 2 configurations.

The results show that the Total flexibility stayed in the last positions for all sizes of instances and capacity
levels. It occurs mainly due to the large number of links (𝑛2) presented in this flexibility configuration compared
to the total number of links given by the other flexibility configuration, which is smaller than 2𝑛. We observe
that it is in line with practice applications since it can be costly and/or usually impossible to install machines
with Total flexibility. Moreover, although the Total flexibility obtained the best upper bounds for all instances,
other flexibility configurations such as the Long chain, 𝐹max 1 and 𝐹max 2 presented values in the decision matrix
very similar to the Total flexibility for this criterion. Therefore, the upper bound is not a criterion that highlights
the Total flexibility. Considering the Cluster and Random flexibility, we see that they ranked between the 5th
and 7th positions for almost all instances with 6 and 12 items and machines. We observe that the instances
with 24 items and machines are challenging to solve. The results presented large optimality gaps (see Tab. A.1)
for most flexibility configurations. These gaps have a significant influence on the conclusions for these instances.
It is also interesting to note that the Dedicated configuration ranked first for very low (40 and 60) and high
capacity levels (140). Note that for very low and high capacity levels, the benefits of investing in flexibility are
almost 0 (the upper bounds presented by all flexibility configurations are close to 100%). Finally, Table 3 shows
that 𝐹max 1 ranked in the first positions for almost all sizes of instances and capacity levels.
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Table 2. Decision matrix for the instances with 12 items and machines for different configu-
rations for the base case experiments.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 73 349 180.0 12 100 100 44 851 180.0 12 100 100 17 526 180.0 12
Cluster 99.7 100 73 214 180.9 24 99.2 100 44 535 190.8 24 95.0 100 16 668 190.3 24
Random 99.7 100 73 219 181.1 24 99.0 100 44 462 194.1 24 92.1 100 16 182 198.1 24
Long 99.7 100 73 209 181.2 24 98.9 100 44 431 194.3 24 91.0 100 16 001 201.4 24
Best 99.6 100 73 212 180.4 24 98.8 100 44 402 188.4 24 90.8 100 15 965 197.6 24
𝐹max 1 99.6 100 73 222 181.4 18 98.8 100 44 409 186.6 18 92.0 100 16 169 189.6 18
𝐹max 2 99.6 100 73 227 180.4 24 98.8 100 44 407 188.2 24 90.9 100 15 975 199.4 24
Total 99.6 100 73 195 200.4 144 98.8 100 44 395 203.0 144 90.7 100 15 964 201.2 144
S.E. 0.1 0 48.7 7.0 43.6 0.4 0 154.3 6.7 43.6 3.2 0 546.3 7.5 43.6
C.V. (%) 0.1 0 0.1 3.8 118.5 0.4 0 0.3 3.5 118.5 3.5 0 3.4 3.8 118.5

100 120 140
Dedicated 100 94.1 980 176.4 12 100 78.9 5 161.0 12 100 67.6 0 144.8 12
Cluster 47.4 94.5 255 184.1 24 99.1 78.9 1 161.3 24 100 67.6 0 144.6 24
Random 33.3 94.7 31 184.9 24 98.9 78.9 0 161.0 24 100 67.6 0 144.7 24
Long 31.0 94.7 0 184.5 24 98.9 78.9 0 160.9 24 100 67.6 0 144.7 24
Best 31.0 94.7 0 184.4 24 98.8 78.9 0 160.8 24 100 67.6 0 144.6 24
𝐹max 1 33.0 94.7 25 181.4 18 98.8 78.9 0 160.8 18 100 67.6 0 144.8 18
𝐹max 2 31.3 94.7 0 185.0 24 98.9 78.9 0 160.8 24 100 67.6 0 144.6 24
Total 30.7 94.7 0 184.0 144 98.8 78.9 0 160.8 144 100 67.6 0 144.6 144
S.E. 24.0 0.2 342.0 2.9 43.6 0.4 0 1.8 0.2 43.6 0 0 0 0.1 43.6
C.V. (%) 56.9 0 211.9 1.6 118.5 0.4 0 233.7 0.1 118.5 0 0 – 0.1 118.5

Table 3. Position obtained for the flexibility configurations using TOPSIS method.

Dedicated Cluster Random Long Best 𝐹max 1 𝐹max 2 Total

6

140 1 7 6 5 4 2 3 8
120 8 6 5 2 4 1 3 7
100 8 6 5 4 3 1 2 7
80 1 7 5 6 4 2 3 8
60 1 5 6 7 3 2 4 8
40 1 4 6 5 3 2 7 8

12

140 1 5 7 6 4 2 3 8
120 8 6 5 4 2 1 3 7
100 8 6 5 3 2 1 4 7
80 2 3 5 7 4 1 6 8
60 1 5 6 7 4 2 3 8
40 1 5 6 7 3 2 4 8

24

140 1 4 3 2 6 5 8 7
120 1 4 2 3 8 5 6 7
100 8 5 3 1 2 4 6 7
80 3 2 4 5 6 1 7 8
60 1 5 6 7 3 2 4 8
40 1 4 5 6 3 2 7 8

1st–2nd 13 2 3 5 9 15 7 0
7th–8th 5 6 7 8 3 0 7 18
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Table 3 also summarizes the frequency that a flexibility configuration appears in the top positions (1st or
2nd position) and bottom positions (7th or 8th position). 𝐹max 1 is in the top positions for most instances and
is the only one that does not appear in the last positions. On the other hand, Total flexibility appears in the
bottom positions for all experiments. Moreover, Dedicated configuration is the second that appears most in the
top positions. Note also that the frequency of the Long chain configuration in the bottom positions is higher
than the Best chain configuration, but they have the same frequency in the top positions.

Finally, these results show some significant differences compared to the conclusions presented by Fiorotto et al.
[18] that considered only the total cost as a criterion. More specifically, Fiorotto et al. [18] showed that the Total
flexibility and Long chain configurations are very similar and outperform the other flexibility configurations.
However, our multicriteria study shows that the Total flexibility configuration frequently ranked in the bottom
positions, and the Long chain configuration regularly ranked in intermediate positions.

5.3. Sensitivity analysis for the process flexibility

It is well known from the literature on lot sizing problems that the process flexibility performs better for
homogeneous cases. This section analyzes different cases with heterogeneity data to verify the behavior of
the process flexibility in a deterministic context considering a multicriteria approach. More specifically, we
analyze the backlog cost and demand heterogeneity separately using the ideas proposed by Fiorotto et al. [18].
Additionally, we analyze the case where setup times are present. Finally, we also address the case considering
all these three factors together.

5.3.1. Backlog cost heterogeneity

In order to create a case with backlog heterogeneity, the same data sets considered in the previous section are
used, and the backlog cost for each item is 100 times the inventory holding cost. In all instances, each item has
a different inventory holding cost, taken from a discrete uniform distribution between 1 and 5. As such, items
will have different backlog costs in the adapted instances. This allows us to check the influence of the level of
the backlog cost.

In Table 4 we present the position obtained for each flexibility configuration applying the TOPSIS method for
all instances and capacity levels considering the backlog cost heterogeneity. The tables with the decision matrices
considering the backlog cost heterogeneity used to build Table 4 are presented in Appendix B (Tabs. B.3–B.5).
The global analysis shows that the Total flexibility is ranked again in the last positions for all sizes of instances
and capacity levels. However, different from the results with backlog homogeneity, the Dedicated configuration
ranked in the last positions for many sizes of instances and capacity levels. It occurs in this scenario because
there are items with backlog costs more expensive than others (what is common in practice), and the Dedicated
configuration does not allow readjustment capacity among the machines (each machine produces only one item).
It is interesting to observe that, just like in the backlog homogeneity, the configuration 𝐹max 1 ranked first and
second for 15 from 18 sizes of instances and capacity levels (see Tabs. 3 and 4). Considering the configurations
Long chain, Best chain, and 𝐹max 2, we see a small improvement compared to the previous scenario, specially
for the instances with medium and high capacity levels, due to the better performance of these alternatives
considering the upper bound criterion. On the other hand, the Cluster configuration performed worse. It makes
sense that since the Long and Best chain configurations are well-connected, they perform better in heterogeneous
scenarios, while the Dedicated and Cluster configurations should perform worse.

In Table 4 we also present the results summarized by the top and bottom positions considering the backlog
cost heterogeneity. While the flexibility configuration 𝐹max 1 is in the top positions for most instances and does
not appear in the bottom positions, the Total flexibility is in the bottom positions for all sizes of instances and
levels of flexibility. Moreover, different from Table 3, the Dedicated configuration ranked seventh or eighth for
12 from 18 sizes of instances and levels of capacity. Finally, note that the Long and Best chain configurations
are in the top positions for some instances.
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Table 4. Position obtained for the flexibility configurations using TOPSIS method with backlog
heterogeneity.

