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A NOVEL RANKING APPROACH WITH COMMON WEIGHTS: AN
IMPLEMENTATION IN THE PRESENCE OF INTERVAL DATA AND FLEXIBLE

MEASURES

Somayeh Ramezani-Tarkhorani1,* and Mahdi Eini2

Abstract. In this paper a ranking method using common weights methodology is presented. The goal
of the method is enhancing the decision maker (DM)’s influence in the ranking procedure. Although
DM’s preference information is an important element in our method, the approach can also be modified
to be used in the absence of it. Since we aim to implement the approach on an empirical instance, the
model is modified to deal with the properties of the sample, so it is developed in the presence of the
interval data and flexible measures. Finally, the results are discussed.
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1. Introduction

Data envelopment analysis (DEA) uses mathematical programming based techniques to evaluate the per-
formance of a set of homogeneous decision making units (DMUs). The first DEA model is known as CCR
that was developed by Charnes et al. [7]. Classical DEA models calculate the maximum relative efficiency per
DMU, and accordingly DMUs are classified in two groups of efficient and inefficient ones. So far, lots of ranking
methods have been presented by researches that each can be applied regarding its conditions and the insight
behind it. We mention some of them briefly as follows: Blas et al. [15] suggested a ranking method that used
measures of dominance derived from social network analysis in combination with DEA. Oukil [38] suggested
a new perspective for ranking DMUs under a DEA peer-evaluation framework. He exploited the property of
multiple weighting schemes generated over the cross evaluation process in developing a methodology that yields
not only robust ranking patterns but also more realistic sets of weights for the DMUs. Also see Shahbazifar
et al. [45], Ghadami et al. [23], Hosseinzadeh Lotfi et al. [25], and etc. Now, we focus on some methodologies
more relevant to our study, in the followings.

1.1. Weight restrictions

Extra information or special conditions may impose some weight restrictions to DEA models. Assurance
region (AR) and cone ratio are two well-known approaches in this field. AR approach was firstly introduced
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by Thompson et al. [50]. In the approach, the weights of some indicators are relatively restricted. Cone ratio
approach is a more generalized version introduced by Charnes et al. [8] in which the input and output weights
are restricted to belong to the related polyhedral convex cones each of which spanned by a finite number of
admissible non-negative direction vectors. For further information see Ebrahimi and Khalili [19], Ennen and
Batool [21], Podinovski and Bouzdine-Chameeva [39], Chen et al. [9], and Luptáčik and Nežinský [35].

1.2. Common weights methodology

In classical DEA models, the best relative efficiency of each DMU is obtained based on individual set of
weights. Common weights methodology, introduced by Cook et al. [13] and developed by Roll et al. [41], can
provide the opportunity to assess performance of DMUs fairly under common base. In this study, we propose a
linear programming to generate a common set of weights. Before describing our method, we review some methods
in the context. The idea behind the models generating a CSW can be different. A considerable number of the
models, directly or indirectly, search a CSW with the purpose of maximizing the efficiencies (of all DMUs or a
subset of them). See the following works in this regard: Chiang and Tzeng [10] presented a multi objective model
to find a CSW such that the efficiencies of all DMUs become maximum. In order to solve the multi objective
problem, they used max–min approach and presented a non-linear programming to choose a set of weights
which its minimum efficiency is maximum in the feasible region. Kao and Hung [29] used compromise solution
approach to determine a CSW. They solved the standard DEA models for DMUs and considered them as the
ideal solution to achieve. Then, they searched a CSW that its vector of efficiency scores would be the closest to
the ideal solution. Liu and Peng [34] searched one common set of weights to maximize group efficiencies. They
proposed a linear programming to generate a CSW by using CWA-methodology. Some modifications on their
work are presented by Ramezani et al. [40]. Chiang et al. [11] used a linear programming to generate a CSW
with the aim of maximizing efficiencies. They applied their method to rank some countries based on the gained
medals in 2008 Beijing Olympic Games. For further works, see Jahanshahloo et al. [28], Wang et al. [62], Tavana
and Santos-Arteaga [49], Khalili-Damghani and Fadaei [31], Shirdel and Ramezani-Tarkhorani [46], Yekta et al.
[64], Hatami Marbini et al. [24] and etc. However, maximizing the efficiencies is not always the case to produce
a common set of weights. Besides, it may be along with some difficulties, as follows:

– Inappropriate treatment.
Generating a CSW with the aim of increasing the efficiency scores of the DMUs may cause the unrealistic
imagination of individual performance of the DMUs. So, it may lead to wrong judgments and policies to be
made by DM.

– Diminution of distinction.
In addition to the importance of the purpose behind each ranking method, its power to distinct the perfor-
mance of DMUs is important, too. The more the distinctive power of a ranking method, the easier DM can
judge the performance of DMUs. In many of the models used to generate a CSW, the benchmark level for
efficiency scores is 1, and generating a CSW with the aim of maximizing the efficiencies may increase the
probability of having some DMUs with the same efficiency scores of 1. Hence, using more ranking criteria
for more distinction may be required. (for DMUs with the same efficiency scores less than 1, it usually can
be removed by increasing the decimal precision)

Common weights methodology is also utilized in concept of determining most efficient DMUs. Toloo et al. [59]
presented an integrated model for determining most BCC-efficient DMU by solving one linear programming.
Toloo [54] presented an epsilon-free basic integrated LP model to identify the most efficient candidate unit(s).
In some cases the model can even find the most efficient DMU. Toloo [55] developed a supplier selection
approach based on DEA for the case of suppliers with imprecise data. They presented an integrated mixed
integer programming-data envelopment analysis (MIP-DEA) model for finding the most efficient suppliers in
that condition. Toloo and Salahi [58] suggested a model that lets the efficiency score of only a single unit be
strictly greater than one. Toloo and Mirbolouki [57] used common weights methodology in project selection
problem. They developed a DEA approach with the aim of finding a composite project with the highest average
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CCR-efficiency score of indivisdual involved proposals. Selection-based problems are one of the most interesting
applications of the common weights methodology in DEA. For example see, Toloo [53], Ertay [22], Toloo [56]
and Kresta [32].

For Further works in common weights methodology we refer to Despotis [16], Wu et al. [63], Lam [33], Ruiz
and Sirvent [42], Afsharian et al. [2], Kazemi et al. [30], and Salahi et al. [44].

1.2.1. The motivation and the purpose of the new method

In our approach a common set of weights is generated with a distinct perspective rather than the mentioned
methods. In fact, the approach is to be utilized in the situation in which, for some environmental conditions
or DM’s objectives, some of the indicators may become significantly important for DM so that he/she prefers
to influence their affect in evaluation of DMUs as much as possible. In other words, the adopted criterion to
generate a common set of weights is based on a special category of DM’s preference information. Thus, it makes
us consider another category and another way to deal with DM’s preferences.

1.2.2. Overview of our approach

We present a linear programming in which the objective function concentrates on the mentioned DM’s
preference information. Actually, the DM’s preference information is divided into two distinct groups to be
used in the body of the model. The CSW is obtained based on considering both of the information. Although
attending to DM’s preferences is a main element in this ranking approach, but the method can be also developed
when no prior information is available. That is, this method can be used in either the presence or absence of
DM’s preference information. In the first case, DM’s information is an essential element; in the second, the CSW
is obtained indirectly for maximizing the efficiencies of DMUs.

1.2.3. An implementation of the proposed approach

At first, we briefly mention two necessary concepts in this regard:

– Imprecise data envelopment analysis (IDEA) extends DEA models to deal with imprecise data, that is when
some input or output data are not exact. For more information, we refer to Cooper et al. [14], Salahi et al.
[43], Shirdel et al. [47], Aghayi et al. [3], Ebrahimi [17], Hu et al. [26], and Toloo et al. [61].

– In some real problems, one may face with some variables which can be considered both as input and as
output in evaluation of DMUs. They are known as flexible measures. For more information, we refer to Cook
and Zhu [12], Toloo [52], Amirteimoori et al. [6], Amirteimoori and Emrouznejad [5], Tohidi and Matroud
[51], Abolghasem et al. [1], Navas et al. [37], Toloo et al. [60], Ebrahimi and Hajizadeh [18], and Ebrahimi
et al. [20].

We aim to implement our approach on a data set regarding to a number of bank branches. The case contains
some properties: Firstly, some input and output data are not exact and lie in some bounded intervals. Secondly,
there are some flexible measures in the evaluation. Hence, we developed our approach to deal with interval data
and flexible measures. We also implement another method with different point of view, and finally the results
are discussed.

The rest of this paper is as follows.
In Section 2, some preliminary concepts are stated. In Section 3, the suggested approach is presented. In

Section 4, the method is considered in the presence of interval data and flexible measures, and the related
modifications are conducted on the model. In Section 5, for comparison purpose, a model to generate a CSW in
interval DEA is modified in presence of flexible measures. In Section 6, finally, we are ready to implement our
method on the considered case, and the results are investigated. Section 7 presents the conclusion.

