Blind source separation using Hellinger divergence and copulas
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2999-3015

Whenever there is a mixture of signals of any type, e.g. sounds, images or any other form of source signals, Blind Source Separation (BSS) is the method utilized to separate these signals from the observations. The separation is done without any prior knowledge about the mixing process nor the source signals. In literature multiple algorithms have been deployed for this particular problem, however most of them depends on Independent Component Analysis (ICA) and its variations assuming the statistical independence of the sources. In this paper, we develop a new algorithm improving the separation quality for both independent and dependent sources. Our algorithm used copulas to accurately model the dependency structure and the Hellinger divergence as a distance measure since it can convergence faster and it is robust against noisy source signals. Many simulations were conducted for various samples of sources to illustrate the superiority of our approach compared to other methods.

DOI : 10.1051/ro/2022136
Classification : 62H05, 92C55
Keywords: Blind source separation, Hellinger divergence, copulas, dependent sources, noise-contaminated sources
@article{RO_2022__56_4_2999_0,
     author = {Ourdou, Amal and Ghazdali, Abdelghani and Metrane, Abdelmoutalib},
     editor = {Mahjoub, A. Ridha and Laghrib, A. and Metrane, A.},
     title = {Blind source separation using {Hellinger} divergence and copulas},
     journal = {RAIRO. Operations Research},
     pages = {2999--3015},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022136},
     mrnumber = {4474358},
     zbl = {07585265},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022136/}
}
TY  - JOUR
AU  - Ourdou, Amal
AU  - Ghazdali, Abdelghani
AU  - Metrane, Abdelmoutalib
ED  - Mahjoub, A. Ridha
ED  - Laghrib, A.
ED  - Metrane, A.
TI  - Blind source separation using Hellinger divergence and copulas
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2999
EP  - 3015
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022136/
DO  - 10.1051/ro/2022136
LA  - en
ID  - RO_2022__56_4_2999_0
ER  - 
%0 Journal Article
%A Ourdou, Amal
%A Ghazdali, Abdelghani
%A Metrane, Abdelmoutalib
%E Mahjoub, A. Ridha
%E Laghrib, A.
%E Metrane, A.
%T Blind source separation using Hellinger divergence and copulas
%J RAIRO. Operations Research
%D 2022
%P 2999-3015
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022136/
%R 10.1051/ro/2022136
%G en
%F RO_2022__56_4_2999_0
Ourdou, Amal; Ghazdali, Abdelghani; Metrane, Abdelmoutalib. Blind source separation using Hellinger divergence and copulas. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2999-3015. doi: 10.1051/ro/2022136

[1] M. M. Ali, N. N. Mikhail and M. S. Haq, A class of bivariate distributions including the bivariate logistic. J. Multivariate Anal. 8 (1978) 405–412. | MR | Zbl | DOI

[2] A. J. Bell and T. J. Sejnowski, An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7 (1995) 1129–1159. | DOI

[3] A. Belouchrani, K. Abed Meraim, J. F. Cardoso and E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Process. 45 (1997) 434–444. | DOI

[4] R. Beran, Minimum hellinger distance estimates for parametric models. Ann. Stat. 5 (1977) 445–463. | MR | Zbl | DOI

[5] J. F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 86 (1998) 2009–2025. | DOI

[6] J. F. Cardoso and A. Souloumiac, Blind signal beamforming for non gaussian signals. Proc. IEE 140 (1993) 362–370.

[7] M. Castella, S. Rhioui, E. Moreau and J. C. Pesquet, Quadratic higher order criteria for iterative blind separation of a mimo convolutive mixture of sources. IEEE Trans. Signal Process. 55 (2007) 218–232. | MR | Zbl | DOI

[8] D. G. Clayton, A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65 (1978) 141–151. | MR | Zbl | DOI

[9] P. Comon, Independent component analysis, a new concept? Signal Process. 36 (1994) 287–314. | Zbl | DOI

[10] P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications. Academic Press, Oxford (2010).