Dedicated Cluster Random Long Best 𝐹max 1 𝐹max 2 Total

6

140 1 7 6 5 4 2 3 8
120 8 6 5 4 3 1 2 7
100 8 6 5 4 3 1 2 7
80 7 6 5 4 2 1 3 8
60 2 7 6 5 4 1 3 8
40 2 6 5 4 3 1 7 8

12

140 1 6 5 4 3 2 7 8
120 8 6 5 4 3 1 2 7
100 8 6 5 3 2 1 4 7
80 7 6 4 2 5 1 3 8
60 7 6 5 4 2 1 3 8
40 7 5 6 4 2 1 3 8

24

140 1 4 3 2 7 5 6 8
120 1 5 4 3 8 2 6 7
100 8 5 2 1 3 6 4 7
80 7 6 4 1 3 5 2 8
60 7 6 5 4 2 1 3 8
40 7 6 5 4 1 2 3 8

1st–2nd 6 0 1 4 6 15 4 0
7th–8th 12 2 0 0 2 0 2 18

5.3.2. Setup times heterogeneity

This section considers the setup times, which have a uniform distribution between 10 and 50. Note that the
backlog costs for all items are fixed to 300 as in the base setting. Table 5 shows the position obtained for each
flexibility configuration applying the TOPSIS method for all instances and capacity levels considering setup
times. The tables with the decision matrices considering setup times used to build the Table 5 are presented
in Appendix B (Tabs. B.6–B.8). A global analysis of the results (Tab. 5) indicates that the configuration
𝐹max 1 performed very well as in the previous scenarios. However, although the Dedicated configuration ranked
first for the instances with 6 items and machines, and medium and high capacity levels, it ranked in the last
positions for all other sizes of instances and capacity levels. Moreover, the configuration 𝐹max 2 presents a small
ascent in the ranking compared to the base case and the backlog heterogeneity scenarios (note that in the base
case, considering 24 items, 𝐹max 2 ranked in the last positions due to the high optimality gaps).

Table 5 also provides information on the other flexibility configurations. Comparing the performance of the
Cluster and Random configurations, we see that the Random ranked best for all sizes of instances and capacity
levels. Moreover, the long chain ranked first for some instances with 24 items and machines (instances in which
the optimality gap found for configurations 𝐹max 1 is high), and it does not rank in the last positions for any
instance. Comparing the Long and Best chain configurations, we see that, in general, the Long chain appears in
intermediate positions while the Best chain is at the top of the ranking, which is expected since the Best chain
configuration is the best long chain in terms of the total cost. Finally, the Total flexibility ranked in the last
positions as in the previous scenarios.

Table 5 also summarizes the results for the top and bottom positions. Compared to the base case in Table 3,
we observe some differences concerning the ranking of some flexibility configurations. Considering setup times,
the Dedicated and Cluster configurations ranked considerably more times in the bottom positions than the
base case. Moreover, the number of times that the Random and 𝐹max 2 appear in the top positions increases
significantly. Moreover, the Dedicated configuration ranked in the bottom positions for 11 from 18 sizes of
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Table 5. Position obtained for the flexibility configurations using TOPSIS method with setup
times heterogeneity.

Dedicated Cluster Random Long Best 𝐹max 1 𝐹max 2 Total

6

140 8 6 5 4 3 1 2 7
120 7 6 5 4 2 1 3 8
100 1 7 6 5 4 2 3 8
80 1 7 6 5 4 2 3 8
60 1 7 5 6 4 2 3 8
40 1 5 3 4 6 2 7 8

12

140 8 6 5 4 3 1 2 7
120 7 6 5 2 3 1 4 8
100 4 7 6 5 2 1 3 8
80 6 7 5 4 3 1 2 8
60 7 6 5 4 3 1 2 8
40 5 3 2 4 7 1 6 8

24

140 8 6 3 1 2 5 4 7
120 7 5 2 1 3 6 4 8
100 7 6 1 4 3 2 5 8
80 7 6 5 4 2 1 3 8
60 7 6 5 4 3 1 2 8
40 7 2 3 1 6 4 5 8

1st–2nd 4 1 3 4 4 15 5 0
7th–8th 11 5 0 0 1 0 1 18

instances and capacity levels (this configuration ranked in the first position for 12 sizes of instances in the base
case (Tab. 3)).

5.3.3. Demand heterogeneity

In order to create a demand heterogeneity case, the demand distribution of the items has been changed. In
the base setting, each item had the same average demand. In this new case, the demand of the first half of the
items is increased by 50%, and the other half is decreased by 50%. Note that the backlog costs for all items are
fixed to 300 as in the base setting and there is no setup time in this scenario.

Table 6 presents the position obtained for each flexibility configuration applying the TOPSIS method for all
instances and capacity levels considering demand heterogeneity. The tables with the decision matrices consid-
ering demand heterogeneity used to build the Table 6 are presented in Appendix B (Tabs. B.9–B.11).

The results show that the Total flexibility remains in the last positions as in the previous scenarios. Moreover,
although the Cluster configuration ranked between 5th and 7th positions as in the base setting, the Random
configuration ranked between 3rd and 5th positions. Considering the Dedicated configuration, it still ranked
first for low capacity levels. However, different from the base setting, the Dedicated configuration ranked in
the last positions for medium and high capacity levels. This occurs in this scenario because the Dedicated
configuration presents substantial backlog levels for these capacity levels because of the very high demand of
the first half of the items. It is also interesting to see that the Best chain performed much better than the Long
chain configuration for this scenario. The reason is that the Best long chain can always combine one item with
high and one with low demand distribution on one machine, and it does not always happen for a fixed long
chain. Finally, Table 6 shows that 𝐹max 1 remain ranked in the first positions for almost all size of instances and
capacity levels.

Table 6 also presents the results summarized by the top and bottom positions considering demand hetero-
geneity. We observe that, different from the base setting, the Cluster and Random configurations do not rank
in the top positions for any instance. Moreover, the Cluster configuration ranked in the bottom positions more
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Table 6. Position obtained for the flexibility configurations using TOPSIS method with
demand heterogeneity.

Dedicated Cluster Random Long Best 𝐹max 1 𝐹max 2 Total

6

140 8 6 5 4 3 1 2 7
120 8 6 5 4 3 1 2 7
100 8 6 5 4 2 1 3 7
80 7 6 5 4 2 1 3 8
60 2 7 5 6 3 1 4 8
40 1 7 6 5 3 2 4 8

12

140 8 6 5 3 4 1 2 7
120 8 6 5 4 2 1 3 7
100 8 6 5 4 2 1 3 7
80 7 6 5 4 2 1 3 8
60 7 6 5 4 3 1 2 8
40 1 7 6 5 3 2 4 8

24

140 8 6 3 1 2 4 5 7
120 8 6 4 1 2 5 3 7
100 7 6 3 2 5 1 4 8
80 1 5 6 7 3 2 4 8
60 1 7 5 4 3 2 6 8
40 1 5 4 6 3 2 7 8

1st–2nd 6 0 0 3 7 16 4 0
7th–8th 12 4 0 1 0 0 1 18

times. It shows that these configurations had a bad performance for this scenario. We also see that the Best
chain is in the top positions for many instances, while the Long chain configuration presents a similar trend to
the base setting.

5.3.4. Backlog and demand heterogeneity considering setup times

In order to create a case with a very high level of heterogeneity, the three factors that have been analyzed
(backlog and demand heterogeneity and setup times) are considered together. Table 7 presents the position
obtained for each flexibility configuration. The tables with the decision matrices considering used to build
the Table 7 are presented in Appendix B (Tabs. B.12–B.14). The results show that the Total flexibility and
Dedicated configuration ranked in 8th and 7th position for most instances, respectively. It is interesting to
see that the configuration 𝐹max 2, different from the other scenarios, ranked better than the Long and Best
chain configuration for most instances. Finally, the configuration 𝐹max 1 remains in the first positions for most
instances.

Table 7 also summarizes the results for the top and bottom positions, considering the backlog and demand
heterogeneity with setup times. We see that while the flexibility configuration 𝐹max 1 is in the top positions for
most instances, followed by the configuration 𝐹max 2, the Total flexibility and Dedicated configurations have the
bottom positions for almost all instances. Therefore, the flexibility configurations with a very limited amount
of links (𝐹max 1 and 𝐹max 2) are the most efficient for the most heterogeneity scenarios. It is also interesting
to observe that the well-known chain configurations present an intermediate performance from a multicriteria
point of view.

