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BLIND SOURCE SEPARATION USING HELLINGER DIVERGENCE AND
COPULAS

Amal Ourdou*, Abdelghani Ghazdali and Abdelmoutalib Metrane

Abstract. Whenever there is a mixture of signals of any type, e.g. sounds, images or any other form
of source signals, Blind Source Separation (BSS) is the method utilized to separate these signals from
the observations. The separation is done without any prior knowledge about the mixing process nor
the source signals. In literature multiple algorithms have been deployed for this particular problem,
however most of them depends on Independent Component Analysis (ICA) and its variations assuming
the statistical independence of the sources. In this paper, we develop a new algorithm improving
the separation quality for both independent and dependent sources. Our algorithm used copulas to
accurately model the dependency structure and the Hellinger divergence as a distance measure since it
can convergence faster and it is robust against noisy source signals. Many simulations were conducted
for various samples of sources to illustrate the superiority of our approach compared to other methods.
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1. Introduction

Blind Source Separation is the technique used to extract sources, from observations of their mixtures without
the knowledge of the original signals or the mixing process. Signal processing and Machine learning communities
have widely explored the challenges in BSS during the last three decades. It was first used for the cocktail party
problem, where the aim was to separate the sound signals of each person’s speech. Then exploited in other
scientific fields such as signal processing, image processing, medical signal processing, artificial neural networks,
statistics, and information theory, speech recognition systems, telecommunications.

BSS is an ill posed problem, therefore, in literature, various assumptions on the sources has been made to
enable the separation of the observed mixtures. For the linear and static mixing environment, Independent
Component Analysis (ICA) [9] is used. It considers the sources to be mutually independent and non-Gaussian.
Under these assumptions, the source signals can be estimated by optimizing a cost function. Numerous variations
of ICA were introduced to literature citing for examples, maximizing likelihood [5], minimizing the mutual
information [13,29], minimizing the criteria of 𝜑-divergences [14,18], the second or higher order statistics [7,28],
etc. A good overview on the problem can be found in [10].
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In [17,18,22] a new BSS algorithm was proposed to overcome the drawbacks of ICA techniques. This algorithm
uses Copula to accurately model the dependency structure between the source components, hence omitting the
mutual independence assumption. In this paper we make use of this copula and focus on the Hellinger divergence
between the copula densities as our cost function to minimize, due to its efficiency and robustness in improving
the results even for noisy data [4,23], moreover one of its main characteristics is its rapid convergence compared
to any other divergences.

This paper is organized as follows, section “Blind Source Separation” gives an overview on the BSS principle
and model, then a review on copula in section “What are copulas?”. After that in section “Hellinger divergence
and copula” we present our cost function as the Hellinger divergence between the copula densities. We then
introduce our new approach detailing separately the independent and the dependent cases, in section “The
proposed approach”. Then the comparison between our approach and various other methods is made, illustrating
that the superiority of our approach in section “Simulation results”. Finally, we conclude the paper and give
some further research directions.

2. Blind Source Separation

The linear BSS problem states that the 𝑛 unknown source components 𝑠(𝑡) ∈ R𝑛, are blindly mixed together
through a matrix 𝑀 containing the mixing coefficients. In vector notations

𝑥(𝑡) := 𝑀𝑠(𝑡) + 𝑏(𝑡), 𝑡 ∈ R, (2.1)

where 𝑥(𝑡) ∈ R𝑝 are the observations, and 𝑏(𝑡) is an additive noise. In our work we consider the determine case
where the number of sources is the same as the number of the observations e.g. 𝑝 = 𝑛 and that the additive
noise is omitted using a pre-processing technique [14]. The new BSS model is as follows:

𝑥(𝑡) := 𝑀 𝑠(𝑡), ∀𝑡 ∈ R, (2.2)

having only the observed signals 𝑥(𝑡), and no prior knowledge about the mixing process, the BSS solution
searches for the optimum 𝑝× 𝑝 un-mixing matrix 𝐵, which gives the recovered sources

𝑦(𝑡) := 𝐵 𝑥(𝑡), ∀𝑡 ∈ R. (2.3)

Where 𝑦(𝑡) is the estimated sources that would be similar to the wanted sources 𝑠(𝑡) if the un-mixing matrix
𝐵 is as close as possible to 𝑀−1.

3. What are copulas?

Copulas has become very popular recently as a method to model the dependency structure of random vari-
ables. We can define copula as the function that helps us to connect univariate marginal distributions to a joint
multivariate distribution function with a specific form of dependency. The Sklar’s theorem [32], which is the
fundamental theorem for copulas, affirm the copula function’s existence, which it is of the form:

𝐹 (Z) = CZ(𝐹1(𝑍1), . . . , 𝐹𝑝(𝑍𝑝)),∀Z := (𝑍1, . . . , 𝑍𝑝)⊤ ∈ R𝑝. (3.1)

Where 𝐹 is an p-dimensional distribution function with marginals 𝐹1, . . . , 𝐹𝑝. CZ(·) is the copula function
which is also a joint distribution function on [0, 1]𝑝 in itself, with uniform margins. We have the following:

∀u := (𝑢1, . . . , 𝑢𝑝)⊤ ∈ [0, 1]𝑝, CZ(u) =
P (𝐹1(𝑍1) ≤ 𝑢1, . . . , 𝐹𝑝(𝑍𝑝) ≤ 𝑢𝑝) .