2. Preliminaries

Here, a brief mention of the elementary notions is presented.
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2.1. CCR model

Consider a set of 𝑛 homogeneous DMUs that consume 𝑚 inputs and produce 𝑠 outputs. Let 𝑥𝑖𝑗 (𝑖 = 1, . . . ,𝑚)
and 𝑦𝑟𝑗 (𝑟 = 1, . . . , 𝑠) denote, respectively, the amounts of the 𝑖th input consumed and the 𝑟th output produced
by DMU𝑗(𝑗 = 1, . . . , 𝑛). The following properties are satisfied:

∀𝑗 ∈ {1, . . . , 𝑛}, ∃𝑖 ∈ {1, . . . ,𝑚} : 𝑥𝑖𝑗 > 0
∀𝑗 ∈ {1, . . . , 𝑛}, ∃𝑟 ∈ {1, . . . , 𝑠} : 𝑦𝑟𝑗 > 0
∀𝑖 ∈ {1, . . . ,𝑚}, ∃𝑗 ∈ {1, . . . , 𝑛} : 𝑥𝑖𝑗 > 0
∀𝑟 ∈ {1, . . . , 𝑠}, ∃𝑗 ∈ {1, . . . , 𝑛} : 𝑦𝑟𝑗 > 0. (2.1)

Given non-negative input and output weights (𝑈, 𝑉 ), the absolute efficiency of DMU𝑜 (𝑜 = 1, . . . , 𝑛) is defined
as 𝐸𝑜 =

∑︀𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑜∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑜

, and the relative efficiency of DMU𝑗 is defined as follows:

𝑅𝐸𝑜 =

∑︀𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑜∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑜

max𝑗=1,...,𝑛

∑︀𝑠
𝑟=1 𝑢𝑟𝑦𝑟𝑗∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑗

·

Model (2.2) shows the input oriented CCR model in multiplier form which determines the maximum relative
efficiency of DMU𝑜 (𝑜 ∈ {1, . . . , 𝑛}) under constant return to scale:

𝜃*𝑜 = max
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑜

s.t.
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑜 = 1

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑣𝑖 ≥ 0 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 0 𝑟 = 1, . . . , 𝑠. (2.2)

Definition 2.1. DMU𝑜 is called efficient if 𝜃*𝑜 = 1, otherwise it’s called inefficient.

Model (2.2) is run separately for each DMU, and so the extracted set of optimal weights are individual per
DMU. The optimal value of 1 for Model (2.2) means that DMU𝑜 has the opportunity to gain the best relative
efficiency among the group of DMUs. Moreover, if there is also an optimal solution with totally positive weights,
then DMU𝑜 is called a CCR-efficient DMU.

2.2. Multi-objective programming problem

A multi-objective programming problem (MOP) can be written as follows:

max {𝑓1(𝑋), . . . , 𝑓𝑙(𝑋)}
s.t.

𝑋 ∈ 𝑆, (2.3)

where 𝑓𝑖(𝑋), 𝑖 = 1, . . . , 𝑙, are real valued functions on 𝑆, and 𝑆 ⊆ R𝑛. Usually, there is no optimal solution to
Model (2.3), and so a Pareto-optimal solution to Model (2.3), that is defined as follows, is searched instead.
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Definition 2.2. 𝑋 is said to be a Pareto-optimal solution to Model (2.3) whenever there is no 𝑋 ∈ 𝑆 such
that

𝑓𝑖(𝑋) ≥ 𝑓𝑖(𝑋), 𝑖 = 1, . . . , 𝑙

(𝑓1(𝑋), . . . , 𝑓𝑙(𝑋)) ̸=
(︀
𝑓1

(︀
𝑋

)︀
, . . . , 𝑓𝑙

(︀
𝑋

)︀)︀
.

Theorem 2.3. Let 𝛼𝑖 (𝑖 = 1, . . . , 𝑙) be positive parameters. Then each optimal solution to (2.4) is a Pareto-
optimal solution to (2.3).

max
𝑙∑︁

𝑖=1

𝛼𝑖𝑓𝑖(𝑋)

s.t.
𝑋 ∈ 𝑆. (2.4)

Proof. Refer to Hwang and Masud [27]. �

Model (2.3) is called a Multi Objective Linear programming problem (MOLP) when the objective functions
are linear and S can be represented as {𝑋|𝐴𝑋 ≤ 𝑏, 𝑋 ≥ 0}, where 𝐴 = [𝑎𝑖𝑗 ]𝑚×𝑛 is a real matrix and 𝑏 ∈ R𝑚.

3. The approach

In this section, at first, we explain how to consider DM’s preference information, and then the proposed
method to generate a CSW is presented.

3.1. Categorization of DM’s preference information

The DM’s preferences is an important element in the proposed method. The initial assumption of this method
is that DM assumes more importance for some indicators, so that he/she tends these indicators to have relatively
more impact on the assessment of DMUs. We call such indicators worthy indicators. The set of indices of worthy
input indicators is denoted by Φ𝐼 and that of worthy output indicators by Φ𝑂. The assumption of this method
is Φ𝐼 ∪Φ𝑂 ̸= ∅ (so, may Φ𝐼 = ∅ or Φ𝑂 = ∅). We call the information about the worthy indicators as preference
information of type I. In other hand, DM may have more information about the relative importance of some
indicators, too. We call such information, preference information of type II (it means the conventional weight
restrictions which is not a new notion). In our method, there is no necessarily for DM to state the type II exactly,
and it is sufficient to state only the range of their expected values. Now, we introduce the other notations used
in this regard in our approach. let 𝐼 = {1, . . . ,𝑚} and 𝑂 = {1, . . . , 𝑠} where 𝑚 and 𝑠 are the number of input
and output indicators, respectively. Γ𝐼 ⊆ 𝐼 × 𝐼 denotes the set of ordered pairs of input indicators which there
is some information about their relative importance. Then, Γ𝐼 is assumed to satisfy the following conditions:

– ∀𝑖 ∈ 𝐼, (𝑖, 𝑖) /∈ Γ𝐼 .
– ∀𝑖, 𝑘 ∈ 𝐼, ((𝑖, 𝑘) ∈ Γ𝐼 ⇒ (𝑘, 𝑖) /∈ Γ𝐼).
– If (𝑖, 𝑡) ∈ Γ𝐼 then at least one of the maximum or minimum of expected value for relative importance of the

𝑖th input indicator to the 𝑡th indicator is given by DM (it’s evident that if DM has determined an exact
value, the minimum and maximum are the same).

Also, Γ𝑂 ⊆ 𝑂 × 𝑂 is defined in a similar way. Γ𝐼𝑂 ⊆ 𝐼 × 𝑂 is a set of all (𝑖, 𝑟) for which there is some
information, about the relative importance of the 𝑖th input indicator to the 𝑟th output indicator, as mentioned
above. Γ𝑂𝐼 ⊆ 𝑂×𝐼 is defined in a similar way. In our method, it’s assumed that if (𝑖, 𝑟) ⊆ Γ𝐼𝑂 then (𝑟, 𝑖) /∈ Γ𝑂𝐼 .
It is noticeable that all of Γ𝐼 , Γ𝑂, Γ𝐼𝑂 and Γ𝑂𝐼 may be equal with ∅.
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3.2. The suggested model

Here, we present our proposed model to generate a CSW. In the model, it is intended to generate a CSW
satisfying the relative importance of the indicators in which the weights of the worthy indicators are maxi-
mum. Hence, DM’s preference information of type I is used in the objective function, and the DM’s preference
information of type II is used as the weight restrictions, if there are any.

Suppose that Φ𝐼 , Φ𝑂, Γ𝐼 , Γ𝑂, Γ𝐼𝑂 and Γ𝑂𝐼 are defined as it was discussed in the previous section. Then, the
initial model to generate a CSW, in general form, is considered as follows:

max {𝑢𝑟|𝑟 ∈ Φ𝑂} ∪ {𝑣𝑖|𝑖 ∈ Φ𝐼}
s.t. ∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑗∑︀𝑚
𝑖=1 𝑣𝑖𝑥𝑖𝑗

≤ 1 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1

𝛼𝑣
𝑖𝑘 ≤

𝑣𝑖

𝑣𝑘
≤ 𝛽𝑣

𝑖𝑘 ∀(𝑖, 𝑘) ∈ Γ𝐼

𝛼𝑢
𝑟𝑙 ≤

𝑢𝑟

𝑢𝑙
≤ 𝛽𝑢

𝑟𝑙 ∀(𝑟, 𝑙) ∈ Γ𝑂

𝛼𝑣𝑢
𝑖𝑟 ≤

𝑣𝑖

𝑢𝑟
≤ 𝛽𝑣𝑢

𝑖𝑟 ∀(𝑖, 𝑟) ∈ Γ𝐼𝑂

𝛼𝑢𝑣
𝑟𝑖 ≤

𝑢𝑟

𝑣𝑖
≤ 𝛽𝑢𝑣

𝑟𝑖 ∀(𝑟, 𝑖) ∈ Γ𝑂𝐼

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠. (3.1)

The parameters 𝛼𝑣
𝑖𝑘 and 𝛽𝑣

𝑖𝑘, (𝑖, 𝑘) ∈ Γ𝐼 , are used, respectively as the lower and the upper bounds for the
relative importance of the 𝑖th input indicator to the 𝑘th input indicator. There are similar explanations about
the parameters 𝛼𝑢

𝑟𝑙 and 𝛽𝑢
𝑟𝑙, (𝑟, 𝑙) ∈ Γ𝑂, 𝛼𝑣𝑢

𝑖𝑟 and 𝛽𝑣𝑢
𝑖𝑟 , (𝑖, 𝑟) ∈ Γ𝐼𝑂, and 𝛼𝑢𝑣

𝑟𝑖 and 𝛽𝑢𝑣
𝑟𝑖 , (𝑟, 𝑖) ∈ Γ𝑂𝐼 .