Concerning managerial insights, the decisions about process flexibility can be related to different planning
decision areas. It can be first considered strategic decisions, in which it is necessary to define which plants can
produce each product. Since it involves high investments, the decision maker is usually the company steering
committee. On the other hand, the process flexibility can also be considered a tactical decision, for example, the
decision to purchase a set of machines for a specific production line. In this case, the decision makers are usually
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Table 7. Position obtained for the flexibility configurations using TOPSIS method with backlog
and demand heterogeneity considering setup times.

Dedicated Cluster Random Long Best 𝐹max 1 𝐹max 2 Total

6

140 8 6 5 4 3 1 2 7
120 8 6 5 4 2 1 3 7
100 7 6 4 5 3 1 2 8
80 7 6 5 4 3 1 2 8
60 2 7 6 5 4 1 3 8
40 1 5 3 4 7 2 6 8

12

140 8 6 5 4 2 1 3 7
120 8 6 5 4 2 1 3 7
100 7 6 5 4 3 1 2 8
80 7 6 5 4 3 1 2 8
60 7 6 5 4 3 1 2 8
40 7 5 1 4 6 2 3 8

24

140 7 6 3 1 2 5 4 8
120 7 6 5 3 2 4 1 8
100 7 6 5 4 3 1 2 8
80 7 6 5 4 3 1 2 8
60 7 6 5 4 3 1 2 8
40 7 1 3 2 6 4 5 8

1st–2nd 2 1 1 2 5 15 10 0
7th–8th 16 1 0 0 1 0 0 18

the industrial direction and/or the production supervisor. Regardless of the decision maker, the methodology
remains the same. First, it is necessary to understand the alternatives, i.e., the different possible flexibility
configurations. Next, it is needed to define/choose and prioritize which criteria will be taken into account.
The considered criteria are related to different aspects of production planning. In practice, the decision maker
must evaluate the different possibilities/consequences for the manufacturing system when prioritizing one or
more criteria according to the company’s reality. More specifically, for example, prioritizing production costs
affects the criterion related to the amount of flexibility, which significantly impacts the investments needed to
deploy the production plant. Another example is when large production batches are necessary. In this situation,
priority should be given to minimizing the setup (another operational criterion), often leading to production
planning with very high inventory levels. Finally, maximizing capacity utilization impacts the level of service
the industry offers and is usually disadvantaged in dealing with unforeseen events (such as a machine breakdown
or unexpected demands).

5.4. Sensitivity analysis for the weights of the criteria

The previous sections analyzed the ranking position of each flexibility configuration, considering an equal
weight for each criterion. In order to make a more consistent analysis, this section studies the behavior of the
process flexibility for the lot sizing problem considering a multicriteria approach by varying the weight of the
criteria for the homogeneous case and the instances of 6, 12, and 24 products. More specifically, each weight
obtains a value from a uniform distribution 𝑈(0, 1). The size of the weight vector normalizes the weights.
After weighting each criterion, the TOPSIS method ranks the studied flexibility configurations (alternatives).
Moreover, in order to have a wide range of results, we have generated 50 000 experiments.

Figure 2 shows the proportion that each flexibility configuration ranked in a specific position. Note that
the configuration 𝐹max 1 ranked 50% in the first position. Moreover, 𝐹max 1 has the highest proportion in top
positions. It means that even varying the weights, configuration 𝐹max 1 is robust and can be appropriated to
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Figure 2. Proportion that each flexibility configuration ranked in a specific position.

Figure 3. Variability of the positions for each flexibility configuration.

the decision-maker. We also observe that the Best and Long chain configurations are most ranked in the third
and fourth positions, respectively. Finally, the Total flexibility ranked around 70% in the last position, and the
Dedicated configuration is the second most appearing both in the first and last positions.

Figures 3 and 4 present a series of the box plot charts to compare the variability of the positions for each
flexibility configuration in the ranking. The bullet points of the charts are outliers in the data. Thus, Figure 3
shows that each configuration ranked at least once in each such position. Note that the Cluster, Random, and
Long chain configurations ranked mainly in the intermediate positions, while the Total flexibility ranked mostly
in the 7th or 8th positions. Moreover, although the Dedicated configuration ranked around 30% in the 1st
position (see Fig. 2), it ranked 50% in the bottom position. Furthermore, 𝐹max 1 configuration highlighted by
ranking 75% from 1st to 3rd positions.

Figure 4 aims to examine the sensibility of ranking alternatives by varying capacity levels (40, 80, and 140).
Note that the spreading of the Dedicated configuration from 1st to 8th positions in the ranking (Fig. 3) mainly
occurs because of the results for low capacity level (Fig. 4a). We also observe that it regularly ranked in the 7th
and 1st positions for medium and high capacity levels, respectively (Figs. 4b and 4c). This last observation is in
line with the literature, considering that there is no (or only a little) benefit of investing in flexibility for systems
with very high capacity levels. Moreover, Figure 4 provides two significant insights of this research. Figure 4a
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Figure 4. Variability of the positions for each flexibility configuration separated by capacity
levels. (a) Boxplot cap 40. (b) Boxplot cap 80. (c) Boxplot cap 140.

Figure 5. Performance of the flexibility configurations aggregated by scored points.

(low capacity levels) shows that the Dedicated configuration is spread between the second and seventh positions.
At the same time, 𝐹max 1 is predominantly in the first or second positions, and the Best chain configuration is
between the first and third positions. It shows that different from the insights obtained by Fiorotto et al. [18] in
which the Dedicated configuration has the same benefits compared to all flexibility configurations, for the case
with only one criterion, considering a multicriteria approach, to implement a limited flexibility configuration
has advantages even for low capacity levels. Finally, although the Total flexibility configuration is known for
having the best values for total production cost, Figure 4 shows that concerning the multicriteria approach,
the Total flexibility configuration is mostly ranked in the last position for all capacity levels and should not be
chosen.

As a final remark, we apply Borda’s method [12] as an aggregated method to verify where each flexibility
configuration stands out in the ranking of alternatives. We score each flexibility configuration according to its
position in the ranking as follows. If the flexibility configuration ranked in the first position, it scores 8 points;
in the second position, it scores 7 points; and so on, in the eighth position, it scores 1 point. Figure 5 presents
the total scored points by each flexibility configuration, in which the 𝐹max 1 and Total flexibility configurations
presented the best and worst performance, respectively. Moreover, except for the 𝐹max 1 configuration, the
Best chain and Long chain configurations score better than other configurations. Furthermore, the Dedicated
configuration outperforms only the Cluster and Total flexibility configurations.
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6. Conclusions

In this paper, the process flexibility was studied in the context of a deterministic lot sizing problem. Different
from the standard lot sizing problem with parallel machines, the studied problem considers a limited amount
of machine flexibility so that each machine can produce only certain types of products. In order to fill a gap in
the literature, a multicriteria analysis is proposed to analyze the efficiency of several flexibility configurations.
Our computational experiments showed that the Total flexibility configuration ranked in the last positions for
all proposed scenarios. Moreover, the well-known Long chain configuration had, in general, an intermediate
behavior for most instances. The configuration 𝐹max 1 (configuration with 𝑛 + 𝑛/2 links) showed that only a
small amount of flexibility obtains the best results for all scenarios analyzed. The computational experiments
also indicate that the Dedicated configuration ranked in the first positions for very high capacity levels. However,
it ranked in the last positions for medium capacity levels. Finally, different from the studies considering only
the total cost as the criterion, investing in flexibility for all capacity levels has advantages. The limitations of
this study are related to the fixed flexibility configurations and complexity of the mathematical formulation.
Although the used flexibility configurations are the most used in the literature, they are not necessarily the most
appropriate for all practical applications. Moreover, we need the optimal or very close to the optimal solutions
to calculate good values for the criteria. Then, it is complicated to analyze very large instances because of the
difficulty of the mathematical formulation.

Several interesting issues can be explored as further research, for example, to extend the study to unbal-
anced systems where the number of products and machines is not the same. It would also be interesting to
focus on developing specific heuristics to add flexibility, i.e., given a level of flexibility (links between products
and machines), the heuristic would determine a good way to distribute these links. Furthermore, it would be
interesting to analyze the differences between the formulation considered in this work, which uses a flexibility
budget as a constraint, with an approach that penalizes the amount of flexibility in the objective function of
the problem.

Another possibility that can be explored is to study the two levels of flexibility with different plants and
customers. In this case, each plant can deliver its products to only a certain number of customers. The objective
would be to analyze the value of flexibility and develop solution methods for this case. A final extension could
be to study this problem considering a multicriteria context. In such a case, there is not enough capacity to
satisfy the demand of all customers, and different criteria can be used to determine the preferred customers and
what proportion of the demands will be satisfied.
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Appendix A. Optimality gap

Table A.1. Average of optimality gap.