If 𝐹1, . . . , 𝐹𝑝 are all continuous, then CZ(·) is unique. In the opposite direction, consider a copula, CZ(·),
and univariate distribution functions, 𝐹1, . . . , 𝐹𝑛. Then 𝐹 as defined in (3.1) is a joint multivariate distribution
function with marginals 𝐹1, . . . , 𝐹𝑛.



BLIND SOURCE SEPARATION USING HELLINGER DIVERGENCE AND COPULAS 3001

Table 1. Examples of semiparametric copulas.

Family C (𝑢1, 𝑢2, . . . , 𝑢𝑝, 𝜃) Θ 𝜃0

AMH

𝑝∏︀
𝑖=1

𝑢𝑖

1− 𝜃

(︂
𝑝∏︀

𝑖=1

(1− 𝑢𝑖)

)︂ [−1, 1] 0

Clayton max

[︂(︂
𝑝∑︀

𝑖=1

𝑢−𝜃
𝑖 − 𝑝 + 1

)︂
, 0

]︂− 1
𝜃

[−1, +∞[∖{0} 0

Frank −1

𝜃
ln

⎛

⎜⎜⎝1 +

𝑝∏︀
𝑖=1

(︀
𝑒−𝜃𝑢𝑖 − 1

)︀

(𝑒−𝜃 − 1)𝑝−1

⎞

⎟⎟⎠ R ∖ {0} 0

For the case, where the components of a random vector variable, Z := (𝑍1, . . . , 𝑍𝑝)⊤ ∈ R𝑝 are statistically
independent, we have the copula of independence denoted C∏︀(.) of the form:

C∏︀(u) := CZ(u) =
𝑝∏︁

𝑗=1

𝑢𝑗 , ∀u ∈ [0, 1]𝑝,

If the copula has a density, then it is obtained in the following manner as

𝑐Z(u) :=
𝜕𝑝CZ(u)

𝜕𝑢1 · · · 𝜕𝑢𝑝
, ∀u ∈ [0, 1]𝑝.

Using the last formula we can obtain the density of the copula of independence as follows:

𝑐∏︀(u) := 1[0,1]𝑝(u), ∀u ∈ [0, 1]𝑝. (3.2)

For the the random vector Z := (𝑍1, . . . , 𝑍𝑝)⊤, let 𝑓Z(·) be its probability density if it exists, and
𝑓1(·), . . . , 𝑓𝑝(·) ∈ R𝑝 the marginal probability densities of 𝑍1, . . . , 𝑍𝑝 respectively. We can obtain the follow-
ing relation after some uncomplicated computations

𝑓Z(Z) =

⎛⎝ 𝑝∏︁
𝑗=1

𝑓𝑗(𝑍𝑗)

⎞⎠ 𝑐Z (𝐹1(𝑍1), . . . , 𝐹𝑝(𝑍𝑝)) . (3.3)

Numerous models for copulas have been proposed in the literature. Semi-parametric copula models class are
the most popular for modeling and estimating the structure of dependency. For this class the parametric copulas
C(·, 𝜃) is indexed by a parameter 𝜃 ∈ Θ ⊂ R𝑑, with a non-parametric margins.

In Table 1 we recall a description of three models of copula: Clayton [8], Ali-Mikhail-Haq (AMH) [1] and
Frank [15], which were used in Section “Simulation results” in our simulation study. We provide the respective
parameter space Θ for each model and the parameter 𝜃 corresponding to the independence hypothesis of margins
denoted 𝜃0, in other words

C (𝑢1, . . . , 𝑢𝑝; 𝜃0) = C∏︀ (𝑢1, . . . , 𝑢𝑝)

:=
𝑝∏︁

𝑖=1

𝑢𝑖, ∀ (𝑢1, . . . , 𝑢𝑝)⊤ ∈ [0, 1]𝑝.
(3.4)

For a better understanding on the widely used semi-parametric copulas, one may refer to [21,25].
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In the following lines, we outline briefly one of the copula model selection procedures and the method of
estimating the parameter 𝜃 from the data. For a random vector 𝑍 ∈ R𝑝, let’s assume that a training sample of
𝑍 is available, that is, we dispose of i.i.d. realizations 𝑧(1), . . . ,𝑧(𝑁) of 𝑍.

The objective is to select the “best” copula model from the data, among a list of candidate models, that
models the dependence structure of the components 𝑍, and to estimate the parameter 𝜃 of the model selected.
Let

{︀
𝐶1(·, 𝜃1); 𝜃1 ∈ Θ1 ⊂ R𝑑1

}︀
, . . . ,

{︀
𝐶𝐾(·, 𝜃𝐾); 𝜃𝐾 ∈ Θ𝐾 ⊂ R𝑑𝐾

}︀
be a list of candidate copula models. The

selection of models can be done using the Bayesian information criterion (BIC) [30], resulting from the semi-
parametric log-likelihood, see e.g. [16] and [33]. Denote by 𝑐𝑘(·, 𝜃𝑘) the density of the copula C𝑘(·, 𝜃𝑘), for all 𝑘.