It is evident that if Γ𝐼 ∪ Γ𝑂 ∪ Γ𝐼𝑂 ∪ Γ𝑂𝐼 = ∅ then Model (3.1) contains no weight restrictions. It is an MOP
problem. 𝜖 is a non-Archimedean infinitesimal constant which prevents the weights to become zero. In fact, as it
is seen later, the absolute efficiencies calculated based upon the generated CSW have a pivotal affection on the
ranking scores, and so we would like to involve all of the input and output indicators in the assessment. In other
words, if some of the weights in the generated CSW is equal to zero, the role of the corresponding indicator would
be ignored in the in the continuation of the ranking process. Also, since the last batch constraints guarantee
that the input and output weights are positive, the model can be equivalently rewritten as the MOLP (3.2),
because of the non-zero denominators:

max {𝑢𝑟|𝑟 ∈ Φ𝑂} ∪ {𝑣𝑖|𝑖 ∈ Φ𝐼}
s.t.

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1

𝛼𝑣
𝑖𝑡𝑣𝑡 − 𝑣𝑖 ≤ 0 ∀(𝑖, 𝑡) ∈ Γ𝐼

𝑣𝑖 − 𝛽𝑣
𝑖𝑡𝑣𝑡 ≤ 0 ∀(𝑖, 𝑡) ∈ Γ𝐼

𝛼𝑢
𝑟𝑙𝑢𝑙 − 𝑢𝑟 ≤ 0 ∀(𝑟, 𝑙) ∈ Γ𝑂
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𝑢𝑟 − 𝛽𝑢
𝑟𝑙𝑢𝑙 ≤ 0 ∀(𝑟, 𝑙) ∈ Γ𝑂

𝛼𝑣𝑢
𝑖𝑟 𝑢𝑟 − 𝑣𝑖 ≤ 0 ∀(𝑖, 𝑟) ∈ Γ𝐼𝑂

𝑣𝑖 − 𝑢𝑟𝛽
𝑣𝑢
𝑖𝑟 ≤ 0 ∀(𝑖, 𝑟) ∈ Γ𝐼𝑂

𝛼𝑢𝑣
𝑟𝑖 𝑣𝑖 − 𝑢𝑟 ≤ 0 ∀(𝑟, 𝑖) ∈ Γ𝑂𝐼

𝑢𝑟 − 𝑣𝑖𝛽
𝑢𝑣
𝑟𝑖 ≤ 0 ∀(𝑟, 𝑖) ∈ Γ𝑂𝐼

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠. (3.2)

According to Theorem 2.3, an optimal solution to the linear programming problem (3.3) is a Pareto-optimal
solution to Model (3.2).

max
∑︁

𝑟∈Φ𝑂

𝛾𝑢
𝑟 𝑢𝑟 +

∑︁
𝑖∈Φ𝐼

𝛾𝑣
𝑖 𝑣𝑖

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛 (i)

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1 (ii)

(𝑈, 𝑉 )𝐴 ≤ 0 (iii)
𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚 (vi)
𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠 (v), (3.3)

where the parameters 𝛾𝑣
𝑖 > 0 (𝑖 ∈ Φ𝐼) and 𝛾𝑢

𝑟 > 0 (𝑟 ∈ Φ𝑂) specify the priority among the indicators of
Φ𝐼 ∪ Φ𝑂. If DM assumes no priority among the indicators, then all of these parameters are set to 1. The
constraint (i) makes the absolute efficiencies of the DMUs to be less than or equal to 1. The constraint (ii)
is a normalizing constraint which, as we show later, also guarantees that Model (3.3) has a finite optimal
value. If Γ𝐼 ∪ Γ𝑂 ∪ Γ𝐼𝑂 ∪ Γ𝑂𝐼 ̸= ∅, 𝐴(𝑠+𝑚)𝑞 is a matrix corresponding with the weight restrictions, where
0 < 𝑞 ≤ 2 (|Γ𝐼 |+ |Γ𝑂|+ |Γ𝐼𝑂|+ |Γ𝑂𝐼 |). If we have the weight restriction 𝛼𝑣

𝑖𝑘𝑣𝑘−𝑣𝑖 ≤ 0, (𝑖, 𝑘) ∈ Γ𝐼 , in the model,
there is corresponding column 𝛼𝑣

𝑖𝑘𝑒𝑠+𝑘 − 𝑒𝑠+𝑖, and if we have the weight restriction 𝑣𝑖 − 𝛽𝑣
𝑖𝑘𝑣𝑘 ≤ 0, (𝑖, 𝑘) ∈ Γ𝐼 ,

in the model, then there is corresponding column 𝑒𝑠+𝑖 − 𝛽𝑣
𝑖𝑘𝑒𝑠+𝑘 in Matrix 𝐴. Other columns of Matrix 𝐴 are

also based upon the weight restrictions related to Γ𝑂, Γ𝐼𝑂 and Γ𝑂𝐼 similar to what was stated about Γ𝐼 . It is
trivial that in the absence of the weight restrictions, the constraints (iii) is omitted.

The optimal solution to Model (3.3) is accepted as the common set of weights. It is considerable to state
a general issue encountering ranking methods using common weights: Since the ranking methods are usually
dependent on the generated CSW, having alternative optimal solutions may lead to different ranking results.
Thus, an extra model can be solved to ensure that only one of the optimal solutions is considered as the CSW.
For example, see Liu and Peng [34] and Sun et al. [48]. To this aim, we use the criterion presented by Sun et al.
[48] to choose one of the optimal solutions of Model (3.3) as the CSW.

As it is discussed in the following, in the absence of DM’s preference information of type II, Model (3.3) is
feasible for a small enough 𝜖. It is clear that the feasibility of Model (3.3) depends on the weight restrictions,
too.

Lemma 3.1. Let
∑︀𝑠

𝑟=1 𝑦𝑟𝑗 −
∑︀𝑚

𝑖=1 𝑥𝑖𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛, and 𝑈 = 1
𝑚+𝑠1𝑡

𝑠, 𝑉 = 1
𝑚+𝑠1𝑡

𝑚, 𝜖 = 1
𝑚+𝑠 , where all of

the components of 1𝑠 ∈ R𝑠 and 1𝑚 ∈ R𝑚 are equal to 1.
Then (𝑈 , 𝑉 , 𝜖) is a feasible solution to (3.3) in the absence of DM’s preference information of type II.
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Proof.
∑︀𝑠

𝑟=1 𝑢𝑟𝑦𝑟𝑗 −
∑︀𝑚

𝑖=1 𝑣𝑖𝑥𝑖𝑗 = 1
𝑚+𝑠 (

∑︀𝑠
𝑟=1 𝑦𝑟𝑗 −

∑︀𝑚
𝑖=1 𝑥𝑖𝑗) ≤ 0. It’s easily seen that (𝑈, 𝑉 , 𝜖) satisfies the

rest of the constraints to Model (3.3) in the absence of DM’s preference information of type II, and we are
done. �

Lemma 3.2. Let ∃𝑗 ∈ {1, . . . , 𝑛} :
∑︀𝑠

𝑟=1 𝑦𝑟𝑗 −
∑︀𝑚

𝑖=1 𝑥𝑖𝑗 > 0 and 𝑈 = 𝛼
𝑠𝛼+𝑚1𝑡

𝑠,𝑠𝑉 = 1
𝑠𝛼+𝑚1𝑡

𝑚, 𝜖 = 𝛼
𝑠𝛼+𝑚 ,

where 𝛼 = min𝑗=1,...,𝑛

∑︀𝑚
𝑖=1 𝑥𝑖𝑗∑︀𝑠
𝑟=1 𝑦𝑟𝑗

, Then (𝑈, 𝑉 , 𝜖) is a feasible solution to (3.3) in the absence of DM’s preference
information of type II.

Proof. ∀𝑗 ∈ {1, . . . , 𝑛}, (0 < 𝛼 = min𝑡=1,...,𝑛

∑︀𝑚
𝑖=1 𝑥𝑖𝑡∑︀𝑠
𝑟=1 𝑦𝑟𝑡

≤
∑︀𝑚

𝑖=1 𝑥𝑖𝑗∑︀𝑠
𝑟=1 𝑦𝑟𝑗

⇒ 1
𝑠𝛼+𝑚𝛼 ≤ 1

𝑠𝛼+𝑚

∑︀𝑚
𝑖=1 𝑥𝑖𝑗∑︀𝑠
𝑟=1 𝑦𝑟𝑗

⇒
1

𝑠𝛼+𝑚𝛼
∑︀𝑠

𝑟=1 𝑦𝑟𝑗 ≤ 1
𝑠𝛼+𝑚

∑︀𝑚
𝑖=1 𝑥𝑖𝑗 ⇒

∑︀𝑠
𝑟=1

𝛼
𝑠𝛼+𝑚𝑦𝑟𝑗 −

∑︀𝑚
𝑖=1

1
𝑠𝛼+𝑚𝑥𝑖𝑗 ≤ 0).

Also,
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑚∑︁

𝑖=1

𝑣𝑖 =
𝑠∑︁

𝑟=1

𝛼

𝑠𝛼 + 𝑚
+

𝑚∑︁
𝑖=1

1
𝑠𝛼 + 𝑚

= 𝑠
𝛼

𝑠𝛼 + 𝑚
+ 𝑚

1
𝑠𝛼 + 𝑚

= 1.