Dedicated Cluster Random Long Best 𝐹max 1 𝐹max 2 Total

Section 5.2 Base case
6 0 0 0 0 0.1 0.2 0.4 0

12 0 0 0.1 0.1 0.8 1.7 1 0.1
24 0 0 0.2 0.3 7.8 14.7 14 0.4

Av. 0 0 0.1 0.1 2.9 5.5 5.1 0.2

Section 5.3.1 Backlog cost
heterogeneity

6 0 0 0 0 0.1 0.2 0.5 0.1
12 0 0 0.1 0.1 1.4 4.7 1.3 0.3
24 0 0 0.2 0.3 11.1 16.1 8.5 0.6

Av. 0 0 0.1 0.1 4.2 7 3.4 0.3

Section 5.3.2 Setup times
heterogeneity

6 0 0 0.1 0.2 0.5 0 1 0.4
12 0 0 0.6 1.1 3.1 6.4 3.9 1.6
24 0 0.1 0.9 1.1 7.7 17.4 11.7 2.1

Av. 0 0 0.5 0.8 3.8 7.9 5.5 1.4

Section 5.3.3 Demand
heterogeneity

6 0 0 0 0 0.1 0.1 0.5 0.1
12 0 0 0 0 1.1 4.5 1.3 0.3
24 0 0 0.1 0.2 2.8 13.3 7.9 0.4

Av. 0 0 0 0.1 1.3 6.0 3.2 0.3
Section 5.3.4 Backlog and
demand heterogeneity
considering setup times

6 0 0 0 0 0.2 0.1 1.7 0.6
12 0 0 0 0 3.9 9.2 4.4 1.9
24 0 0 0.4 0.7 7.9 14.9 11.5 2.6

Av. 0 0 0.1 0.2 4 8.1 5.9 1.7
Av. 0 0 0.2 0.3 3.2 6.9 4.6 0.8
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Appendix B. Matrix decisions for all instances and scenarios

Table B.1. Decision matrix for the instances with 6 items and machines for different configu-
rations for the base case experiments.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 35 948 90.0 6 100 100 21 786 90.0 6 100 100 8403 90.0 6
Cluster 99.5 100 35 837 90.8 12 98.9 100 21 566 95.4 12 93.4 100 7887 94.8 12
Random 99.5 100 35 824 91.0 12 98.4 100 21 481 97.0 12 89.8 100 7599 97.2 12
Long 99.5 100 35 820 91.0 12 98.2 100 21 447 97.4 12 87.4 100 7408 99.3 12
Best 99.4 100 35 809 90.5 12 98.1 100 21 430 94.8 12 87.3 100 7405 98.3 12
𝐹max 1 99.4 100 35 813 91.1 9 98.2 100 21 441 93.6 9 88.2 100 7471 95.1 9
𝐹max 2 99.4 100 35 812 91.9 12 98.1 100 21 431 94.8 12 87.3 100 7405 97.7 12
Total 99.4 100 35 803 98.2 36 98.1 100 21 425 100.8 36 87.3 100 7405 99.4 36
S.E. 0.2 0 47.5 2.6 9.2 0.7 0 124.3 3.1 9.2 4.5 0 356.7 3.1 9.2
C.V. (%) 0.2 0 0.1 2.9 66.3 0.7 0 0.6 3.3 66.3 5.0 0 4.7 3.2 66.3

100 120 140
Dedicated 100 93.5 488 87.5 6 100 78.4 1 80.4 6 100 67.2 0 72.5 6
Cluster 54.5 93.9 146 91.6 12 99.8 78.4 0 80.5 12 100 67.2 0 72.5 12
Random 42.4 94.0 35 92.2 12 99.7 78.4 0 80.4 12 100 67.2 0 72.5 12
Long 38.1 94.1 0 91.9 12 99.7 78.4 0 80.3 12 100 67.2 0 72.5 12
Best 37.9 94.1 0 91.8 12 99.7 78.4 0 80.4 12 100 67.2 0 72.5 12
𝐹max 1 39.5 94.0 13 90.9 9 99.7 78.4 0 80.4 9 100 67.2 0 72.5 9
𝐹max 2 37.9 94.1 0 91.2 12 99.7 78.4 0 80.4 12 100 67.2 0 72.4 12
Total 37.9 94.1 0 91.9 36 99.7 78.4 0 80.4 36 100 67.2 0 72.3 36
S.E. 21.6 0.2 170.2 1.5 9.2 0.1 0 0.4 0.1 9.2 0 0 0 0.1 9.2
C.V. (%) 44.4 0.2 199.6 1.7 66.3 0.1 0 282.8 0.1 66.3 0 0 – 0.1 66.3
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Table B.2. Decision matrix for the instances with 24 items and machines for different config-
urations for the base case experiments.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 146 320 360.0 24 100 100 89 377 360.0 24 100 100 34 641 360.0 24
Cluster 99.7 100 146 030 360.8 48 99.2 100 88 761 383.3 48 94.5 100 32 737 378.4 48
Random 99.7 100 146 028 361.2 48 99.0 100 88 543 389.8 48 91.6 100 31 716 393.6 48
Long 99.7 100 146 001 361.8 48 98.9 100 88 497 390.2 48 91.0 100 31 511 395.3 48
Best 99.6 100 145 978 360.2 48 98.7 100 88 378 374.2 48 90.6 100 31 365 396.6 48
𝐹max 1 99.6 100 145 996 364.4 36 99.2 100 88 780 371.2 36 93.3 100 32 370 375.0 36
𝐹max 2 99.6 100 145 991 365.8 48 98.7 100 88 368 378.8 48 90.8 100 31 417 397.0 48
Total 99.6 100 145 947 417.2 576 98.7 100 88 353 408.2 576 90.3 100 31 279 399.0 576
S.E. 0.1 0 117.6 19.6 188.7 0.4 0 344.7 14.6 188.7 3.3 0 1140.4 14.1 188.7
C.V. (%) 0.1 0 0.1 5.3 172.3 0.4 0 0.4 3.8 172.3 3.5 0 3.5 3.6 172.3

100 120 140
Dedicated 100 92.5 2177 346.2 24 100 77.5 3 317.4 24 100 66.4 0 285 24
Cluster 50.0 92.9 635 364.4 48 99.8 77.5 0 317.6 48 100 66.4 0 284.6 48
Random 30.9 93.0 53 363.9 48 99.7 77.5 0 317.2 48 100 66.4 0 284.6 48
Long 29.0 93.0 1 361.7 48 99.7 77.5 0 317.3 48 100 66.4 0 284.6 48
Best 30.8 93.0 5 371.4 48 339.8 77.0 1609 314.6 48 114.1 66.4 37 287.0 48
𝐹max 1 48.7 92.8 570 361.2 36 195.3 77.2 468 315.8 36 107.6 66.4 14 284 36
𝐹max 2 69.3 92.5 1225 363.6 48 214.3 77.3 567 316.0 48 142.7 66.4 224 284.0 48
Total 28.7 93.0 1 360.0 576 99.7 77.5 0 317.2 576 100 66.4 0 284.4 576
S.E. 25.3 0.2 779.0 7.1 188.7 88.3 0.2 567.4 1.1 188.7 14.9 0 77.7 1.0 188.7
C.V. (%) 52.3 0.2 133.5 2.0 172.3 56.6 0.2 171.5 0.3 172.3 13.8 0 226.1 0.3 172.3

Table B.3. Decision matrix for the instances with 6 items and machines for different configu-
rations with backlog heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 35 948 90.0 6 100 100 21 786 90.0 6 100 100 8403 90.0 6
Cluster 79.0 100 36 102 90.6 12 71.8 100 21 570 121.5 12 68.6 100 7894 114.9 12
Random 78.5 100 36 010 90.6 12 61.9 100 21 805 111.0 12 49.7 100 7709 123.5 12
Long 78.5 100 35 977 90.6 12 60.5 100 21 706 111.3 12 39.0 100 7734 121.8 12
Best 73.0 100 36 021 90.6 12 55.3 100 21 770 114.2 12 38.7 100 7711 121.7 12
𝐹max 1 69.7 100 35 877 101.9 9 55.4 100 21 914 114.6 9 45.7 100 8086 115.5 9
𝐹max 2 69.7 100 35 847 103.8 12 54.9 100 21 718 117.3 12 38.6 100 7703 121.9 12
Total 69.7 100 35 839 107.1 36 54.9 100 21 711 117.2 36 38.6 100 7699 120.8 36
S.E. 10.1 0 93.1 7.3 9.2 15.5 0 98.9 9.6 9.2 21.8 0 255.8 11.1 9.2
C.V. (%) 13.1 0 0.3 7.6 66.3 24.1 0 0.5 8.5 66.3 41.6 0 3.3 9.5 66.3