The BIC, of a given model 𝑘, is defined by

𝐵𝐼𝐶(𝑘) = −2 sup
𝜃𝑘∈Θ𝑘

𝑁∑︁
𝑛=1

log 𝑐𝑘

(︁ ̂︀𝐹𝑍1(𝑧1(𝑛)), . . . , ̂︀𝐹𝑍𝑝
(𝑧𝑝(𝑛)), 𝜃𝑘

)︁
+ 𝑑𝑘/ log(𝑁),

The ideal model is the one which minimizes the BIC values, namely, the density copula model{︀
𝑐𝑘*(·, 𝜃𝑘*); 𝜃𝑘* ∈ Θ𝑘* ⊂ R𝑑𝑘*

}︀
where

𝑘* = arg min
𝑘∈{1,...,𝐾}

𝐵𝐼𝐶(𝑘).

Denote, simply,
{︀
𝑐(·, 𝜃); 𝜃 ∈ Θ ⊂ R𝑑

}︀
a selected model according to the above procedure. The parameter 𝜃 of

the copula model in question can be estimated by maximizing the semi-parametric log-likelihood

̂︀𝜃 = arg sup
𝜃∈Θ

𝑁∑︁
𝑛=1

log 𝑐
(︁ ̂︀𝐹𝑍1(𝑧1(𝑛)), . . . , ̂︀𝐹𝑍𝑝

(𝑧𝑝(𝑛)), 𝜃
)︁

.

4. Hellinger divergence and copula

One of the important issues in many applications of probability theory is finding an appropriate measure of
distance between two probability distributions. A number of divergence measures for this purpose have been
studied. In this paper, we singled out Hellinger divergence [11] as the measure of instantaneous information
because it improves the maximum likelihood in terms of efficiency-robustness for noisy data. It also converges
faster than other divergences, see, e.g., [4, 20].

The Hellinger distance denoted 𝐻 between two probability density functions is defined through

𝐻(𝑞, 𝑝) :=
∫︁

R𝑀

2

(︃√︃
𝑞(𝑡)
𝑝(𝑡)

− 1

)︃2

𝑝(𝑡)d𝑡. (4.1)

where 𝑝 and 𝑞 are two probabilities on R𝑀 and 𝑞 is absolutely continuous with respect to 𝑝. Note that the
function 𝑞 → 𝐻(𝑞, 𝑝) is convex and non-negative, for any given probability 𝑝. Furthermore, we have the following
fundamental property which was proved in [12]:

𝐻(𝑞, 𝑝) = 0 iff 𝑞 = 𝑝.

The Hellinger distance 𝐻 between the joint density 𝑓𝑌 (·) of the random vector 𝑌 := (𝑌1, . . . , 𝑌𝑝)⊤ ∈
R𝑝, 𝑝 ≥ 1, and the product of the the marginal densities 𝑓𝑌𝑖

of the components 𝑌𝑖, 𝑖 ∈ {1, . . . , 𝑝}, is
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given by

𝐻

(︃
𝑝∏︁

𝑖=1

𝑓𝑌𝑖(𝑦𝑖), 𝑓𝑌 (𝑦)

)︃
:=
∫︁

R𝑀

2

⎛⎜⎜⎜⎝
⎯⎸⎸⎸⎷ 𝑝∏︀

𝑖=1

𝑓𝑌𝑖
(𝑦𝑖)

𝑓𝑌 (𝑦)
− 1

⎞⎟⎟⎟⎠
2

𝑓𝑌 (𝑦)𝑑𝑦1, . . . , 𝑑𝑦𝑝,

:= E

⎡⎢⎢⎢⎢⎣2

⎛⎜⎜⎜⎝
⎯⎸⎸⎸⎷ 𝑝∏︀

𝑖=1

𝑓𝑌𝑖
(𝑦𝑖)

𝑓𝑌 (𝑦)
− 1

⎞⎟⎟⎟⎠
2⎤⎥⎥⎥⎥⎦ .

(4.2)

where E is the mathematical expectation.

Note that 𝐻

(︂
𝑝∏︀

𝑖=1

𝑓𝑌𝑖
, 𝑓𝑌

)︂
is non-negative and reaches its minimum value zero only when the components of

the random vector 𝑌 are statistically independent, in other words:
𝑝∏︀

𝑖=1

𝑓𝑌𝑖(·) = 𝑓𝑌 (·).

From equation (4.2) and using formula (3.3), the hellinger distance 𝐻

(︂
𝑝∏︀

𝑖=1

𝑓𝑌𝑖
, 𝑓𝑌

)︂
can be reformulated as

follows

𝐻

(︃
𝑝∏︁

𝑖=1

𝑓𝑌𝑖 , 𝑓𝑌

)︃
:=
∫︁

[0,1]𝑝
2

(︃√︃
1

𝑐𝑌 (𝑢)
− 1

)︃2

𝑐𝑌 (𝑢)𝑑𝑢,

:= E

⎡⎣2

(︃√︃
1

𝑐𝑌 (𝑢)
− 1

)︃2
⎤⎦ .

