A novel ranking approach with common weights: An implementation in the presence of interval data and flexible measures
RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 3915-3940

In this paper a ranking method using common weights methodology is presented. The goal of the method is enhancing the decision maker (DM)’s influence in the ranking procedure. Although DM’s preference information is an important element in our method, the approach can also be modified to be used in the absence of it. Since we aim to implement the approach on an empirical instance, the model is modified to deal with the properties of the sample, so it is developed in the presence of the interval data and flexible measures. Finally, the results are discussed.

DOI : 10.1051/ro/2022133
Classification : 90C05, 90C29, 90C90
Keywords: Data envelopment analysis, ranking, common set of weights, preference information
@article{RO_2022__56_6_3915_0,
     author = {Ramezani-Tarkhorani, Somayeh and Eini, Mahdi},
     title = {A novel ranking approach with common weights: {An} implementation in the presence of interval data and flexible measures},
     journal = {RAIRO. Operations Research},
     pages = {3915--3940},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {6},
     doi = {10.1051/ro/2022133},
     mrnumber = {4513265},
     zbl = {1536.90112},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022133/}
}
TY  - JOUR
AU  - Ramezani-Tarkhorani, Somayeh
AU  - Eini, Mahdi
TI  - A novel ranking approach with common weights: An implementation in the presence of interval data and flexible measures
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3915
EP  - 3940
VL  - 56
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022133/
DO  - 10.1051/ro/2022133
LA  - en
ID  - RO_2022__56_6_3915_0
ER  - 
%0 Journal Article
%A Ramezani-Tarkhorani, Somayeh
%A Eini, Mahdi
%T A novel ranking approach with common weights: An implementation in the presence of interval data and flexible measures
%J RAIRO. Operations Research
%D 2022
%P 3915-3940
%V 56
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022133/
%R 10.1051/ro/2022133
%G en
%F RO_2022__56_6_3915_0
Ramezani-Tarkhorani, Somayeh; Eini, Mahdi. A novel ranking approach with common weights: An implementation in the presence of interval data and flexible measures. RAIRO. Operations Research, Tome 56 (2022) no. 6, pp. 3915-3940. doi: 10.1051/ro/2022133

[1] S. Abolghasem, M. Toloo and S. Amézquita, Cross-efficiency evaluation in the presence of flexible measures with an application to healthcare systems. Health Care Manage. Sci. 22 (2019) 512–533. | DOI

[2] M. Afsharian, H. Ahn and S. G. Harms, A review of DEA approaches applying a common set of weights: the perspective of centralized management. Eur. J. Oper. Res. 294 (2021) 3–15. | MR | Zbl | DOI

[3] N. Aghayi, M. Tavana and M. A. Raayatpanah, Robust efficiency measurement with common set of weights under varying degrees of conservatism and data uncertainty. Eur. J. Ind. Eng. 10 (2016) 385–405. | DOI

[4] G. R. Amin and M. Toloo, A polynomial-time algorithm for finding ϵ in DEA models. Comput. Oper. Res. 31 (2004) 803–805. | MR | Zbl | DOI

[5] A. Amirteimoori and A. Emrouznejad, Flexible measures in production process: a DEA-based approach. RAIRO: Oper. Res. 45 (2011) 63–74. | MR | Zbl | Numdam | DOI

[6] A. Amirteimoori, A. Emrouznejad and L. Khoshandam, Classifying flexible measures in data envelopment analysis: a slack-based measure. Measurement 46 (2013) 4100–4107. | DOI

[7] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of DMUs. Eur. J. Oper. Res. 2 (1978) 429–444. | MR | Zbl | DOI

[8] A. Charnes, W. W. Cooper, Z. M. Huang and D. B. Sun, Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks. J. Econ. 46 (1990) 73–91. | Zbl | DOI

[9] M. Chen, S. Ang, F. Yang and L. Jiang, Efficiency evaluation of non-homogeneous DMUs with inconsistent input quality. Comput. Ind. Eng. 158 (2021) 107418. | DOI

[10] C. I. Chiang and G. H. Tzeng, A new efficiency measure for DEA: efficiency achievement measure established on fuzzy multiple objectives programming. J. Manage. 17 (2000) 369–388.

[11] C. I. Chiang, M. J. Hwang and Y. H. Liu, Determining a common set of weights in a DEA problem using a separation vector. Math. Comput. Model. 54 (2011) 2464–2470. | MR | Zbl | DOI

[12] W. D. Cook and J. Zhu, Classifying inputs and outputs in DEA. Eur. J. Oper. Res. 180 (2007) 692–699. | Zbl | DOI

[13] W. D. Cook, Y. Roll and A. Kazakov, A DEA model for measuring the relative efficiency of highway maintenance patrols. Inf. Syst. Oper. Res. 28 (1990) 113–124.