100 120 140
Dedicated 100 93.5 488 87.5 6 100 78.4 1 80.4 6 100 67.2 0 72.5 6
Cluster 51.0 93.9 147 93.5 12 99.6 78.4 0 80.5 12 100 67.2 0 72.5 12
Random 42.5 94.0 36 92.9 12 99.6 78.4 0 80.4 12 100 67.2 0 72.5 12
Long 39.4 94.1 0 91.8 12 99.5 78.4 0 80.4 12 100 67.2 0 72.5 12
Best 39.2 94.1 0 91.8 12 99.5 78.4 0 80.4 12 100 67.2 0 72.5 12
𝐹max 1 40.9 94.1 21 90.9 9 99.5 78.4 0 80.4 9 100 67.2 0 72.5 9
𝐹max 2 39.2 94.1 0 91.7 12 99.5 78.4 0 80.4 12 100 67.2 0 72.5 12
Total 39.2 94.1 0 91.8 36 99.5 78.4 0 80.4 36 100 67.2 0 72.5 36
S.E. 21.0 0.2 169.7 1.8 9.2 0.2 0 0.4 0.0 9.2 0 0 0 0.0 9.2
C.V. (%) 43.0 0.2 196.2 2.0 66.3 0.2 0 282.8 0.0 66.3 0 0 – 0.0 66.3
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Table B.4. Decision matrix for the instances with 12 items and machines for different config-
urations with backlog heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 73 349 180.0 12 100 100 44 851 180.0 12 100 100 17 526 180.0 12
Cluster 78.1 100 73 761 181.2 24 71.8 100 44 541 242.9 24 70.4 100 16 680 233.8 24
Random 80.6 100 73 469 181.7 24 64.6 100 44 877 220.6 24 49.9 100 16 560 246.4 24
Long 77.9 100 73 514 181.6 24 59.9 100 44 959 222.2 24 41.4 100 16 550 251.8 24
Best 70.5 100 73 559 180.8 24 48.3 100 45 392 221.4 24 39.6 100 16 207 264.8 24
𝐹max 1 66.8 100 73 394 208.0 18 47.9 100 45 565 220.0 18 45.8 100 17 747 224.8 18
𝐹max 2 66.5 100 73 263 205.8 24 47.3 100 45 291 224.0 24 39.6 100 16 244 263.2 24
Total 66.5 100 73 259 217.4 144 47.3 100 45 153 228.8 144 39.3 100 16 168 260.2 144
S.E. 11.3 0 168.1 15.5 43.6 18.4 0 334.1 17.8 43.6 21.6 0 604.1 28.3 43.6
C.V. (%) 15.0 0 0.2 8.1 118.5 30.2 0 0.7 8.1 118.5 40.5 0 3.6 11.8 118.5

100 120 140
Dedicated 100 94.1 980 176.4 12 100 78.9 5 161.0 12 100 67.6 0 144.8 12
Cluster 46.6 94.5 256 187.3 24 99.5 78.9 1 161.2 24 100 67.6 0 144.7 24
Random 37.1 94.7 32 185.1 24 99.3 78.9 0 160.9 24 100 67.6 0 144.7 24
Long 35.4 94.7 1 184.4 24 99.3 78.9 0 160.9 24 100 67.6 0 144.6 24
Best 35.4 94.7 0 184.2 24 99.2 78.9 0 160.8 24 100 67.6 0 144.6 24
𝐹max 1 38.2 94.6 62 183.2 18 99.2 78.9 0 160.8 18 100 67.6 0 144.8 18
𝐹max 2 35.8 94.7 11 184.6 24 99.2 78.9 0 160.8 24 100 67.6 0 144.8 24
Total 35.0 94.7 1 184.2 144 99.2 78.9 0 160.8 144 100 67.6 0 145.0 144
S.E. 22.4 0.2 339.2 3.2 43.6 0.3 0 1.8 0.1 43.6 0 0 0 0.1 43.6
C.V. (%) 49.2 0 202.1 1.7 118.5 0.3 0 233.7 0.1 118.5 0 0 – 0.1 118.5

Table B.5. Decision matrix for the instances with 24 items and machines for different config-
urations with backlog heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 146 320 360.0 24 100 100 89 377 360.0 24 100 100 34 641 360.0 24
Cluster 78.6 100 146 921 361.6 48 71.1 100 88 776 482.7 48 68.6 100 32 759 467.6 48
Random 78.4 100 146 627 361.4 48 61.8 100 89 378 442.4 48 42.2 100 32 553 496.7 48
Long 78.2 100 146 561 361.7 48 59.9 100 89 406 444.3 48 38.5 100 32 581 498.1 48
Best 67.5 100 146 862 360.8 48 49.9 100 89 349 457.2 48 34.6 100 32 429 512.6 48
𝐹max 1 62.9 100 146 507 410.2 36 49.7 98.9 91 895 439.6 36 55.4 97.0 43 181 403.0 36
𝐹max 2 62.7 100 146 360 415.4 48 47.0 100 89 108 475.8 48 34.2 100 32 442 507.8 48
Total 62.7 100 146 342 431.0 576 46.6 100 88 737 493.4 576 33.3 100 31 848 516.6 576
S.E. 12.8 0 231.1 30.5 188.7 18.0 0.4 1004.1 41.3 188.7 23.4 1.1 3776.8 58.0 188.7
C.V. (%) 17.4 0 0.2 8.0 172.3 29.7 0.4 1.1 9.2 172.3 46.0 1.1 11.1 12.3 172.3

100 120 140
Dedicated 100 92.5 2177 346.2 24 100 77.5 3 317.2 24 100 66.4 0 285.0 24
Cluster 44.2 92.9 639 372.2 48 99.8 77.5 1 317.3 48 100 66.4 0 284.6 48
Random 31.3 93.0 54 365.0 48 99.7 77.5 1 317.1 48 100 66.4 0 284.6 48
Long 29.6 93.0 1 361.7 48 99.7 77.5 1 317.1 48 100 66.4 0 284.6 48
Best 32.0 93.0 16 373.4 48 171.9 77.5 509 319.8 48 131.7 66.4 239 282.4 48
𝐹max 1 49.0 92.7 765 360.2 36 103.9 77.5 4 319.2 36 104.2 66.4 15 282.0 36
𝐹max 2 38.8 92.9 270 368.0 48 103.7 77.5 5 320.4 48 116.0 66.4 108 286.6 48
Total 29.4 93.0 0 360.4 576 99.7 77.5 1 317.0 576 100 66.4 0 284.6 576
S.E. 23.6 0.2 745.1 8.6 188.7 25.2 0 179.2 1.4 188.7 12 0 86.7 1.5 188.7
C.V. (%) 53.4 0.2 152.0 2.4 172.3 22.9 0 273.0 0.4 172.3 11 0 191.6 0.5 172.3



EVALUATING PROCESS FLEXIBILITY IN LOT SIZING PROBLEMS 3211

Table B.6. Decision matrix for the instances with 6 items and machines for different configu-
rations with setup times heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 81.7 56 111 73.5 6 100 100 42 434 90.0 6 100 100 28 182 90.0 6
Cluster 94.3 94.7 52 927 85.2 12 92.1 100 39 038 90.0 12 93.6 100 26 370 90.0 12
Random 94.1 95.5 52 783 85.0 12 91.6 100 38 823 90.0 12 91.3 100 25 721 90.2 12
Long 94.4 94.3 52 993 84.8 12 91.9 100 38 983 90.0 12 91.1 100 25 641 90.1 12
Best 92.2 98.2 51 730 88.4 12 89.1 100 37 744 90.0 12 89.8 100 25 295 90.2 12
𝐹max 1 89.7 100 50 340 90.0 9 88.4 100 37 435 90.0 9 89.9 100 25 317 90.5 9
𝐹max 2 89.7 100 50 337 90.0 12 88.4 100 37 424 90.2 12 89.7 100 25 252 90.4 12
Total 89.7 100 50 336 90.0 36 88.4 100 374 27 90.3 36 89.7 100 25 249 90.4 36
S.E. 3.5 6.1 1979.1 5.5 9.2 3.9 0 1686.3 0.1 9.2 3.5 0 1005.2 0.2 9.2
C.V. (%) 3.8 6.4 3.8 6.4 66.3 4.3 0 4.4 0.1 66.3 3.8 0 3.9 0.2 66.3