(4.3)

This last equation implies that the Hellinger distance between the product of the marginal densities and the
joint density of the random vector 𝑌 can be also defined as the Hellinger distance between the copula density
of independence 𝑐∏︀, and copula density 𝑐𝑌 of the random vector 𝑌

𝐻

(︃
𝑝∏︁

𝑖=1

𝑓𝑌𝑖
, 𝑓𝑌

)︃
:= 𝐻 (𝑐∏︀, 𝑐𝑌 ) . (4.4)

5. The proposed approach

Before going into details let us first present the discrete version of the BSS problem. Considering the source
signals 𝑠(𝑛), 𝑛 = 1, . . . , 𝑁 as 𝑁 copies of the random source vector 𝑆 the equation (2.2) will take the following
form:

𝑋 := 𝑀𝑆, 𝑛 = 1, . . . , 𝑁. (5.1)

Hence, 𝑦(𝑛) := 𝐵𝑥(𝑛), 𝑛 = 1, . . . , 𝑁 is, 𝑁 copies of the random source vector 𝑌 := 𝐵𝑋.

5.1. A separation procedure for independent sources.

As shown in the previous section the Hellinger distance 𝐻 (𝑐∏︀, 𝑐𝑌 ) between the copula density of independence
and the copula density of the random variable 𝑌 is always positive and only achieve its minimum zero if the
components of 𝑌 are statistically independent and the un-mixing matrix 𝐵 = 𝐷𝑃𝑀−1, where 𝐷 and 𝑃 are,
a diagonal and permutation matrix respectively.
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For a successful separation, the idea is to minimize an estimate ̂︀𝐻 (𝑐∏︀, 𝑐𝑌 ) constructed from the data
𝑦(1), . . . ,𝑦(𝑛). Therefore, the separation matrix is calculated in this fashion

̂︀𝐵 = arg min
𝐵

̂︀𝐻 (𝑐∏︀, 𝑐𝑌 ) . (5.2)

That results in approximating the components ̂︀𝑦(𝑛) = ̂︀𝐵 𝑥(𝑛), 𝑛 = 1, . . . , 𝑁 . Considering equation (4.3), we
introduce the following estimate of the distance 𝐻 (𝑐∏︀, 𝑐𝑌 ) as

̂︀𝐻 (𝑐∏︀, 𝑐𝑌 ) :=
2
𝑁

𝑁∑︁
𝑛=1

(︃√︃
1̂︀𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦1(𝑛)), . . . , ̂︀𝐹𝑌𝑝

(𝑦𝑝(𝑛)))
− 1

)︃2

(5.3)

where the kernel estimate of the copula density 𝑐𝑌 (.) is of the form

̂︀𝑐𝑌 (𝑢) :=
1

𝑁𝐻1 · · ·𝐻𝑝

𝑁∑︁
𝑚=1

𝑝∏︁
𝑗=1

𝑘

(︃ ̂︀𝐹𝑌𝑗
(𝑦𝑗(𝑚))− 𝑢𝑗

𝐻𝑗

)︃
,∀𝑢 ∈ [0, 1]𝑝, (5.4)

with ̂︀𝐹𝑌𝑗
(𝑥), 𝑗 = 1, . . . , 𝑝 the smoothed estimate of the marginal distribution functions 𝐹𝑌𝑗

(𝑥) for the random
variable 𝑌𝑗 . For any real value 𝑥 ∈ R, ̂︀𝐹𝑌𝑗

(𝑥) is defined by

̂︀𝐹𝑌𝑗
(𝑥) :=

1
𝑁

𝑁∑︁
𝑚=1

𝐾

(︂
𝑦𝑗(𝑚)− 𝑥

ℎ𝑗

)︂
, ∀𝑗 = 1, . . . , 𝑝. (5.5)

𝐾(.) is a symmetric and centered probability density and the primitive of a kernel 𝑘(.) which we chose it to be
the regular Gaussian density in this study. A more acceptable kernel choice 𝑘(.) that copes with the boundary
effect can be rendered according to [26] to approximate the copula density.

𝐻1, . . . ,𝐻𝑝 and ℎ1, . . . , ℎ𝑝 which are the bandwidth parameters seen in equations (5.4) and (5.5) are chosen
with conform to the Silverman’s thumb rule [31]. Hence, for all 𝑗 = 1, . . . , 𝑝, we have:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝐻𝑗 =
(︂

4
𝑝 + 2

)︂ 1
𝑝+4

𝑁
−1

𝑝+4 ̂︀Σ𝑗 ,

ℎ𝑗 =
(︂

4
3

)︂ 1
5

𝑁
−1
5 ̂︀𝜎𝑗 ,

(5.6)

where ̂︀𝜎𝑗 and ̂︀Σ𝑗 are, respectively, the empirical standard deviation of 𝑦𝑗(1), . . . , 𝑦𝑗(𝑁) and̂︀𝐹𝑌𝑗
(𝑦𝑗(1)), . . . , ̂︀𝐹𝑌𝑗

(𝑦𝑗(𝑁)).
We present a two-steps approach to estimate the separation matrix ̂︀𝐵. First, it is normal to start with a

normalization stage, namely the spacial whitening, where we transform the data 𝑥 by a 𝑝 × 𝑝-matrix 𝑊 such
that

𝑧(𝑛) = 𝑊𝑥(𝑛), 𝑛 = 1, . . . , 𝑁, (5.7)

with
ℛ𝑍 = 𝑊ℛ𝑋𝑊 𝑇 = ℐ𝑑 (5.8)

ℛ𝑍 andℛ𝑋 are the auto-covariances of 𝑍 and 𝑋 successively. The spatial whitening of the observations consists
in un-correlating the signals paired with a unit power constraint [3, 9].