Besides, according to the assumption,

∃𝑙 ∈ {1, . . . , 𝑛} :
𝑠∑︁

𝑟=1

𝑦𝑟𝑙 −
𝑚∑︁

𝑖=1

𝑥𝑖𝑙 > 0 ⇒
∑︀𝑚

𝑖=1 𝑥𝑖𝑙∑︀𝑠
𝑟=1 𝑦𝑟𝑙

< 1 ⇒ 𝛼 = min
𝑗=1,...,𝑛

∑︀𝑚
𝑖=1 𝑥𝑖𝑗∑︀𝑠
𝑟=1 𝑦𝑟𝑗

≤
∑︀𝑚

𝑖=1 𝑥𝑖𝑙∑︀𝑠
𝑟=1 𝑦𝑟𝑙

< 1.

Hence, 𝜖 = 𝛼
𝑠𝛼+𝑚 < 1

𝑠𝛼+𝑚 .

It’s easily seen that (𝑈, 𝑉 , 𝜖) satisfies the rest of the constraints to Model (3.3) in the absence of DM’s
preference information of type II, and we are done. �

Theorem 3.3. In the absence of DM’s preference information of type II, Model (3.3) is feasible for a small
enough 𝜖.

Proof. According to Lemmas 3.1 and 3.2, we consider two general cases, as follows:

Case 1.
𝑠∑︁

𝑟=1

𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑥𝑖𝑗 ≤ 0, 𝑗 = 1, . . . , 𝑛.

According to Lemma 3.1, it’s easily seen that: (𝑈1, 𝑉1, 𝜖), where 𝑈1 = 1
𝑚+𝑠1

𝑡
𝑠, 𝑉1 = 1

𝑚+𝑠1
𝑡
𝑚, 0 < 𝜖 ≤ 𝜖1 = 1

𝑚+𝑠
is a feasible solution to the model.

Case 2.

∃𝑗 ∈ {1, . . . , 𝑛} :
𝑠∑︁

𝑟=1

𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑥𝑖𝑗 > 0.

According to Lemma 3.2, it’s easily seen that: (𝑈2, 𝑉2, 𝜖), where 𝑈2 = 𝛼
𝑠𝛼+𝑚1𝑡

𝑠, 𝑉2 = 1
𝑠𝛼+𝑚1𝑡

𝑚, 0 < 𝜖 ≤ 𝜖2 =
𝛼

𝑠𝛼+𝑚 is a feasible solution to the model.

Therefore, in the absence of DM’s preference information of type II, in general, for each 𝜖 where, 0 < 𝜖 ≤
min {𝜖1, 𝜖2}, Model (3.3) is feasible, and we are done. �

For further discussions in this regards, one can see Mehrabian et al. [36], Amin and Toloo [4].

Theorem 3.4. In feasibility, Model (3.3) has a finite optimal objective value.

Proof. Let S be the feasible region of Model (3.3) and (𝑈, 𝑉 ) ∈ 𝑆 be an arbitrary feasible solution to it, where
𝑈

𝑡 ∈ R𝑠 and 𝑉
𝑡 ∈ R𝑚. As a consequence of the constraint (ii) and the constraints (iv) and (v), and the

assumption that at least one input indicator and one output indicator exist in evaluation process:

0 < 𝑣𝑖 < 1 𝑖 = 1, . . . ,𝑚
0 < 𝑢𝑟 < 1 𝑟 = 1, . . . , 𝑠.

(3.4)
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According to (3.4) and the positivity of 𝛾𝑢
𝑟 (𝑟 ∈ Φ𝑂) and 𝛾𝑣

𝑖 (𝑖 ∈ Φ𝐼):∑︁
𝑖∈Φ𝐼

𝛾𝑣
𝑖 𝑣𝑖 +

∑︁
𝑟∈Φ𝑂

𝛾𝑢
𝑟 𝑢𝑟 <

∑︁
𝑖∈Φ𝐼

𝛾𝑣
𝑖 +

∑︁
𝑟∈Φ𝑂

𝛾𝑢
𝑟 .

We set 𝑀 =
∑︀

𝑖∈Φ𝐼
𝛾𝑣

𝑖 +
∑︀

𝑟∈Φ𝑂
𝛾𝑢

𝑟 . Thus, 𝑀 is an upper bound for the set of objective values of Model
(3.3). Therefore, in feasibility, Model (3.3) has a finite optimal objective value. �

3.3. The developed model in the absence of DM’s preference information

As it is mentioned earlier, Model (3.3) is based upon a pivot assumption of the presence of DM’s preference
information of type I. However, in the absence of such information, the model can be slightly modified to be
used indirectly with respect to the conventional objective of generating a CSW maximizing the efficiencies of
DMUs. To this aim we set Φ𝑂 = {1, . . . , 𝑠} and Φ𝐼 = ∅. That is Φ = Φ𝑜. Model (3.5) is the modified model to
deal with the circumstance lacking of any DM’s preference information.

max {𝑢𝑟|𝑟 ∈ 𝑂}
s.t.

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠. (3.5)

With regard to Theorem 2.3, Model (3.5) can be rewritten as follows:

max
𝑠∑︁

𝑟=1

𝑢𝑟

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠. (3.6)

The explanations about the constraints is similar to those of Model (3.3) so it is ignored. It is evident that if
there are any weight restrictions, they can be added to the set of the constants to Model (3.4).

3.4. The ranking approach

In our method, DM’s preference information is also regarded in the ranking procedure.
For ranking the DMUs, firstly, the absolute efficiency of each DMU is calculated based upon the generated

CSW. Let (𝑈*, 𝑉 *) be the generated CSW. The absolute efficiency of DMU𝑗 (𝑗 = 1, . . . , 𝑛), based upon the
CSW is:

𝐸*𝑗 =
∑︀𝑠

𝑟=1 𝑢*𝑟𝑦𝑟𝑗∑︀𝑚
𝑖=1 𝑣*𝑖 𝑥𝑖𝑗

·
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The greater value of 𝐸*𝑗 , the greater ranking score of DMU𝑗 . It is notable that in the case of existing two DMUs
with the same efficiency of less than 1, it is usually removed through increasing decimal accuracy. However, we
present the following general approach.

Considering Φ ̸= ∅, if there are two DMUs with the same efficiencies, we utilize a second ranking criterion to
help to prioritize of them. To this aim, we concentrate on the state of the units in terms of the worthy indicators
for DM. Since the DM’s preference information of type I may contain only some input indicators, only some
output indicators, or both of them, the definition of the second criterion depends on the indicators existing in
this type of information, as follows:

(I) If Φ𝐼 = ∅ then Φ = Φ𝑂 ⊂ {1, . . . , 𝑠}. In this case, if it is required, the second criterion for assessment of
DMU𝑗 (𝑗 = 1, . . . , 𝑛) is defined as:

𝜂𝑗 =
∑︁

𝑟∈Φ𝑂

𝑢*𝑟𝑦𝑟𝑗 .

(II) If Φ𝑂 = ∅, Φ = Φ𝐼 ⊆ {1, . . . ,𝑚}. In this case, if it is required, the second criterion for assessment of
DMU𝑗 (𝑗 = 1, . . . , 𝑛) is defined as:

𝜂𝑗 = −
∑︁
𝑖∈Φ𝐼

𝑣*𝑖 𝑥𝑖𝑗 .

(III) If Φ𝐼 ̸= ∅,Φ𝑂 ̸= ∅, Φ contains some input and some output indicator indices. In this case, if it is required,
the criterion for assessment of DMU𝑗 (𝑗 = 1, . . . , 𝑛) is defined as:

𝜂𝑗 =

∑︀
𝑟∈Φ𝑂

𝑢*𝑟𝑦𝑟𝑗∑︀
𝑖∈Φ𝐼

𝑣*𝑖 𝑥𝑖𝑗
·

In the last case, 𝜂𝑗 is a ratio that can be interpreted as the absolute efficiency of DMU𝑗 based on the
worthy indicators. It is significant that, unlike 𝐸*𝑗 , 1 is not an upper bound for 𝜂𝑗 . Besides, it is noticeable
that

∑︀
𝑖∈Φ𝐼

𝑣*𝑖 𝑥𝑖𝑗 may be equal to zero. In this case, actually, DMU𝑗 consumes none of the worthy inputs, that
it is great. In our method, if this statement occurs for only one of two units under comparison, the unit is
preferred to the other. If the situation occurs for both of them, they are compared in terms of the valuable
output indicators, and the second criterion is defined as

𝜂𝑗 =
∑︁

𝑟∈Φ𝑂

𝑢*𝑟𝑦𝑟𝑗 .

Eventually, considering the above discussion, our ranking rules can be stated as follows: Let 𝑖, 𝑗 ∈ {1, . . . , 𝑛}
and 𝑅𝑖 and 𝑅𝑗 denotes the ranking scores of DMU𝑖 and DMU𝑗 , respectively.

Then:

(1) If 𝐸*𝑖 < 𝐸*𝑗 then 𝑅𝑖 < 𝑅𝑗 .
(2) If 𝐸*𝑖 = 𝐸*𝑗 then

{︁𝑅𝑖 < 𝑅𝑗 Φ𝐼 , Φ𝑂 ̸= ∅,
∑︀

𝑘∈Φ𝐼
𝑥𝑘𝑗 = 0,

∑︀
𝑘∈Φ𝐼

𝑥𝑘𝑖 ̸= 0
If 𝜂𝑖 < 𝜂𝑗 then 𝑅𝑖 < 𝑅𝑗 otherwise.