100 120 140
Dedicated 100 99.9 14 371 90.0 6 100 97.3 3818 89.2 6 100 86.3 267 83.3 6
Cluster 95.0 100 13 653 90.0 12 72.9 98.8 2789 90.5 12 71.6 87.0 51 84.2 12
Random 92.0 100 13 228 90.3 12 66.8 99.6 2459 90.8 12 65.4 87.1 14 84.5 12
Long 90.4 100 13 008 90.4 12 45.9 99.9 1836 91.0 12 63.0 87.2 0 84.8 12
Best 90.0 100 12 947 90.8 12 45.3 99.9 1818 91.5 12 62.9 87.2 0 84.8 12
𝐹max 1 91.7 100 13 185 90.4 9 49.0 99.8 1950 90.7 9 63.0 87.2 0 84.7 9
𝐹max 2 90.0 100 12 943 90.7 12 45.4 99.9 1819 91.4 12 62.9 87.2 0 84.8 12
Total 90.0 100 12 942 90.7 36 45.3 99.9 1817 91.6 36 62.9 87.2 0 84.9 36
S.E. 3.5 0 500.5 0.3 9.2 19.9 0.9 717.4 0.8 9.2 13 0.3 93 0.5 9.2
C.V. (%) 3.8 0 3.8 0.3 66.3 33.8 0.9 31.4 0.9 66.3 18.7 0.4 223.7 0.6 66.3

Table B.7. Decision matrix for the instances with 12 items and machines for different config-
urations with setup times heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 68.3 110 923.0 123.0 12 100 100 84 367.0 180.0 12 100 100 55 874.0 180.0 12
Cluster 91.1 91.0 101 030.0 163.8 24 88.2 99.9 74 406.0 180.0 24 91.3 99.9 50 952.0 180.0 24
Random 91.8 89.8 101 773.0 161.7 24 88.2 99.9 74 327.0 180.0 24 88.3 99.9 49 293.0 180.3 24
Long 91.1 91.5 101 004.0 164.7 24 87.6 99.9 73 876.0 180.0 24 87.6 99.9 48 901.0 180.1 24
Best 88.3 100 97 841.0 180.0 24 83.9 100 70 671.0 180.0 24 84.5 100 47 090.0 180.4 24
𝐹max 1 82.7 99.8 91 596.0 180.0 18 83.2 100 70 081.0 180.6 18 84.5 99.9 47 073.0 180.2 18
𝐹max 2 82.7 99.9 91 598.0 180.0 24 83.1 99.9 70 040.0 181.2 24 84.2 100 46 947.0 181.2 24
Total 82.7 99.8 91 594.0 180.0 144 83.1 100 70 038.0 181.8 144 84.2 100 46 939.0 182.2 144
S.E. 6.1 10.8 6772.8 19.5 43.6 5.7 0.1 4831.2 0.7 43.6 5.5 0.1 3090.1 0.8 43.6
C.V. (%) 6.8 11.7 6.9 11.7 118.5 6.5 0.1 6.6 0.4 118.5 6.2 0.1 6.3 0.4 118.5

100 120 140
Dedicated 100 99.7 28 701 180.0 12 100 95.5 9067 176.8 12 100 86.0 881 166.2 12
Cluster 93.2 99.9 26 769 180.0 24 71.8 97.6 6635 179.7 24 56.3 86.8 214 168.0 24
Random 88.2 99.9 25 349 180.9 24 49.9 99.1 4769 182.8 24 45.3 87.2 33 169.9 24
Long 86.8 99.9 24 923 180.9 24 40.0 99.9 3962 183.9 24 42.9 87.3 3 170.2 24
Best 85.2 100 24 443 181.8 24 40.1 99.9 3969 184.6 24 42.7 87.3 1 170.2 24
𝐹max 1 87.3 100 25 006 180.6 18 46.6 99.4 4458 181.0 18 42.9 87.2 1 169.8 18
𝐹max 2 85.1 99.9 24 410 182.4 24 41.2 99.8 4051 183.8 24 42.7 87.3 0 170.4 24
Total 84.9 100 24 347 183.2 144 38.8 99.9 3842 186.8 144 42.6 87.2 0 169.8 144
S.E. 5.3 0.1 1516.1 1.1 43.6 21.7 1.6 1846.7 3.1 43.6 20.0 0.5 308 1.5 43.6
C.V. (%) 5.9 0.1 5.9 0.6 118.5 40.5 1.6 36.3 1.7 118.5 38.5 0.5 217.2 0.9 118.5
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Table B.8. Decision matrix for the instances with 24 items and machines for different config-
urations with setup times heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 55.0 227 639 198.0 24 100 100 174 795 360.0 24 100 100 117 670 360.0 24
Cluster 91.7 79.5 208 622 286.2 48 88.6 100 154 888 360.0 48 91.3 100 107 440 360.0 48
Random 92.2 78.3 209 724 282.0 48 88.1 100 153 938 360.0 48 88.0 100 103 527 360.5 48
Long 91.4 80.6 207 847 290.1 48 87.6 100 153 044 360.0 48 87.8 100 103 238 360.6 48
Best 86.7 100 197 077 360.0 48 81.9 100 143 106 360.0 48 84.7 100 99 603 361.8 48
𝐹max 1 81.2 100 184 643 360.2 36 80.7 99.9 140 997 360.0 36 86.7 98.8 101 839 359.0 36
𝐹max 2 81.2 100 184 618 360.0 48 80.6 100 140 753 361.2 48 84.8 100 99 663 361.6 48
Total 81.2 100 184 598 360.4 576 80.5 100 140 567 363.4 576 84.0 100 98 758 366.8 576
S.E. 6.8 16.3 15 628.5 58.9 188.7 6.7 0.1 11 747.2 1.2 188.7 5.2 0.4 6208.2 2.4 188.7
C.V. (%) 7.7 18.8 7.8 18.9 172.3 7.8 0.1 7.8 0.3 172.3 5.9 0.4 6.0 0.7 172.3

100 120 140
Dedicated 100 99.6 63 107 359.2 24 100 95.5 21 414 350.4 24 100 86.2 2220 332.0 24
Cluster 93.2 99.9 58 760 360.5 48 77.8 97.6 16 634 358.5 48 52.8 87.0 845 336.2 48
Random 88.7 99.9 55 909 326.2 48 51.9 99.7 11 250 364.9 48 29.6 87.4 93 339.5 48
Long 88.3 99.9 55 690 362.1 48 47.0 99.9 10 269 364.4 48 26.9 87.5 6 340.4 48
Best 87.8 99.7 55 243 362.0 48 56.6 99.6 12 199 364.8 48 30.0 87.3 74 336.8 48
𝐹max 1 93.1 99.4 58 589 359.2 36 97.5 95.9 20 194 354.8 36 48.9 87.2 445 337.4 36
𝐹max 2 88.5 99.7 55 725 361.8 48 61.1 98.6 13 349 358.0 48 37.5 87.4 212 340.4 48
Total 85.8 100 54 036 366.4 576 45.2 100 9872 370.4 576 26.6 87.5 0 339.8 576
S.E. 4.6 0.2 2907.7 12.7 188.7 22.0 1.8 4491.2 6.5 188.7 24.7 0.4 756.2 2.9 188.7
C.V. (%) 5.0 0.2 5.1 3.6 172.3 32.7 1.9 31.2 1.8 172.3 56.1 0.5 155.3 0.9 172.3

Table B.9. Decision matrix for the instances with 6 items and machines for different configu-
rations with demand heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 36 534 90.0 6 100 89.3 27 272 85.0 6 100 79.4 20 153 79.4 6
Cluster 99.1 100 36 222 96.3 12 85.5 97.2 23 320 94.3 12 56.5 94.5 11 413 92.0 12
Random 98.9 100 36 165 96.0 12 80.3 100 21 901 96.4 12 44.1 99.2 8878 98.7 12
Long 98.9 100 36 158 95.9 12 80.1 100 21 866 98.6 12 44.5 98.4 8986 97.0 12
Best 98.8 100 36 148 91.3 12 79.8 100 21 784 94.1 12 38.3 100 7748 98.5 12
𝐹max 1 98.7 100 36 138 91.4 9 79.7 100 21 777 93.2 9 38.8 100 7843 98.7 9
𝐹max 2 98.7 100 36 137 92.2 12 79.6 100 21 762 94.6 12 38.2 100 7732 99.0 12
Total 98.7 100 36 131 99.3 36 79.6 100 21 757 102.0 36 38.2 100 7732 100.0 36
S.E. 0.4 0 136.4 3.3 9.2 7.1 3.8 1930.2 4.9 9.2 21.2 7.1 4265.3 6.9 9.2
C.V. (%) 0.4 0 0.4 3.5 66.3 8.6 3.8 8.5 5.2 66.3 42.6 7.4 42.4 7.3 66.3