[14] W. W. Cooper, K. S. Park and G. Yu, IDEA and AR-IDEA, Models for dealing with imprecise data in DEA. Manage. Sci. 45 (1999) 597–607. | Zbl | DOI

[15] C. S. De Blas, J. Simon Martin and D. Gomez Gonzalez, Combined social networks and data envelopment analysis for ranking. Eur. J. Oper. Res. 3 (2017) 990–999. | MR | Zbl

[16] D. K. Despotis, Improving the discriminating power of DEA: focus on globally efficient units. J. Oper. Res. Soc. 53 (2002) 314–323. | Zbl | DOI

[17] B. Ebrahimi, Efficiency bounds and efficiency classifications in imprecise DEA: an extension. J. Oper. Res. Soc. 71 (2020) 491–504. | DOI

[18] B. Ebrahimi and E. Hajizadeh, A novel DEA model for solving performance measurement problems with flexible measures: an application to Tehran Stock Exchange. Measurement 179 (2021) 109444. | DOI

[19] B. Ebrahimi and M. Khalili, A new integrated AR-IDEA model to find the best DMU in the presence of both weight restrictions and imprecise data. Comput. Ind. Eng. 125 (2018) 357–363. | DOI

[20] B. Ebrahimi, M. Tavana, M. Toloo and V. Charles, A novel mixed binary linear DEA model for ranking decision-making units with preference information. Comput. Ind. Eng. 149 (2020) 106720. | DOI

[21] D. Ennen and I. Batool, Airport efficiency in Pakistan-A Data Envelopment Analysis with weight restrictions. J. Air. Transp. Manage. 69 (2018) 205–212. | DOI

[22] T. Ertay, The most cost efficient automotive vendor with price uncertainty: a new DEA approach. Measurement 52 (2014) 135–144. | DOI

[23] M. Ghadami, H. Sahebi, M. Pishvaee and H. Gilani, A sustainable cross-efficiency DEA model for international MSW-to-biofuel supply chain design. RAIRO: Res. Oper. 55 (2021) 2653. | MR | Zbl | Numdam | DOI

[24] A. Hatami Marbini, M. Tavana, P. J. Agrell, F. Hosseinzadeh Lotfi and Z. Ghelej Beigi, A common-weights DEA model for centralized resource reduction and target setting. Comput. Ind. Eng. 79 (2015) 195–203. | DOI

[25] F. Hosseinzadeh Lotfi, M. Rostamy-Malkhlifeh, G. R. Jahanshahloo, Z. Moghaddas, M. Khodabakhshi and M. Vaez-Ghasemi, A review of ranking models in data envelopment analysis. J. Appl. Math. (2013) 20. DOI: . | DOI | MR | Zbl

[26] C. F. Hu, H. F. Wang and T. Liu, Measuring efficiency of a recycling production system with imprecise data. Numer. Algebra Control Optim. 12 (2022) 79. | MR | Zbl | DOI

[27] C. L. Hwang and A. S. M. Masud, Methods for multiple objective decision making. In: Multiple Objective Decision Making – Methods and Applications. Springer, Berlin (1979). | DOI

[28] G. R. Jahanshahloo, F. Hosseinzadeh Lotfi, M. Khanmohammadi, M. Kazemimanesh and V. Rezaie, Ranking of units by positive ideal DMU with common weights. Expert. Syst. Appl. 37 (2010) 7483–7488. | DOI

[29] C. Kao and H. Hung, Data envelopment analysis with common weights: the comprise solution approach. J. Oper. Res. Soc. 56 (2005) 1196–1203. | Zbl | DOI

[30] S. Kazemi, M. Tavana, M. Toloo and N. A. Zenkevich, A common weights model for investigating efficiency-based leadership in the russian banking industry. RAIRO: Oper. Res. 55 (2021) 213–229. | MR | Numdam | DOI

[31] K. Khalili-Damghani and M. Fadaei, A comprehensive common weights data envelopment analysis model, ideal and anti-ideal virtual decision making units approach. J. Ind. Syst. Eng. 11 (2018) 281–306.

[32] A. Kresta, Finding the best asset financing alternative: a DEA–WEO approach. Measurement 55 (2014) 288–294. | DOI

[33] K. F. Lam, Finding a common set of weights for ranking decision-making units in Data Envelopment Analysis. J. Econ. Bus. Manage. 4 (2016) 534–537.

[34] F. H. F. Liu and H. H. Peng, Ranking of units on the DEA frontier with common weights. Comput. Oper. Res. 35 (2008) 1624–1637. | Zbl | DOI

[35] M. Luptáčik, E. Nežinský, Measuring income inequalities beyond the Gini coefficient. Cent. Eur. J. Oper. Res. 28 (2020) 561–578. | MR | DOI

[36] S. Mehrabian, G. R. Jahanshahloo, M. R. Alirezaei and G. R. Amin, An assurance interval of the non-Archimedean epsilon in DEA models. Eur. J. Oper. Res. 48 (1998) 344–347. | DOI

[37] L. P. Navas, F. Montes, S. Abolghasem, R. J. Salas, M. Toloo and R. Zarama, Colombian higher education institutions evaluation. Soc.-Econ. Plan. Sci. 71 (2020) 100801. | DOI

[38] A. Oukil, Ranking via composite weighting schemes under a DEA cross-evaluation framework. Comput. Ind. Eng. 117 (2018) 217–224. | DOI

[39] V. V. Podinovski and T. Bouzdine-Chameeva, Consistent weight restrictions in data envelopment analysis. Eur. J. Oper. Res. 244 (2015) 201–209. | MR | Zbl | DOI

[40] S. Ramazani-Tarkhorani, M. Khodabakhshi, S. Mehrabian and F. Nuri-Bahmani, Ranking decision-makingunits using common weights in DEA. Appl. Math. Model. 38 (2013) 3890–3896. | MR | Zbl | DOI

[41] Y. Roll, W. D. Cook and B. Golany, Controlling factor weighs in data envelopment analysis. IIE Trans. 24 (2013) 1991.