The second step consists in applying series of Givens rotations, minimizing the estimate of the Hellinger
distance. Let 𝑈 ∈ R𝑝×𝑝 be a unitary matrix, satisfying 𝑈𝑈⊤ = 𝐼𝑝. This matrix can be written as 𝑈(𝛼) :=
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1≤𝑖<≤𝑝

𝐺(𝑖, 𝑘, 𝛼𝑚), where 𝐺(𝑖, 𝑘, 𝛼𝑚) is the 𝑝× 𝑝-matrix with the following inputs, for all 1 ≤ 𝑗, 𝑙 ≤ 𝑝,

𝐺(𝑖, 𝑘, 𝛼𝑚)𝑗,𝑙 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

cos(𝛼𝑚) if 𝑗 = 𝑖, 𝑙 = 𝑖 or 𝑗 = 𝑘, 𝑙 = 𝑘;
sin(𝛼𝑚) if 𝑗 = 𝑖, 𝑙 = 𝑘;
−sin(𝛼𝑚) if 𝑗 = 𝑘, 𝑙 = 𝑖;
1 if 𝑗 = 𝑙;
0 else,

(5.9)

the rotation angles 𝛼𝑚 ∈]− 𝜋/2, 𝜋/2[, 𝑚 = 1, . . . , 𝑝(𝑝− 1)/2, are the elements of the vector 𝛼.
The un-mixing matrix is written as follow: 𝐵 = 𝑈(𝛼)𝑊 hence, the estimated sources take the upcoming

form: 𝑦(𝑛) = 𝑈(𝛼)𝑧(𝑛), 𝑛 = 1, . . . , 𝑁 . Accordingly, the estimate ̂︀𝐻 (𝑐∏︀, 𝑐𝑌 ) is a function of the parameter
vector 𝛼 which can be computed using a gradient descent algorithm by minimizing ̂︀𝛼 := arg min

𝛼

̂︀𝐻 (𝑐∏︀, 𝑐𝑌 )

with respect to 𝛼. The un-mixing matrix is then estimated by

̂︀𝐵 = 𝑈(̂︀𝛼)𝑊 , (5.10)

which results in approximating the source signals:

̂︀𝑦(𝑛) = ̂︀𝐵 𝑥(𝑛) = 𝑈(̂︀𝛼)𝑊𝑥(𝑛), 𝑛 = 1, . . . , 𝑁. (5.11)

The gradient in 𝛼 of 𝐻 (𝑐∏︀, 𝑐𝑌 ) can be calculated from the proper definitions of the estimates as follows:

𝑑 ̂︀𝐻 (𝑐∏︀, 𝑐𝑌 )
𝑑𝛼

:= − 2
𝑁

𝑁∑︁
𝑛=1

𝑑

𝑑𝛼

(︃√︃
1

𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦(𝑛)), . . . , ̂︀𝐹𝑌𝑝
(𝑦𝑝(𝑛)))

− 1

)︃2

:= − 2
𝑁

𝑁∑︁
𝑛=1

(︃
1

𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦(𝑛)), . . . , ̂︀𝐹𝑌𝑝
(𝑦𝑝(𝑛)))

−
√︁

𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦(𝑛)), . . . , ̂︀𝐹𝑌𝑝
(𝑦𝑝(𝑛)))

)︃

×
𝑑

𝑑𝛼𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦(𝑛)), . . . , ̂︀𝐹𝑌𝑝
(𝑦𝑝(𝑛)))

𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦(𝑛)), . . . , ̂︀𝐹𝑌𝑝(𝑦𝑝(𝑛)))2

(5.12)

where,

𝑑̂︀𝑐𝑌 ( ̂︀𝐹𝑌1(𝑦(𝑛)), . . . , ̂︀𝐹𝑌𝑝(𝑦𝑝(𝑛)))
𝑑𝛼

=
1

𝑁𝐻1 · · ·𝐻𝑝

𝑁∑︁
𝑚=1

𝑝∏︁
𝑗=1,𝑗 ̸=𝑖

𝑘

(︃ ̂︀𝐹𝑌𝑗 (𝑦𝑗(𝑚))− ̂︀𝐹𝑌𝑗 (𝑦𝑗(𝑛))
𝐻𝑗

)︃

× 𝑘′

(︃ ̂︀𝐹𝑌𝑖
(𝑦𝑖(𝑚))− ̂︀𝐹𝑌𝑖

(𝑦𝑖(𝑛))
𝐻𝑖

)︃
1
𝐻𝑖

𝑑( ̂︀𝐹𝑌𝑖
(𝑦𝑖(𝑚))− ̂︀𝐹𝑌𝑖

(𝑦𝑖(𝑛)))
𝑑𝛼

,

(5.13)

with

𝑑( ̂︀𝐹𝑌𝑖
(𝑦𝑖(𝑚))
𝑑𝛼

=
1

𝑁ℎ𝑖

𝑁∑︁
𝑛=1

𝑘

(︂
𝑦𝑖(𝑛)− 𝑦𝑖(𝑚)