100 120 140
Dedicated 100 73.6 13 154 75.1 6 100 69.6 6570 69.6 6 100 65.7 1673 65.9 6
Cluster 28.0 88.7 3557 91.9 12 26.0 76.3 1577 78.0 12 28.4 67.1 234 70.7 12
Random 12.4 91.7 1528 92.1 12 2.9 78.7 4 80.7 12 18.6 67.5 0 71.1 12
Long 7.1 92.7 832 93.2 12 2.8 78.7 1 80.1 12 18.5 67.5 0 70.9 12
Best 1.5 94.4 1 94.3 12 2.8 78.7 0 79.7 12 18.5 67.5 0 70.7 12
𝐹max 1 1.7 94.4 30 95.4 9 2.8 78.7 0 79.7 9 18.5 67.5 0 70.8 9
𝐹max 2 1.5 94.4 1 94.5 12 2.8 78.7 0 79.6 12 18.5 67.5 0 70.7 12
Total 1.5 94.4 1 94.7 36 2.8 78.7 0 79.6 36 18.5 67.5 0 70.7 36
S.E. 33.9 7.1 4521.2 6.7 9.2 34.2 3.2 2309.8 3.6 9.2 29 0.6 585.4 1.7 9.2
C.V. (%) 176.5 7.9 189.3 7.3 66.3 191.3 4.2 226.7 4.6 66.3 95 0.9 245.6 2.5 66.3
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Table B.10. Decision matrix for the instances with 12 items and machines for different con-
figurations with demand heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 74 713 180.0 12 100 89.2 56 139 167.6 12 100 79.4 41 847 154.2 12
Cluster 99.5 100 74 362 194.0 24 91.1 94.3 51 137 187.8 24 73.0 89.0 30 479 174.3 24
Random 99.3 100 74 224 191.8 24 83.9 98.6 47 043 195.6 24 56.0 95.4 23 304 188.9 24
Long 99.2 100 74 190 190.0 24 82.0 99.8 45 956 196.3 24 51.3 96.9 21 332 194.3 24
Best 99.2 99.9 74 190 181.8 24 80.9 100 45 377 188.0 24 40.9 100 169 65 199.4 24
𝐹max 1 99.1 100 74 182 181.8 18 80.8 100 45 377 186.6 18 41.4 100 17 170 197.8 18
𝐹max 2 99.1 99.9 74 194 182.4 24 80.8 100 45 381 187.2 24 40.8 100 16 929 202.4 24
Total 99.1 100 74 165 197.4 144 80.8 100 45 365 206.4 144 40.7 100 16 902 203.0 144
S.E. 0.3 0 186.6 6.7 43.6 7.0 4.0 3930.1 11.1 43.6 21.2 7.4 8931.2 17.0 43.6
C.V. (%) 0.3 0 0.3 3.6 118.5 8.2 4.1 8.2 5.9 118.5 38.2 7.8 38.6 9.0 118.5

100 120 140
Dedicated 100 73.6 27 728 145.4 12 100 69.6 14 193 135.6 12 100 66.0 3316 130.6 12
Cluster 53.9 83.0 14 764 169.9 24 51.8 74.2 7190 149.5 24 38.6 67.2 1151 138.4 24
Random 25.8 89.1 6340 181.3 24 11.7 78.5 1361 160.0 24 15.1 68.0 224 141.2 24
Long 17.6 91.0 4611 184.2 24 3.3 79.3 149 161.6 24 9.2 68.1 0 141.9 24
Best 1.4 95.4 0 191.2 24 2.4 79.5 0 160.2 24 9.2 68.1 0 142.0 24
𝐹max 1 2.2 95.2 207 196.6 18 2.4 79.5 1 160.6 18 9.2 68.1 0 141.4 18
𝐹max 2 1.5 95.4 0 194.8 24 2.4 79.5 0 160.4 24 9.2 68.1 0 141.8 24
Total 1.4 95.4 0 190.0 144 2.4 79.5 0 160.6 144 9.2 68.1 0 141.6 144
S.E. 35.3 7.9 9917.7 17.0 43.6 35.8 3.7 5203.0 9.1 43.6 32.0 0.8 1172 3.9 43.6
C.V. (%) 138.4 8.8 147.9 9.3 118.5 162.3 4.7 181.8 5.9 118.5 128.1 1.1 199.9 2.8 118.5

Table B.11. Decision matrix for the instances with 24 items and machines for different con-
figurations with demand heterogeneity.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 100 193 468 360.0 24 100 100 136 176 360.0 24 100 100 79 701 359.8 24
Cluster 99.7 100 193 137 361.3 48 99.5 100 135 688 375.6 48 98.5 100 78 515 387.1 48
Random 99.7 100 193 137 361.0 48 99.4 100 135 595 372.7 48 98.1 100 78 182 391.8 48
Long 99.7 100 193 108 361.5 48 99.4 100 135 577 372.2 48 98.0 100 78 144 393.2 48
Best 99.7 100 193 070 360.0 48 99.3 100 135 471 366.2 48 97.6 100 77 873 373.8 48
𝐹max 1 99.7 99.8 193 111 360.4 36 99.3 100 135 494 363.8 36 97.9 99.9 78 042 367.6 36
𝐹max 2 99.8 99.5 193 157 360.4 48 99.3 100 135 466 373.0 48 97.6 100 77 863 375.8 48
Total 99.6 100 193 043 396.2 576 99.3 100 135 443 424.8 576 97.6 100 77 843 397.8 576
S.E. 0.1 0.2 132.3 12.6 188.7 0.2 0 241.7 20.4 188.7 0.8 0.1 619.8 13.6 188.7
C.V. (%) 0.1 0.2 0.1 3.4 172.3 0.2 0 0.2 5.4 172.3 0.8 0.1 0.8 3.6 172.3

100 120 140
Dedicated 100 92.2 31 758 343.2 24 100 77.5 7815 299.2 24 100 66.5 842 268.4 24
Cluster 88.6 92.8 28 057 363.8 48 61.6 77.5 4592 319.9 48 60.1 66.5 234 279.6 48
Random 81.0 93.0 25 575 379.1 48 27.1 77.5 1633 344.6 48 46.2 66.5 35 280.8 48
Long 79.6 93.0 25 156 376.9 48 16.4 77.5 673 358.3 48 43.5 66.5 1 280.7 48
Best 78.3 93.0 24 697 389.4 48 15.0 77.5 522 372.4 48 46.6 66.5 21 282.4 48
𝐹max 1 84.2 92.8 26 579 359.2 36 53.2 77.5 3785 322.4 36 50.5 66.5 72 283.2 36
𝐹max 2 79.6 93.0 25 119 385.4 48 26.6 77.5 1578 354.8 48 51.6 66.5 93 281.8 48
Total 77.9 93.0 24 611 379.0 576 13.8 77.5 490 350.6 576 43.4 66.5 0 277.2 576
S.E. 7.5 0.3 2433.1 15.4 188.7 30.4 0 2591.8 24.2 188.7 18.9 0 285.0 4.8 188.7
C.V. (%) 9.0 0.3 9.2 4.1 172.3 77.4 0 98.3 7.1 172.3 34.2 0 175.7 1.7 172.3



3214 G.S. AMARO ET AL.

Table B.12. Decision matrix for the instances with 6 items and machines for different config-
urations with backlog and demand heterogeneity considering setup times.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 81.4 56 439 73.3 6 100 99.9 42 893 90.0 6 100 96.1 31 032 88.7 6
Cluster 92.9 93.6 543 27 84.6 12 87.7 99.8 41 487 90.1 12 79.2 98.9 28 582 89.6 12
Random 92.5 94.0 53 985 84.8 12 85.7 100 41 076 90.1 12 72.5 100 28 017 90.2 12
Long 92.6 93.9 54 210 84.6 12 85.4 100 41 225 90.1 12 71.9 100 28 066 90.3 12
Best 90.9 97.3 53 590 87.9 12 82.8 100 40 625 90.3 12 68.3 100 27 844 90.4 12
𝐹max 1 84.0 99.1 52 370 89.3 9 74.2 100 39 877 90.3 9 60.9 100 27 876 90.6 9
𝐹max 2 84.0 99.1 52 367 89.5 12 74.1 100 39 911 90.3 12 60.6 100 27 687 90.7 12
Total 84.0 99.1 52 427 89.3 36 74.1 100 39 913 90.4 36 60.5 100 27 642 90.8 36
S.E. 5.7 5.9 1384.3 5.4 9.2 8.9 0 1036.7 0.1 9.2 13.3 1.3 1125.0 0.7 9.2
C.V. (%) 6.4 6.2 2.6 6.3 66.3 10.8 0 2.5 0.2 66.3 18.5 1.3 4.0 0.8 66.3