4. The development in encountering with the interval data and flexible
measures

We aim to implement our approach on a sample presented in Section 6. To this aim, it is required that the
approach is developed in encountering with interval data and flexible measures.
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4.1. Dealing with interval data

Let {DMU1, . . . , DMU𝑛} be 𝑛 homogeneous DMUs each of which associated with 𝑚 inputs and 𝑠 outputs.
The amounts of the 𝑖th input and the 𝑟th output for DMU𝑗 (𝑗 = 1, . . . , 𝑛) are generally denoted by 𝑥𝑖𝑗 and
𝑦𝑟𝑗 , respectively. Besides, it is assumed that their value lie in the intervals of

[︀
𝑥𝑙

𝑖𝑗 , 𝑥
𝑢
𝑖𝑗

]︀
and

[︀
𝑦𝑙

𝑟𝑗 , 𝑦
𝑢
𝑟𝑗

]︀
(𝑖 =

1, . . . ,𝑚, 𝑟 = 1, . . . , 𝑠), respectively, satisfying the following conditions:

(I) ∀𝑗 ∈ {1, . . . , 𝑛} ∀𝑖 ∈ {1, . . . ,𝑚} (0 ≤ 𝑥𝑙
𝑖𝑗 ≤ 𝑥𝑢

𝑖𝑗)
(II) ∀𝑗 ∈ {1, . . . , 𝑛} ∀𝑟 ∈ {1, . . . , 𝑠} (0 ≤ 𝑦𝑙

𝑟𝑗 ≤ 𝑦𝑢
𝑟𝑗)

(III) ∀𝑗 ∈ {1, . . . , 𝑛} ∃𝑖 ∈ {1, . . . ,𝑚} (𝑥𝑙
𝑖𝑗 > 0)

(IV) ∀𝑗 ∈ {1, . . . , 𝑛} ∃𝑟 ∈ {1, . . . , 𝑠} (𝑦𝑙
𝑟𝑗 > 0)

(V) ∀𝑖 ∈ {1, . . . ,𝑚} ∃𝑗 ∈ {1, . . . , 𝑛} (𝑥𝑢
𝑖𝑗 > 0)

(VI) ∀𝑟 ∈ {1, . . . , 𝑠} ∃𝑗 ∈ {1, . . . , 𝑛} (𝑦𝑢
𝑟𝑗 > 0).

Conditions III and IV conclude that per activity level of each DMU, the vectors of inputs and outputs are not
equal to zero. Besides, given a positive set of weights, it guarantees that the absolute efficiency of each DMU
always is definable.
Hint: The best (worst) activity level of DMU𝑗 occurs when the amounts of input and output indicators for it
are, respectively, minimum (maximum) and maximum (minimum).

Equation (4.1) is the developed model to obtain a CSW in the presence of interval data:

max {𝑢𝑟|𝑟 ∈ Φ𝑂} ∪ {𝑣𝑖|𝑖 ∈ Φ𝐼}
s.t.

𝑠∑︁
𝑟=1

𝑢𝑟𝑦
𝑢
𝑟𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1

(𝑈, 𝑉 )𝐴 ≤ 0
𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠. (4.1)

Regarding Theorem 2.3 each optimal solution to Model (4.2) is a Pareto-efficient solution to Model (4.1).

max
∑︁

𝑟∈Φ𝑂

𝛾𝑢
𝑟 𝑢𝑟 +

∑︁
𝑖∈Φ𝐼

𝛾𝑣
𝑖 𝑣𝑖

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦
𝑢
𝑟𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 = 1

(𝑈, 𝑉 )𝐴 ≤ 0
𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠, (4.2)

where the parameters 𝛾𝑣
𝑖 > 0 (𝑖 ∈ Φ𝐼) and 𝛾𝑢

𝑟 > 0 (𝑟 ∈ Φ𝑂) are as already explained. Since, for any 0 < (𝑈, 𝑉 ),
we have:

𝑠∑︁
𝑟=1

𝑢𝑟𝑦
𝑙
𝑟𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑗 ≤

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 ≤
𝑠∑︁

𝑟=1

𝑢𝑟𝑦
𝑢
𝑟𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑗 .
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The constraint
∑︀𝑠

𝑟=1 𝑢𝑟𝑦
𝑢
𝑟𝑗−

∑︀𝑚
𝑖=1 𝑣𝑖𝑥

𝑙
𝑖𝑗 ≤ 0 (𝑗 = 1, . . . , 𝑛) allows the most extensive search for the weights placed

on the objective function compared to other activity levels. It is also concluded that the absolute efficiencies of
each DMU, considering all of its activity levels, based upon each feasible solution do not exceed one. Matrix 𝐴
is defined similar to what was explained in Model (3.3). For determining one CSW the criterion used in Sun
et al. [48] is utilized on optimal solutions to Model (4.1).

In this case, the ranking criterion is the absolute efficiency of DMUs based upon the average data of them
and extracted CSW. Hence we set:

𝑋𝑗 =
1
2
(︀
𝑋 𝑙

𝑗 + 𝑋𝑢
𝑗

)︀
𝑌 𝑗 =

1
2
(︀
𝑌 𝑙

𝑗 + 𝑌 𝑢
𝑗

)︀
and calculate

𝐸𝑗 =

∑︀
𝑟∈Φ𝑂

𝑢*𝑟𝑦𝑟𝑗∑︀
𝑖∈Φ𝐼

𝑣*𝑖 𝑥𝑖𝑗
,

where (𝑈*, 𝑉 *) is the generated CSW. In the case of Φ ̸= ∅, we can consider the same discussions as we had in
Section 3.4. Here, 𝜂𝑗 is calculated similar to 𝜂𝑗 , but based on the average data.

Hence, the developed ranking method in presence of interval data can be presented as the following.
Let 𝑖, 𝑗 ∈ {1, . . . , 𝑛} and 𝑅𝑖 and 𝑅𝑗 denote the ranking scores of DMU𝑖 and DMU𝑗 , respectively.
Then:

(1) If 𝐸
*
𝑖 < 𝐸

*
𝑗 then 𝑅𝑖 < 𝑅𝑗 .

(2) If 𝐸
*
𝑖 = 𝐸

*
𝑗 then{︂

𝑅𝑖 < 𝑅𝑗 Φ𝐼 , Φ𝑂 ̸= ∅,
∑︀

𝑘∈Φ𝐼
𝑥𝑘𝑗 = 0,

∑︀
𝑘∈Φ𝐼

𝑥𝑘𝑖 ̸= 0
If 𝜂𝑖 < 𝜂𝑗 then 𝑅𝑖 < 𝑅𝑗 otherwise.

In the absence of DM’s preference information, there is a similar discussion as presented in Section 3.3, so
we ignore the details.

4.2. Dealing with flexible measures

In the sample, which shall be discussed in Section 6, we face with a bank assessment case. The deposit is
considered in the assessment, but, in general, there is two points of view to involve it. First, since the deposit
should be invested within special periods, it can be regarded as an input for a bank branch. In the other hand,
considering the fact that deposit is gained through personnel and advertisement, it can also be considered as an
output. In classic models, it is assumed that the nature of the indicators, including inputs and output ones are
already clear; however, regarding empirical issues, in some circumstance, there are indicators in the assessment
upon the nature of which there is disagreement. Therefore, it is important to consider “flexible measures” as
well.

Now, assume that there are 𝑚 determined input indicators and 𝑠 determined output indicators. Also, assume
that 𝑓 shows the number of the indicators which are flexible and each can be used as an input or output indicator
in the evaluation process. In Model (3.3), the role assignment of the flexible indicators is done in such a way
that the best result is obtained for the target weights in the objective function. These indicators can appear in
the preference information, so the new symbols are defined as follows.

Assume that 𝐹 = {1, . . . , 𝑓}, where 𝑓 ∈ N, is the set of flexible indicators. We define:

Φ𝐹 : The set of valuable indicators which are important for the DM in assessment but their natures are not
determined.
We call them valuable flexible indicators.
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Furthermore, Γ𝐹 ⊆ 𝐹 × 𝐹 , Γ𝐼𝐹 ⊆ 𝐼 × 𝐹 , Γ𝐹𝐼 ⊆ 𝐹 × 𝐼, Γ𝑂𝐹 ⊆ 𝑂 × 𝐹 and Γ𝐹𝑂 ⊆ 𝐹 × 𝑂 have the same
condition similar to what stated about Γ𝐼 , Γ𝑂, Γ𝐼𝑂 and Γ𝑂𝐼 . Model (4.3) is to generate a CSW with the aim
of maximizing the weights of the indicators whose indices belong to Φ = Φ𝐼 ∪Φ𝑂 ∪Φ𝐹 considering the various
states of flexible indicators:

max {𝑢𝑟|𝑟 ∈ Φ𝑂} ∪ {𝑣𝑖|𝑖 ∈ Φ𝐼} ∪ {𝑤𝑘|𝑘 ∈ Φ𝐹 }
s.t.