[11] I. Csiszár, Eine informationstheoretische ungleichung und ihre anwendung auf beweis der ergodizitaet von markoffschen ketten. Magyer. Tud. Akad. Mat. Kutat. In. Kol. 8 (1964) 85–108. | MR | Zbl

[12] I. Csiszár, Information-type measures of difference of probability distributions and indirect observation. Stud. Sci. Math. Hung. 2 (1967) 229–318. | MR | Zbl

[13] M. El Rhabi, G. Gelle, H. Fenniri and G. Delaunay, A penalized mutual information criterion for blind separation of convolutive mixtures. Signal Process. 84 (2004) 1979–1984. | Zbl | DOI

[14] M. El Rhabi, H. Fenniri, A. Keziou and E. Moreau, A robust algorithm for convolutive blind source separation in presence of noise. Signal Process. 93 (2013) 818–827. | DOI

[15] M. J. Frank, On the simultaneous associativity of F ( x , y ) and x + y - F ( x , x y ) . Aequ. Math. 19 (1979) 194–226. | MR | Zbl

[16] C. Genest, K. Ghoudi and L.-P. Rivest, A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82 (1995) 543–552. | MR | Zbl | DOI

[17] A. Ghazdali, A. Hakim, A. Laghrib, N. Mamouni and S. Raghay, A new method for the extraction of fetal ECG from the dependent abdominal signals using blind source separation and adaptive noise cancellation techniques. Theor. Biol. Med. Model. 12 (2015) 25. | DOI

[18] A. Ghazdali, M. El Rhabi, H. Fenniri, A. Hakim and A. Keziou, Blind noisy mixture separation for independent/dependent sources through a regularized criterion on copulas. Signal Process. 131 (2017) 502–513. | DOI

[19] A. Hyvärinen and E. Oja, A fast fixed-point algorithm for independent component analysis. Neural Comput. 9 (1997) 1483–1492. | DOI

[20] R. Jiménez and Y. Shao, On robustness and efficiency of minimum divergence estimators. Test 10 (2001) 241–248. | MR | Zbl | DOI

[21] H. Joe, Multivariate Models and Dependence Concepts. Chapman & Hall London, Boca Raton (2001). | MR

[22] A. Keziou, H. Fenniri, A. Ghazdali and E. Moreau, New blind source separation method of independent/dependent sources. Signal Process. 104 (2014) 319–324. | DOI

[23] B. G. Lindsay, Efficiency versus robustness: the case for minimum Hellinger distance and related methods. Ann. Stat. 22 (1994) 1081–1114. | MR | Zbl | DOI

[24] E. G. Miller and J. W. Fisher Iii, Independent components analysis by direct entropy minimization. California Univ Berkeley Dept of Electrical Engineering and Computer Sciences (2003). | DOI

[25] R. B. Nelsen, An Introduction to Copulas. Springer, New Haven (2007). | MR | Zbl

[26] M. Omelka, I. Gijbels and N. Veraverbeke, Improved kernel estimation of copulas: weak convergence and goodness-of-fit testing. Ann. Stat. 37 (2009) 3023–3058. | MR | Zbl | DOI

[27] A. Ourdou, A. Ghazdali, A. Laghrib and M. Abdelmoutalib, Blind separation of instantaneous mixtures of independent/dependent sources. Circuits Syst. Signal Process. 40 (2021) 1–24. | Zbl | DOI

[28] D. T. Pham, Blind separation of instantaneous mixture of sources based on order statistics. IEEE Trans. Signal Process. 2 (2000) 363–375. | Zbl | DOI

[29] D. T. Pham, Mutual information approach to blind separation of stationary sources. IEEE Trans. Inf. Theory 48 (2002) 1935–1946. | MR | Zbl | DOI

[30] G. Schwarz, Estimating the dimension of a model. Ann. Stat. 6 (1978) 461–464. | MR | Zbl | DOI

[31] B. W. Silverman, Density Estimation for Statistics and Data Analysis. CRC Press, New Haven (1986). | MR | Zbl

[32] M. Sklar, Fonctions de répartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959) 229–231. | MR | Zbl

[33] H. Tsukahara, Semiparametric estimation in copula models. Can. J. Stat. 33 (2005) 357–375. | MR | Zbl | DOI

Cité par Sources :