ℎ𝑖

)︂
𝑑

𝑑𝛼

(︂
𝑦𝑖(𝑛)− 𝑦𝑖(𝑚)

ℎ𝑖

)︂
, (5.14)

with 𝑦(𝑛) = 𝑈(𝛼)𝑧(𝑛), 𝑛 = 1, . . . , 𝑁 .
The following algorithm sums up the proposed approach for the separation of independent components:
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Algorithm 1 The separation algorithm for independent source components.
Data: the observations 𝑥(𝑛), 𝑛 = 1, . . . , 𝑁 .
Result: the estimated sources ̂︀𝑦(𝑛), 𝑛 = 1, . . . , 𝑁 .
Whitening and Initialization: 𝑧(𝑛) :=𝑊𝑥(𝑛), ̂︀𝑦0(𝑛) = 𝑈(̂︁𝛼0)𝑧(𝑛). Given 𝜀 > 0 and 𝜇 > 0.
Do: ∙ Update 𝛼 and 𝑦

𝛼𝑘+1 = 𝛼𝑘 − 𝜇
𝑑 ̂︀𝐻 (𝑐∏︀, 𝑐𝑌 )

𝑑𝛼
.

𝑦𝑘+1(𝑛) = 𝑈(𝛼𝑘+1)𝑧(𝑛), 𝑛 = 1, . . . , 𝑁 .
∙ Until ||𝛼𝑘+1 − 𝛼𝑘|| < 𝜀

̂︀𝑦(𝑛) = 𝑦𝑘+1(𝑛), 𝑛 = 1, . . . , 𝑁 .

5.2. A separation procedure for dependent sources.

In this section we tackle the case of dependent source components, hence, we can’t use the independent
copula density as in the previous section. Denote by 𝑐𝑆(·) the unknown semi-parametric copula density of 𝑆.
We assume that it belongs to a set of 𝐿 candidate semi-parametric models, say,

𝑀𝑙 := {𝑐𝑙(·; 𝜃𝑙); 𝜃𝑙 ∈ Θ𝑙 ⊂ R}, 𝑙 = 1, . . . , 𝐿. (5.15)

Table 1 gives some examples of semi-parametric copula density models. Each “semiparametric” model 𝑀𝑙 for
𝑙 = 1, . . . , 𝐿, satisfies the following identifiability condition: for any regular matrix 𝑄, if the copula density, of
𝑄𝑆, belongs to {𝑐𝜃𝑙

(·); 𝜃𝑙 ∈ Θ𝑙 ⊂ R}, then 𝑄 = 𝐷𝑃 , where 𝐷 is diagonal and 𝑃 is a permutation. To get the
objective function for dependent sources all we have to do is to replace the copula density of the independence
sources in 5.3 by the semi-parametric copula density {𝑐𝜃𝑙

(·) [22]. The new objective function will be of the
following form:

𝐻 (𝑐𝜃𝑙
, 𝑐𝑌 ) := E

⎡⎣2

(︃√︃
𝑐𝜃𝑙

(𝐹𝑌1(𝑌1), . . . , 𝐹𝑌𝑝
(𝑌𝑝))

𝑐𝑌 (𝐹𝑌1(𝑌1), . . . , 𝐹𝑌𝑝
(𝑌𝑝)))

− 1

)︃2
⎤⎦ , (5.16)

this term is non-negative and achieves its minimum value zero iff 𝐵 = 𝑀−1 (up to scale and permutation
indeterminacies). Therefore, we estimate the demixing matrix by

̂︀𝐵 := arg inf
𝛼

inf
𝜃𝑙*∈Θ𝑙*

̂︀𝐻 (𝑐𝜃𝑙
, 𝑐𝑌 ) , (5.17)

where

𝑙* = arg min
𝑙=1,...,𝐿

inf
𝛼

inf
𝜃𝑙∈Θ𝑙

̂︀𝐻 (𝑐𝜃𝑙
, 𝑐𝑌 ) , (5.18)

The copula density as well as the marginal distribution functions estimates are defined as before. The solution̂︀𝐵 can be computed by a gradient descent algorithm with respect to both 𝛼 and 𝜃 of the criterion function
(𝛼, 𝜃𝑙) ↦→ ̂︀𝐻 (𝑐𝜃, 𝑐𝑌 ) for each model and then choose the solution minimizing the criterion over all considered
models. The calculations for the gradient of the Hellinger divergence is the same as the one stated in the case
of independence (5.12). The Algorithm (2) summarizes the presented method.
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Algorithm 2 The separation algorithm for dependent source components.
Data: the observations 𝑥(𝑛), 𝑛 = 1, . . . , 𝑁 .
Result: the estimated sources ̂︀𝑦(𝑛), 𝑛 = 1, . . . , 𝑁 .