𝑠∑︁
𝑟=1

𝑢𝑟𝑦𝑟𝑗 +
𝑓∑︁

𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑘𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝑓∑︁

𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑘𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

𝑤𝑘 = 1

(𝑈, 𝑉 )𝐵 ≤ 0
𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠

𝑤𝑘 ≥ 𝜖 𝑘 = 1, . . . , 𝑓

𝜎𝑘 ∈ {0, 1} 𝑘 = 1, . . . , 𝑓. (4.3)

Model (4.4) is solved to find a Pareto-efficient solution to Model (4.3).

max
∑︁

𝑟∈Φ𝑂

𝛾𝑢
𝑟 𝑢𝑟 +

∑︁
𝑖∈Φ𝐼

𝛾𝑣
𝑖 𝑣𝑖 +

∑︁
𝑘∈Φ𝐹

𝛾𝑤
𝑘 𝑤𝑘

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑗 +
𝑓∑︁

𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑘𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝑓∑︁

𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑘𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

𝑤𝑘 = 1

(𝑈, 𝑉 )𝐵 ≤ 0
𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠

𝑤𝑘 ≥ 𝜖 𝑘 = 1, . . . , 𝑓

𝜎𝑘 ∈ {0, 1} 𝑘 = 1 . . . , 𝑓, (4.4)

where the parameters 𝛾𝑢
𝑟 > 0 (𝑟 ∈ Φ𝑂), 𝛾𝑣

𝑖 > 0 (𝑖 ∈ Φ𝐼) and 𝛾𝑤
𝑘 > 0 (𝑘 = 1, . . . , 𝑓) are positive, and there is a

similar explanation as before. In the first constraint, the value 0 for the binary variable 𝜎𝑘(𝑘 = 1, . . . , 𝑓) causes
the 𝑘th flexible indicator to be considered as an input indicator, and the value 1 for this variable causes that the
indicator is considered as an output indicator. In the normalizing constraint

∑︀𝑚
𝑖=1 𝑣𝑖 +

∑︀𝑠
𝑟=1 𝑢𝑟 +

∑︀𝑓
𝑘=1 𝑤𝑘 = 1,

regardless of the role of the flexible indicators, the weights of all indicators are considered. In the presence
of preference information of type II, 𝐵(𝑚+𝑠)𝑔 is the matrix related to the weight restrictions where 0 < 𝑔 ≤
2(|Γ𝐼 | + |Γ𝑂| + |Γ𝐹 | + |Γ𝐼𝑂| + |Γ𝑂𝐼 | + |Γ𝐼𝐹 | + |Γ𝐹𝐼 | + |Γ𝑂𝐹 | + |Γ𝐹𝑂|). Explanations about columns of 𝐵 are
similar to what was stated in Model (3.3), for Matrix 𝐴.

After obtaining a CSW and the corresponding 𝜎*, the state of each flexible measure is determined as an
input or output indicator. Afterwards, accordingly, the ranking approach presented in Section 3 can be used.
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Also, in this case, in the absence of DM’s preference information, we can use Model (4.5).

max
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

𝜎𝑘𝑤𝑘

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦𝑟𝑗 +
𝑓∑︁

𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑘𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖𝑥𝑖𝑗 −
𝑓∑︁

𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑘𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

𝑤𝑘 = 1

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠

𝑤𝑘 ≥ 𝜖 𝑘 = 1, . . . , 𝑓

𝜎𝑘 ∈ {0, 1} 𝑘 = 1 . . . , 𝑓. (4.5)

The repetitive matters are ignored for abridgment.

4.3. The developed approach dealing with flexible measures and interval data,
simultaneously

Here, eventually, regarding with Sections 4.1 and 4.2, the developed versions of the Models (3.3) and (3.6) in
simultaneous presence of interval data and flexible measures are presented. The Models (4.6) and (4.7) show,
respectively, the developed models, as follows:

max
∑︁

𝑟∈Φ𝑂

𝛾𝑢
𝑟 𝑢𝑟 +

∑︁
𝑖∈Φ𝐼

𝛾𝑣
𝑖 𝑣𝑖 +

∑︁
𝑘∈Φ𝐹

𝛾𝑤
𝑘 𝑤𝑘

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦
𝑢
𝑟𝑗 +

𝑓∑︁
𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑢
𝑘𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑗 −

𝑓∑︁
𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑙
𝑘𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

𝑤𝑘 = 1

(𝑈, 𝑉 )𝐵 ≤ 0
𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠

𝑤𝑘 ≥ 𝜖 𝑘 = 1, . . . , 𝑓

𝜎𝑘 ∈ {0, 1} 𝑘 = 1 . . . , 𝑓. (4.6)

The explanations about the previously mentioned notations and the constraints to these models are ignored.

max
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

(𝜎𝑘𝑤𝑘)

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦
𝑢
𝑟𝑗 +

𝑓∑︁
𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑢
𝑘𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑗 −

𝑓∑︁
𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑙
𝑘𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛
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𝑚∑︁
𝑖=1

𝑣𝑖 +
𝑠∑︁

𝑟=1

𝑢𝑟 +
𝑓∑︁

𝑘=1

𝑤𝑘 = 1

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠

𝑤𝑘 ≥ 𝜖 𝑘 = 1, . . . , 𝑓

𝜎𝑘 ∈ {0, 1} 𝑘 = 1 . . . , 𝑓. (4.7)

After obtaining a CSW and the corresponding 𝜎*, the flexible measures are classified as input or output indi-
cators, accordingly. Afterwards, the ranking approach presented in Section 4.1 can be used in this regard.

5. A model for comparison

Shirdel et al. [47] proposed a method using common weights methodology in interval DEA. They presented a
linear programming whose aim was generally to maximize possible efficiencies of DMUs. We aim to utilize the
model in Section 6, for comparison purpose, so it is developed to deal with flexible measures, too:

min
𝑛∑︁

𝑗=1

∆𝑗

s.t.
𝑠∑︁

𝑟=1

𝑢𝑟𝑦
𝑢
𝑟𝑗 +

𝑓∑︁
𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑢
𝑘𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑙
𝑖𝑗 −

𝑓∑︁
𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑙
𝑘𝑗 ≤ 0 𝑗 = 1, . . . , 𝑛

𝑠∑︁
𝑟=1

𝑢𝑟𝑦
𝑙
𝑟𝑗 +

𝑓∑︁
𝑘=1

𝜎𝑘𝑤𝑘𝑧𝑙
𝑘𝑗 −

𝑚∑︁
𝑖=1

𝑣𝑖𝑥
𝑢
𝑖𝑗 −

𝑓∑︁
𝑘=1

(1− 𝜎𝑘)𝑤𝑘𝑧𝑢
𝑘𝑗 + ∆𝑗 = 0 𝑗 = 1, . . . , 𝑛

𝑠∑︁
𝑟=1

𝑢𝑟 +
𝑚∑︁

𝑖=1

𝑣𝑖 +
𝑓∑︁

𝑘=1

𝑤𝑘 = 1

𝑣𝑖 ≥ 𝜖 𝑖 = 1, . . . ,𝑚

𝑢𝑟 ≥ 𝜖 𝑟 = 1, . . . , 𝑠 (5.1)
𝑤𝑘 ≥ 𝜖 𝑘 = 1, . . . , 𝑓

∆𝑗 ≥ 0, 𝑗 = 1 . . . , 𝑛, (5.2)

where 𝑧𝑙
𝑘𝑗 and 𝑧𝑢

𝑘𝑗 (𝑘 = 1, . . . , 𝑓, 𝑗 = 1, . . . , 𝑛) are respectively the lower and the upper bounds for possible
values of the 𝑘th flexible indicator for DMU𝑗 . In general, Shirdel et al.’s model [47] searches a set of weights for
maximizing the minimum possible efficiencies of DMUs. The utilized criterion to the aim, is reducing the sum of
the differences between the virtual input and the virtual output of each DMU. Considering the binary variables,
Model (5.1) results in the role of the flexible indicators such that the best value of the objective function is
obtained in that regard.

6. An implementation

In this section, we implement our method on a data set regarding with 20 bank branches. In this assessment,
there are 5 indicators such that one of which, the number of employees, is considered as the input indicator
and two of which, overdue claims and facilities are considered as output indicators. However, the nature of the
indicators called long term deposit and short term deposit are not certainly determined in the evaluation and
each can be assumed as either input or output indicator. As Tables 1 and 2 show, all data, except the number
of employees, lie on intervals. In this assessment, the relative importance of the indicators are as follows.
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Table 1. The lower bounds of the input and the output data for 20 bank branches.

Input
indicator

Flexible indicators Output indicators

Branch
Number of
employees

Long term
deposit

Short term
deposit

Overdue claims Bank facilities

Branch1 15.000000 424 085.145762 157 283.362123 39 843.721262 322 747.771492
Branch2 9.000000 374 045.099068 89 838.121176 12 340.569773 144 391.329348
Branch3 6.000000 272 441.286265 119 993.069296 204 031.942946 381 015.800768
Branch4 20.000000 986 544.089113 340 478.751349 3 702 565.232068 7 855 541.444198
Branch5 9.000000 507 890.702777 104 023.162299 2879.933429 108 510.930129
Branch6 14.000000 543 741.711707 20 9541.407905 75 497.965243 198 680.975304
Branch7 8.000000 250 750.353931 57 335.476633 8721.794733 599 950.459124
Branch8 7.000000 426 046.527359 110 196.428917 85 315.111789 218 010.809051
Branch9 8.000000 172 666.090163 42 151.649983 44 195.022432 637 241.633455
Branch10 10.000000 289 024.173029 115 741.614866 819.690216 150 535.604490
Branch11 6.000000 348 117.122916 62 261.426017 4745.379920 71 511.933991
Branch12 10.000000 263 567.349128 98 449.128721 4425.208192 127 006.847451
Branch13 8.000000 340 278.263721 89 317.266523 2340.818321 99 012.127951
Branch14 11.000000 475 521.480993 102 739.128638 4737.110679 111 719.796293
Branch15 6.000000 300 718.771310 77 939.902709 1940.101841 70 078.601997
Branch16 8.000000 388 112.347310 46 204.948147 111.025198 46 433.402147
Branch17 9.000000 378 903.708892 85 088.934728 1421.888185 62 713.114504
Branch18 11.000000 233 398.510066 100 612.697638 3294.043292 141 923.094758
Branch19 6.000000 218 132.410225 56 077.736958 408.734792 33 962.239739
Branch20 15.000000 1 525 958.154615 173 734.450856 5726.595924 436 243.245887

The relative importance of the overdue claims rather than the bank facilities is considered between 1 and 1.5,
that of the short term deposit rather than the bank facilities is between 2 and 3, and that of the bank facilities
rather than the long term deposit is between 0.5 and 1.