100 120 140
Dedicated 100 86.0 23 169 82.0 6 100 78.4 16 111 76.1 6 100 72.9 9351 70.5 6
Cluster 57.5 95.2 16 830 87.7 12 32.0 92.9 6896 86.6 12 22.0 83.2 2583 80.5 12
Random 45.1 99.8 15 011 90.8 12 19.6 96.7 4598 90.3 12 5.7 86.5 503 83.9 12
Long 45.8 99.5 15 199 90.8 12 17.5 97.3 4058 90.8 12 3.2 87.2 114 85.0 12
Best 39.4 99.8 15 209 90.8 12 10.1 99.8 2643 92.9 12 2.5 87.5 3 85.4 12
𝐹max 1 39.0 99.7 15 631 90.4 9 11.7 99.5 2963 91.3 9 2.7 87.4 32 85.1 9
𝐹max 2 37.7 99.8 15 091 91.5 12 9.7 99.8 2653 93.1 12 2.5 87.5 3 85.2 12
Total 37.6 99.9 15 089 91.7 36 9.6 99.8 2634 93.6 36 2.5 87.5 3 85.2 36
S.E. 21.2 4.9 2798.4 3.3 9.2 30.7 7.3 4599.6 5.8 9.2 33.9 5.1 3263.7 5.2 9.2
C.V. (%) 42.1 5.0 17.1 3.6 66.3 117.0 7.7 86.5 6.5 66.3 192.4 6.0 207.3 6.2 66.3

Table B.13. Decision matrix for the instances with 12 items and machines for different con-
figurations with backlog and demand heterogeneity considering setup times.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 68.3 111 915 123.0 12 100 99.1 86 504 179.6 12 100 93.2 64 582 172.2 12
Cluster 92.0 88.9 105 055 161.4 24 87.8 99.7 83 664 180.1 24 77.1 97.1 59 617 176.5 24
Random 92.0 88.9 81 957 160.5 24 86.6 99.8 81 957 180.3 24 73.4 99.1 57 168 180.0 24
Long 91.6 90.5 104 371 163.5 24 86.1 99.8 82 497 180.3 24 71.5 99.8 57 320 181.3 24
Best 89.0 98.4 101 479 177.8 24 82.1 100 82 025 180.2 24 63.4 100 58 363 181.4 24
𝐹max 1 78.9 100 97 814 180.2 18 70.0 100 78 063 180.8 18 52.7 100 58 107 181.0 18
𝐹max 2 78.9 99.9 97 794 180.0 24 69.9 100 78 082 181.2 24 52.4 100 57 915 182.2 24
Total 78.9 100 97 809 180.0 144 69.9 100 78 065 181.2 144 52.4 100 57 936 182.2 144
S.E. 7.9 10.8 8688.3 19.4 43.6 10.9 0.3 3078.3 0.6 43.6 16.4 2.4 2423.3 3.5 43.6
C.V. (%) 9.0 11.7 8.7 11.7 118.5 13.4 0.3 3.8 0.3 118.5 24.2 2.4 4.1 2.0 118.5

100 120 140
Dedicated 100 84.6 48 074 157.8 12 100 77.4 33 902 147.8 12 100 72.4 20 303 140.2 12
Cluster 62.9 91.4 39 819 168.0 24 46.8 86.3 22 468 161.1 24 38.6 79.3 11 079 153.1 24
Random 52.3 96.9 33 597 178.3 24 29.7 92.4 14 976 173.9 24 13.8 85.1 3392 165.4 24
Long 49.0 98.5 32 734 181.3 24 23.2 94.6 12 523 177.3 24 6.7 86.3 1931 167.9 24
Best 36.4 99.8 31 601 183.0 24 9.3 99.8 6448 188.2 24 2.1 88.3 8 171.2 24
𝐹max 1 32.1 99.4 33 112 181.0 18 11.2 99.0 7815 184.4 18 2.4 88.6 62 175.8 18
𝐹max 2 30.7 99.8 32 402 184.4 24 9.0 99.6 6724 189.4 24 2.2 88.7 0 176.0 24
Total 30.5 99.9 32 320 187.0 144 8.6 100 6382 195.6 144 2.1 88.5 0 172.6 144
S.E. 23.7 5.5 5715.0 9.8 43.6 31.4 8.1 9835.2 16.0 43.6 34.3 5.9 7379.0 12.5 43.6
C.V. (%) 48.1 5.7 16.1 5.5 118.5 105.7 8.7 70.7 9.0 118.5 163.3 6.9 160.5 7.6 118.5
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Table B.14. Decision matrix for the instances with 24 items and machines for different con-
figurations with backlog and demand heterogeneity considering setup times.

40 60 80
Min Max Min Min Min Min Max Min Min Min Min Max Min Min Min
UB CU Back NS NL UB CU Back NS NL UB CU Back NS NL

Dedicated 100 55.0 274 743 198.0 24 100 100 221 911 360.0 24 100 100 164 652 360.0 24
Cluster 92.9 79.5 257 402 286.2 48 86.4 100 219 812 360.0 48 78.7 100 161 906 361.4 48
Random 93.2 78.3 258 783 282.0 48 86.6 100 208 647 360.0 48 77.6 100 160 445 360.7 48
Long 92.7 80.6 256 720 290.1 48 86.1 100 208 933 360.1 48 76.9 100 160 759 360.7 48
Best 89.7 100 244 629 360.0 48 81.1 100 206 351 359.8 48 68.5 100 162 433 362.2 48
𝐹max 1 79.3 98.2 239 837 354.8 36 75.2 99.3 207 276 359.4 36 65.3 97.7 165 336 355.2 36
𝐹max 2 79.1 100 239 435 359.8 48 74.9 100 205 035 361.0 48 64.7 98.6 164 613 359.0 48
Total 79.1 100 239 213 360.4 576 74.9 100 205 912 361.2 576 63.9 100 164 104 364.0 576
S.E. 8.1 16.1 12 733.2 58.3 188.7 8.6 0.2 6561.1 0.6 188.7 12.0 0.8 1892.4 2.6 188.7
C.V. (%) 9.1 18.6 5.1 18.7 172.3 10.4 0.2 3.1 0.2 172.3 16.2 0.8 1.2 0.7 172.3

100 120 140
Dedicated 100 99.3 108 294 358.4 24 100 95.1 57 818 347.4 24 100 85.7 21 793 320.4 24
Cluster 73.7 99.8 109 736 362.9 48 70.9 97.3 56 521 360.0 48 63.8 86.8 18 377 332.0 48
Random 66.3 99.7 109 007 365.6 48 53.0 98.3 56 893 370.5 48 37.2 87.3 16 181 338.7 48
Long 65.1 99.7 109 495 364.8 48 50.6 98.5 56 748 373.5 48 33.4 87.4 15 636 339.7 48
Best 54.0 99.4 110 850 364.8 48 44.5 98.5 58 324 372.2 48 32.2 87.7 16 492 344.2 48
𝐹max 1 54.4 94.8 114 227 348.2 36 50.6 92.0 64 720 340.4 36 48.4 85.7 20 390 324.6 36
𝐹max 2 52.5 96.9 112 640 356.6 48 44.5 95.7 60 332 358.6 48 38.5 86.6 18 497 334.0 48
Total 50.7 100 110 389 376.4 576 40.0 99.9 57 225 391.4 576 26.4 88.2 15 204 362.4 576
S.E. 16.5 1.8 1972.8 8.2 188.7 19.8 2.5 2769.5 16.2 188.7 24.2 0.9 2367.1 12.9 188.7
C.V. (%) 25.5 1.9 1.8 2.3 172.3 34.9 2.6 4.7 4.4 172.3 50.9 1.0 13.3 3.8 172.3
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[37] G.R. Mateus, M.G. Ravetti, M.C. de Souza and T.M. Valeriano, Capacitated lot sizing and sequence dependent setup schedul-
ing: an iterative approach for integration.J. Scheduling 13 (2010) 245–258.

[38] A. Muriel, S. Anand and Y. Zhang, Impact of partial manufacturing flexibility on production variability. Manuf. Serv. Oper.
Manage. 8 (2006) 192–205.

[39] I. Patiniotakis, D. Apostolou, Y. Verginadis, N. Papageorgiou and G. Mentzas, Assessing flexibility in event-driven process
adaptation. Inf. Syst. 81 (2019) 201–219.

[40] J.C. Pomerol and S. Barba-Romero, Multicriterion Decision in Management: Principles and Practice. Vol. 25. Springer Science
& Business Media (2012).

[41] A.U. Rehman, S.H. Mian, U. Umer and Y.S. Usmani, Strategic outcome using fuzzy-AHP-based decision approach for sus-
tainable manufacturing. Sustainability 11 (2019) 6040.

[42] M. Rowshannahad, S. Dauzere-Peres and B. Cassini, Capacitated qualification management in semiconductor manufacturing.
Omega 54 (2015) 50–59.
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