[42] J. L. Ruiz and I. Sirvent, Common benchmarking and ranking of units with DEA. Omega 65 (2016) 1–9. | DOI

[43] M. Salahi, N. Torabi and A. Amiri, An optimistic robust optimization approach to common set of weights in DEA. Measurement 93 (2016) 67–73. | DOI

[44] M. Salahi, M. Toloo and N. Torabi, A new robust optimization approach to common weights formulation in DEA. J. Oper. Res. Soc. 72 (2020) 1390–1402. | DOI

[45] M. S. Shahbazifar, R. Kazemi Matin, M. Khounsiavash and F. Koushki, Group ranking of two-stage production units in network data envelopment analysis. RAIRO: Oper. Res. 55 (2021) 185. | MR | DOI

[46] G. H. Shirdel and S. Ramezani-Tarkhorani, A new method for ranking decision making units using common set of weights: a developed criterion. J. Ind. Manage. Optim. 16 (2020) 633. | MR | Zbl | DOI

[47] G. H. Shirdel, S. Ramezani-Tarkhorani and Z. Jafari, A method for evaluating the performance of decision making units with imprecise data using common set of weights. Int. J. Appl. Comput. Math. 3 (2017) 411–423. | MR | Zbl | DOI

[48] J. Sun, J. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights. Appl. Math. Model. 37 (2013) 6301–6310. | MR | Zbl | DOI

[49] M. Tavana and F. J. Santos-Arteaga, An integrated data envelopment analysis and mixed integer non-linear programming model for linearizing the common set of weights. Cent. Eur. J. Oper. Res. 27 (2019) 887–904. | MR | Zbl | DOI

[50] R. G. Thompson, F. D. Singleton Jr, R. M. Thrall and B. A. Smith, Comparative site evaluations for locating a high-energy physics lab in Texas. Interfaces 16 (1986) 35–49. | DOI

[51] G. Tohidi and F. Matroud, A new non-oriented model for classifying flexible measures in DEA. J. Oper. Res. Soc. 68 (2017) 1019–1029. | DOI

[52] M. Toloo, Alternative solutions for classifying inputs and outputs in data envelopment analysis. Comput. Math. Appl. 63 (2012) 1104–1110. | MR | Zbl | DOI

[53] M. Toloo, The most efficient unit without explicit inputs: an extended MILP-DEA model. Measurement 46 (2013) 3628–3634. | DOI

[54] M. Toloo, An epsilon-free approach for finding the most efficient unit in DEA. Appl. Math. Model. 38 (2014) 3182–3192. | MR | Zbl | DOI

[55] M. Toloo, Selecting and full ranking suppliers with imprecise data: a new DEA method. Int. J. Adv. Manuf. Technol. 74 (2014) 1141–1148. | DOI

[56] M. Toloo, A cost efficiency approach for strategic vendor selection problem under certain input prices assumption. Measurement 85 (2016) 175–183. | DOI

[57] M. Toloo and M. Mirbolouki, A new project selection method using data envelopment analysis. Comput. Ind. Eng. 138 (2019) 106119. | DOI

[58] M. Toloo and M. Salahi, A powerful discriminative approach for selecting the most efficient unit in DEA. Comput. Ind. Eng. 115 (2018) 269–277. | DOI

[59] M. Toloo, B. Sohrabi and S. Nalchigar, A new method for ranking discovered rules from data mining by DEA. Expert Syst. Appl. 36 (2009) 8503–8508. | DOI

[60] M. Toloo, B. Ebrahimi and G. R. Amin, New data envelopment analysis models for classifying flexible measures: the role of non-Archimedean epsilon. Eur. J. Oper. Res. 292 (2021) 1037–1050. | MR | Zbl | DOI

[61] M. Toloo, E. K. Mensah and M. Salahi, Robust optimization and its duality in data envelopment analysis. Omega 108 (2022) 102583. | DOI

[62] Y. M. Wang, Y. Luo and Y. X. Lan, Common weights for fully ranking decision making units by regression analysis. Expert Syst. Appl. 38 (2011) 9122–9128. | DOI

[63] J. Wu, J. Chu, Q. Zhu, Y. Li and L. Liang, Determining common weights in data envelopment analysis based on the satisfaction degree. J. Oper. Res. Soc. 67 (2016) 1446–1458. | DOI

[64] A. P. Yekta, S. Kordrostami, A. Amirteimoori and R. K. Matin, Data envelopment analysis with common weights: the weight restriction approach. Math. Sci. 12 (2018) 197–203. | MR | Zbl | DOI

Cité par Sources :