The overdue claims indicator has an important role in bank performance assessment because a bank branch
can improve its resources and capital by collecting overdue claims, and so it would be able to give better and
more facilities and services to its customers. Regarding the given information in this instance, we use Model
(4.6). The weight restrictions to be applied in the model are considered as follows:

𝑢2 ≤ 𝑢1 ≤ 1.5𝑢2, 2𝑢2 ≤ 𝑤2 ≤ 3𝑢2, 0.5𝑤1 ≤ 𝑢2 ≤ 𝑤1.

Hence, we can set Γ𝐼 , Γ𝐹 , Γ𝐼𝐹 , Γ𝐹𝐼 , Γ𝐼𝑂, Γ𝑂𝐼 = ∅, Γ𝑂 = {(1, 2)}, Γ𝐹𝑂 = {(2, 2)}, Γ𝑂𝐹 = {(2, 1)}. Also, Φ𝐼 = ∅
and Φ𝑂 = {1}.

One can refer to Tables 1 and 2 for getting the information about the lower and upper bounds of the input
and the output data per DMU.

Beside applying our approach, we also intend to survey another situation when there is no DM’s preference
information available. To this aim, our approach in the absence of DM’s preference information is used, too.
Plus, for comparison intention in the situation, we use the 3rd method. Actually, both of the methods can be
considered in the category of the methods that generate a CSW with the aim of maximizing efficiencies, but
with two different points of view in this regard. There are two flexible measures in this sample, both of which are
of deposit type. Hence, we aim to assign them the same roles, both as input indicators or as output indicators.
So, regarding with this sample, only one binary variable is required in the Models (4.6)–(5.1).

For convenience, we call the utilized methods as follows:

The 1st method: our approach in the presence of DM’s preference information.
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Table 2. The upper bounds of the input and the output data for 20 bank branches.

Input
indicator

Flexible indicators Output indicators

Branch
Number of
employees

Long term
deposit

Short term
deposit

Overdue claims Bank facilities

Branch1 15.000000 513 218.960257 246 751.097358 46 014.906812 380 647.724870
Branch2 9.000000 507 880.692272 112 144.333464 15 169.482476 170 797.706519
Branch3 6.000000 345 765.305758 169 371.921043 212 258.431484 602 334.105548
Branch4 20.000000 3 255 357.187514 662 096.096749 4 069 155.094653 8 458 770.581239
Branch5 9.000000 613 579.906768 164 669.802395 16 927.582344 140 574.940105
Branch6 14.000000 658 280.396228 298 792.587823 89 539.120659 221 737.368505
Branch7 8.000000 389 601.654217 98 689.046695 11 090.053546 815 060.471614
Branch8 7.000000 541 544.762292 149 453.065229 92 495.821203 228 890.463141
Branch9 8.000000 199 340.893142 63 856.637432 48 352.358231 815 610.260412
Branch10 10.000000 364 793.973455 168 390.149732 2088.316747 224 130.875836
Branch11 6.000000 395 331.519273 87 326.731582 6858.647854 75 497.553719
Branch12 10.000000 417 103.606316 130 339.974772 46 948.350587 138 794.333309
Branch13 8.000000 417 103.606316 123 253.202218 5814.743180 104 049.003938
Branch14 11.000000 562 853.835688 179 030.514377 8128.585775 171 476.380506
Branch15 6.000000 367 470.244517 107 904.785829 3008.068711 85 733.601060
Branch16 8.000000 484 971.334800 67 054.990235 10 439.689177 50 824.355730
Branch17 9.000000 519 401.981617 125 058.328545 4528.278757 77 166.840050
Branch18 11.000000 368 774.150951 155 932.487456 5000.808529 160 655.559531
Branch19 6.000000 248 647.472568 82 108.714539 1763.042838 40 639.270943
Branch20 15.000000 1 965 361.397460 265 254.947543 16 911.645353 471 942.371179

The 2nd method: our approach in the absence of DM’s preference information.
The 3rd method: the developed approach based on what is presented at Shirdel et al. [47].

At first, we implement the methods on the set of normalized data, and then they are implemented on the
original data set.

6.1. Implementing the methods on the set of normalized data

Since the indicators has significantly noted in our method, in order to have a better sense of the impact of
them, we also consider the set of normalized data. Besides, for the purpose of comparison, we consider both the
original data and the normalized data to be used in the implementation of our method, separately. Here, for
normalizing the vectors, for example the first output’s, we act as the following:

𝑀𝑂
1 = max

𝑗=1,...,𝑛

{︀
max

{︀
𝑦𝑙
1𝑗 , 𝑦

𝑢
1𝑗

}︀}︀
= max

𝑗=1,...,𝑛

{︀
𝑦𝑢
1𝑗

}︀
= ‖𝑌 𝑢

1 ‖∞

where, 𝑌 𝑙
1 ∈ R𝑛 and 𝑌 𝑢

1 ∈ R𝑛 are, respectively, the vector of the lower bounds and the vector of the upper
bounds for the first output indicator’s values, and ‖.‖∞ is the infinity norm. We set:

𝑦𝑙
1𝑗 =

𝑦𝑙
1𝑗

𝑀𝑜
1

, 𝑦𝑢
1𝑗 =

𝑦𝑢
1𝑗

𝑀𝑜
1

, 𝑗 = 1, . . . , 𝑛.

Thus, after the normalization,
[︀
𝑦𝑙
1𝑗 , 𝑦

𝑢
1𝑗

]︀
is considered as the interval of the possible normalized values of the

first output of DMU𝑗 . See Tables 3 and 4.
For each method, the generated CSW and the optimal value of the binary variable, indicating the state of

the flexible measures in the optimality, are shown in Table 5.
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Table 3. The lower bounds of the normalized input and output data for 20 bank branches.

Input
indicator

Flexible indicators Output indicators

Branch
Number of
employees

Long term
deposit

Short term
deposit

Overdue claims Bank facilities

Branch1 0.75 0.130273 0.237553677 0.009791645 0.0381554
Branch2 0.45 0.1149014 0.135687435 0.003032711 0.017070014
Branch3 0.3 0.083690136 0.181232105 0.050141107 0.045043875
Branch4 1 0.303052486 0.514243707 0.909910079 0.928685956
Branch5 0.45 0.15601689 0.15711188 0.000707747 0.012828215
Branch6 0.7 0.167029816 0.316481866 0.01855372 0.023488162
Branch7 0.4 0.077026986 0.086596911 0.002143392 0.070926437
Branch8 0.35 0.130875509 0.166435702 0.020966296 0.025773345
Branch9 0.4 0.053040597 0.063663946 0.010860983 0.075335018
Branch10 0.5 0.088784166 0.1748109 0.00020144 0.017796393
Branch11 0.3 0.10693669 0.094036842 0.001166183 0.008454176
Branch12 0.5 0.080964187 0.148693111 0.0010875 0.015014812
Branch13 0.4 0.104528703 0.13490076 0.000575259 0.011705262
Branch14 0.55 0.146073519 0.155172533 0.001164151 0.013207569
Branch15 0.3 0.092376582 0.117716904 0.000476782 0.008284727
Branch16 0.4 0.119222661 0.069785864 2.73E-05 0.00548938
Branch17 0.45 0.116393897 0.128514479 0.000349431 0.007413975
Branch18 0.55 0.071696744 0.151960868 0.000809515 0.016778218
Branch19 0.3 0.067007212 0.084697278 0.000100447 0.004015033
Branch20 0.75 0.46875291 0.262400657 0.001407318 0.05157289

As Table 5 shows, in our approach, the results are obtained while the deposits are considered as input of the
bank branches. The CSWs extracted from the 1st and 3rd methods are obtained under the conditions when the
flexible measures are assumed as input ones whereas the mentioned measures have a different role, as output,
in extracting the CSW of the 2nd method. In the 1st method, satisfying the weight restrictions, the weight of
the first output indicator, as the only worthy indicator in this instance, is 0.263286, that is greater compared to
when the mentioned indicators function as output indicators in evaluation process, that is 0.214243. Although,
𝑢*1 is greater in the generated CSW from the 2nd method, one should envisage that this weight has been obtained
under more restrictions in 1st method rather than the 2nd method. In other words, the CSW extracted through
the 2nd method is not even a feasible solution to the Model (4.6).

By fixing the role of the flexible measures according to the results form Table 5, the minimum, the maximum
and the average of the possible absolute efficiencies based upon the generated CSW are shown in Table 6.

Finally, Table 7 shows the ranking scores of all DMUs obtained from the considered approaches.
As Table 6 shows, the amount of the average of the lower and the upper efficiencies per branch is quite distinct,

so there is no need to use extra ranking criterion (The efficiencies have been calculated with six decimal places).
The ranking results have been compared visually in Figure 1; both the ranks of different branches in one

method and the rank of one branch in different methods have been illustrated.