Whitening and Initialization: 𝑧(𝑛) :=𝑊𝑥(𝑛), ̂︀𝑦0(𝑛) = 𝑈( ̂︀𝜃0)𝑧(𝑛). Given 𝜀 > 0 and 𝜇 > 0.
Do: ∙ Update 𝜃, 𝛼 and 𝑦

𝜃𝑘+1 = 𝜃𝑘 − 𝜈
𝑑 ̂︀𝐻 (𝑐𝜃𝑘 , 𝑐𝑌 )

𝑑𝜃
.

𝛼𝑘+1 = 𝛼𝑘 − 𝜇
𝑑 ̂︀𝐻
(︀
𝑐𝜃𝑘+1 , 𝑐𝑌

)︀

𝑑𝛼
.

𝑦𝑘+1(𝑛) = 𝑈(𝛼𝑘+1)𝑧(𝑛), 𝑛 = 1, . . . , 𝑁 .
∙ Until ||𝜃𝑘+1 − 𝜃𝑘|| < 𝜀

̂︀𝑦(𝑛) = 𝑦𝑘+1(𝑛), 𝑛 = 1, . . . , 𝑁 .

6. Simulation results

In the following, we present the results of various simulations that were conducted to test our proposed
approach and to better illustrate its performance. Our results will be compared with those obtained by
[27](Copula-Alpha), [22](Copula-MI), [29](MI), [6] (JADE), [19] (FastICA), [24] (RADICAL) and [2] (InfoMax)
under the same conditions.

In all the instances of our experiments the number of samples is 𝑁 = 3000. The matrix used to mix the
source components is 𝐴 := [1 0.7 0.7 ; 0.7 1 0.7 ; 0.7 0.7 1], and 𝜇 = 0.1 is the chosen gradient descent
parameter. All simulations are iterated 80 times, and the accuracy of the estimated sources is calculated using
the signal-to-noise-ratio criterion, which is defined by

𝑆𝑁𝑅𝑖 := 10 log10

∑︀𝑁
𝑛=1 𝑠𝑖(𝑛)2∑︀𝑁

𝑛=1(̂︀𝑠𝑖(𝑛)− 𝑠𝑖(𝑛))2
, 𝑖 = 1, 2, 3. (6.1)

6.1. Independent source components

We consider in this experiment three mixed signals from two types of sample sources:

– Uniform i.i.d with independent components (see Fig. 1a).
– i.i.d sources with independent components drawn from the 4-ASK (Amplitude Shift Keying) alphabet (see

Fig. 1b).

From Figures 1a and 1b, we observe that for both independent samples the SNR is close to 45dB which is
considered highly satisfying for this classical case.In the other hand, Figures 2a and 2b present the criterion
value vs. iterations. We can see that the separation is achieved when our criterion converges to its minimum
value 0.

Table 2 illustrate the different SNR values of the sources, for our approach and other methods, we can see
that the method proposed achieves the separation with similar accuracy with a slight improvement for the
independent source components case and faster convergence compared to the latest Alpha-divergence method
[27] when alpha = 0.5.

6.2. Dependent source components

Within this subsection we demonstrate the ability of the proposed approach (Algorithm 2 for dependent
sources) to successfully separate mixtures of three dependent signals, we dealt with instantaneous mixtures of
tree kinds of sample sources:

– i.i.d (with uniform marginals) sources with dependent components generated from AMH copula with 𝜃 =
0.75.
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Figure 1. Average output SNRs versus iteration number. (A) Uniform independent sources.
(B) ASK independent sources.

– i.i.d (binary phase-shift keying(BPSK)) sources with dependent components generated from Clayton copula,
with 𝜃 = 1.5

– i.i.d (with uniform marginals) sources with dependent components generated from Frank copula, with 𝜃 = 2.

In Figures 3a and 3b, we have shown the SNRs for dependent sources from Clayton and Frank copulas. From
the simulation results it is noticeable that the proposed approach can separate the mixtures of dependent source
components, with good performance.

Moreover, Figures 4a and 4b show the criterion value versus iterations for Clayton and Frank copulas. We
can see that the separation is achieved when our criterion converges to its minimum value 0.

Table 3 exhibits the superiority of our proposed approach compared to [27](Copula-Alpha), [22](Copula-MI),
[29](MI), [6] (JADE), [19] (FastICA), [24] (RADICAL) and [2] (InfoMax). with slight improvement compared
to [27] when alpha is equal to 0.5, however our approach converges faster.
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Figure 2. The criterion value vs. iterations. (A) Uniform independent sources. (B) ASK inde-
pendent sources.

Table 2. Output SNR’s for independent source components.

Type Uniform ASK
Sources S1 S2 S3 S1 S2 S3

Our method 46.7660 46.9336 46.8821 44.9767 44.7364 44.8914
Copula-Alpha 46.4311 46.3267 46.6112 44.9051 44.3076 44.5188
Copula-MI 45.8914 45.9560 45.7158 43.8195 43.8786 43.6588
MI 45.6757 45.6216 45.6142 43.1125 43.0654 43.0589
FastICA 43.8497 44.4492 40.1810 42.7949 42.0838 40.2107
JADE 45.5146 44.9522 44.9522 43.1671 43.1508 43.1889
RADICAL 44.9902 43.9986 44.7361 42.9023 42.4095 42.6272
InfoMax 45.3687 45.6243 44.8909 43.8846 43.3195 43.1528
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Figure 3. Average output SNRs versus iteration number. (A) Uniform dependent sources from
Clayton-copula. (B) Uniform dependent sources from Frank-copula.

6.3. Noisy source components

In this subsection we test the accuracy of our approach for noisy data. We work with the same source
signals as above and the same conditions with an added white gaussian noise to the observed signals. We take
𝑆𝑁𝑅 = −25𝑑𝐵.

Figure 5a illustrate the SNR of the independent sources, it can be seen that the proposed approach is able to
separate noisy independent sources with good performance, and Figure 5b shows that when the separation is
achieved our criterion converges to its minimum 0. Figure 6a showcase the SNR of the dependent sources from
Clayton copula, the proposed approach is able to separate even noisy dependent sources. Moreover Figure 6b
shows that the criterion in this case also converges to its minimum 0.

Table 4 present the output SNR values of the estimated sources using our approach and the other methods,
we can see that the approaches are equivalent, with superiority of our method, in case of noise-contaminated
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Figure 4. The criterion value vs. iterations. (A) Uniform dependent sources from Clayton-
copula. (B) Uniform dependent sources from Frank-copula.

Table 3. Output SNR’s for dependent source components.

Copulas AMH Clayton Frank
Sources S1 S2 S3 S1 S2 S3 S1 S2 S3

Our method 45.2240 45.4681 45.3301 43.7845 43.8392 44.5118 46.0179 46.2626 46.1243
Copula-Alpha 44.7440 45.0932 45.3209 43.5692 42.9346 43.8850 45.4471 45.8412 46.0578
Copula-MI 44.2309 44.2773 44.2510 42.8152 42.8256 42.9534 44.6781 44.7247 44.6984
MI 15.3014 15.3221 15.3083 10.1302 10.3273 10.2757 18.9585 18.9875 18.9681
FastICA 41.1604 8.0131 8.0765 38.0900 5.9141 2.4933 42.9433 11.7862 8.7365
JADE 14.9945 14.1343 14.3148 9.7169 9.6885 10.7102 17.0637 17.2252 17.5806
RADICAL 9.3148 8.7314 6.7465 9.4081 8.7376 10.9933 17.8044 17.1656 17.4945
InfoMax 9.2981 9.2577 9.2871 8.2981 8.2577 8.2871 10.5136 10.3983 10.4529
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Figure 5. Uniform noisy independent sources. (A) Average output SNRs versus iterations.
(B) The criterion value vs. iterations.

independent source components. On the other hand, our approach is apt to separate even noisy mixtures of
dependent source components with higher accuracy.

7. Conclusion

We have presented a new BSS algorithm, that is able to separate instantaneous linear mixtures of both
independent and dependent source components. Our approach proceeds in two steps: First a normalization
stage with spatial whitening and the then the application of Givens rotations, minimizing the estimate of the
Hellinger distance. This divergence works better in presence of noise and it also converge faster than the usual
Kullback-Leibler divergence as illustrated in section “Simulation results” for 3 × 3 mixture-sources, where the
efficiency and the accuracy of the proposed algorithms is evaluated through the signal-to-noise-ratio criterion. It
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Figure 6. Uniform dependent noisy sources from Clayton-copula. (A) Average output SNRs
versus iterations. (B) The criterion value vs. iterations.

Table 4. Output SNR’s for independent and dependent noisy source components.

Copulas Independence Clayton Frank
Sources S1 S2 S3 S1 S2 S3 S1 S2 S3

Our method 36.1882 36.2384 36.0518 34.9658 34.8174 34.6611 36.2770 36.5339 36.3887
Copula-Alpha 35.8113 35.9858 36.0351 34.6367 33.5660 33.7636 35.6460 35.8031 36.1108
Copula-MI 31.0214 31.0657 30.9011 29.1377 29.1850 29.7672 30.4445 30.4273 30.4370
MI 30.4531 30.4178 30.4130 7.1605 7.0444 6.6586 12.2857 12.3780 12.1843
FastICA 30.2118 29.6796 28.2773 25.5767 3.0302 3.7841 28.5473 8.4895 6.6148
JADE 30.2331 30.2209 30.2495 6.9056 6.8649 7.1214 13.2814 13.3712 12.8820
RADICAL 30.3161 29.9472 30.1102 6.5064 7.4440 6.9503 12.4281 14.7506 12.5084
InfoMax 30.0881 30.6651 30.5402 5.3751 5.3627 5.3168 8.3977 8.2703 8.3137
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should be noted that our proposed algorithms are more time-consuming compared to the classic ones, considering
that we estimate both copulas density of the vector and the marginal distribution function of each component,
however, ours gives better results especially for the dependent noisy source components case.

Acknowledgements. This research did not receive any specific grant from funding agencies in the public, commercial, or
not-for-profit sectors.
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