6.2. Implementing the methods on the original data set

Here, the 1st, 2nd, and 3rd methods were implemented on the original data set. Tables 8, 9, and 10 have
similar description as those for Tables 5, 6, and 7, respectively. For brevity, the repetitive explanations are
ignored.
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Table 4. The upper bounds of the normalized input and output data for 20 bank branches.

Input
indicator

Flexible indicators Output indicators

Branch
Number of
employees

Long term
deposit

Short term
deposit

Overdue claims Bank facilities

Branch1 0.75 0.157653655 0.372681698 0.011308221 0.04500036
Branch2 0.45 0.156013814 0.169377729 0.003727919 0.020191788
Branch3 0.3 0.106214245 0.255811689 0.052162777 0.071208233
Branch4 1 1 1 1 1
Branch5 0.45 0.188483128 0.248709822 0.004159975 0.016618838
Branch6 0.7 0.202214491 0.451282811 0.022004352 0.0262139
Branch7 0.4 0.119680155 0.149055473 0.002725395 0.096356848
Branch8 0.35 0.166354944 0.22572715 0.022730965 0.027059543
Branch9 0.4 0.061234722 0.096446177 0.011882653 0.096421844
Branch10 0.5 0.112059584 0.254328866 0.000513206 0.026496862
Branch11 0.3 0.121440289 0.131894346 0.001685521 0.008925358
Branch12 0.5 0.128128369 0.196859603 0.011537616 0.016408334
Branch13 0.4 0.128128369 0.186156062 0.00142898 0.012300724
Branch14 0.55 0.172900792 0.270399592 0.00199761 0.020272022
Branch15 0.3 0.112881697 0.162974508 0.000739237 0.010135468
Branch16 0.4 0.148976382 0.101276825 0.002565567 0.00600848
Branch17 0.45 0.159552993 0.188882443 0.00111283 0.009122702
Branch18 0.55 0.113282239 0.235513377 0.001228955 0.018992779
Branch19 0.3 0.076381011 0.124013289 0.00043327 0.004804395
Branch20 0.75 0.603731414 0.400629076 0.004156058 0.055793258

Table 5. The produced CSWs by using the normalized data.

The CSW
The binary variable
in the optimality

The used method 𝑣*1 𝑤*
1 𝑤*

2 𝑢*1 𝑢*2 𝜎*

The 1st method 0.385566 0.175524 0.0001 0.263286 0.175524 0
The 2nd method 0.5 0.0001 0.0001 0.324276 0.175524 1
The 3rd method 0.0001 0.767159 0.0001 0.0001 0.232541 0
The 1st method with (𝜎 = 1) 0.500000 0.142829 0.0001 0.214243 0.142829 −

In the absence of DM’s preference information, the 2nd and 3rd methods almost have similar purposes
of generating a CSW for maximizing efficiencies. We calculate the average for the lower, upper, and average
efficiencies in both the methods; the ratio of the obtained averages in the 3rd method compared to the 2nd
method is 0.974169, 1.701211, and 1.364175, respectively.

6.3. Some further discussion on the results

In this sample, although the first output indicator, overdue claims, gets involved in the weight restrictions,
it’s desired to influence its affect in the performance assessment as much as possible. As it is seen in Table 5,
𝑢*1 in the 1st method is significantly greater than the 3rd method, but 𝑢*1 has gained the largest value in the
2nd method. The results were obtained when the long term deposit and the short term deposit are considered
as inputs in the 1st and 3rd methods and as outputs in the 2nd method. It is considerable that, although, here,
the purpose of the 1st method is to produce a CSW maximizing 𝑢1, the weight restrictions of the model is more
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Table 6. The efficiencies.

The 1st method The 2nd method The 3rd method

Branch 𝐸𝑙
𝑗 𝐸𝑢

𝑗 𝐸𝑗 𝐸𝑙
𝑗 𝐸𝑢

𝑗 𝐸𝑗 𝐸𝑙
𝑗 𝐸𝑢

𝑗 𝐸𝑗

Branch1 0.02927 0.034851 0.032061 0.013156 0.015222 0.014189 0.0733 0.104614 0.088957
Branch2 0.018888 0.023366 0.021127 0.006855 0.008433 0.007644 0.033151 0.053237 0.043194
Branch3 0.157124 0.201204 0.179164 0.167243 0.174061 0.170652 0.128523 0.257798 0.19316
Branch4 0.717357 1 0.858678 0.909713 1 0.954857 0.281548 1 0.640774
Branch5 0.0118 0.019971 0.015886 0.001717 0.009441 0.005579 0.020621 0.032275 0.026448
Branch6 0.029491 0.034736 0.032114 0.026635 0.03161 0.029122 0.035194 0.047552 0.041373
Branch7 0.074257 0.105096 0.089677 0.005472 0.006991 0.006231 0.179533 0.37888 0.279206
Branch8 0.06118 0.067967 0.064573 0.060052 0.065146 0.062599 0.046957 0.062663 0.05481
Branch9 0.09748 0.122616 0.110048 0.027232 0.029817 0.028524 0.372545 0.550435 0.46149
Branch10 0.01495 0.022967 0.018958 0.000514 0.001183 0.000848 0.048096 0.090375 0.069235
Branch11 0.013072 0.014953 0.014013 0.004024 0.005791 0.004908 0.021093 0.025288 0.023191
Branch12 0.013572 0.028587 0.02108 0.002273 0.023199 0.012736 0.035498 0.061384 0.048441
Branch13 0.012481 0.01469 0.013586 0.001562 0.003734 0.002648 0.027675 0.035649 0.031662
Branch14 0.010827 0.017181 0.014004 0.002229 0.003799 0.003014 0.023142 0.042042 0.032592
Branch15 0.011659 0.014963 0.013311 0.001735 0.002653 0.002194 0.022236 0.033238 0.027737
Branch16 0.00538 0.009878 0.007629 0.000165 0.006539 0.003352 0.011164 0.01527 0.013217
Branch17 0.006913 0.009767 0.00834 0.000887 0.002631 0.001759 0.014078 0.023744 0.018911
Branch18 0.013615 0.016279 0.014947 0.001559 0.002367 0.001963 0.044855 0.080198 0.062526
Branch19 0.005663 0.007511 0.006587 0.000437 0.001579 0.001008 0.015922 0.021716 0.018819
Branch20 0.023844 0.029308 0.026576 0.002084 0.005821 0.003952 0.025887 0.03607 0.030978

Figure 1. The Comparison of the obtained ranking scores from all methods by using the
normalized.

than those of the 2nd method. In Table 8, there is a similar discussion, but the long term deposit and the short
term deposit are considered as inputs in all of the methods. As seen, the values of 𝑢*1 obtained by using the
normalized data are generally greater than those obtained by using the original data.

Now, we are interested in surveying the state of the branches in terms of the overdue claims indicator and
their ranking scores. To this aim, we use a roughly criterion as follows: At first, the average of the lower and
upper bounds of overdue claims is calculated per branch. The quantity for DMU𝑗 is indicated by AVEO1𝑗 , 𝑗 =
1, . . . , 20. Then, the average of AVEO1𝑗 , 𝑗 = 1, . . . , 20, is calculated. It is indicated by AVEO1. We set 𝜏𝑗 =
AVEO1𝑗

AVEO1 , 𝑗 = 1, . . . , 20.
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Table 7. The obtained ranking scores by using the normalized data.

Branch
The 1st
method

The 2nd
method

The 3rd
method

The 1st method
with (𝜎 = 1)

Branch1 7 6 5 16
Branch2 9 8 10 11
Branch3 2 2 4 3
Branch4 1 1 1 1
Branch5 12 10 16 6
Branch6 6 4 11 12
Branch7 4 9 3 5
Branch8 5 3 8 4
Branch9 3 5 2 8
Branch10 11 20 6 19
Branch11 14 11 17 7
Branch12 10 7 9 17
Branch13 16 15 13 15
Branch14 15 14 12 14
Branch15 17 16 15 9
Branch16 19 13 20 10
Branch17 18 18 18 13
Branch18 13 17 7 20
Branch19 20 19 19 18
Branch20 8 12 14 2

Table 8. The produced CSWs by using the original data set.

The CSW
The binary variable
in the optimality

The used method 𝑣*1 𝑤*
1 𝑤*

2 𝑢*1 𝑢*2 𝜎*

The 1st method 0.0001 0.048216 0.891413 0.036162 0.024108 0
The 2nd method 0.0001 0.804784 0.0001 0.194916 0.0001 0
The 3rd method 0.996369 0.0001 0.003331 0.0001 0.0001 0

Figure 2 illustrates the trends of changes in the ranking scores (obtained by using the normalized data) by
increasing 𝜏𝑗 . The improvement in the ranking scores by increasing 𝜏𝑗 is more perceptible in the 2nd method
rather that of the others. The values of 𝜏𝑗 , 𝑗 = 1, . . . , 20, are arranged in ascending order.

As Figure 2 illustrates, the Branch19 has adopted the worst ranking score in all of the methods, and 𝜏19 is
also minimum. Besides, the Branch4, has gained the greatest ranking score in all of the methods, and 𝜏20 is
maximum, too. However, it is not a general rule.

Now, we concentrate on the original data, and compare the obtained efficiencies from the methods, specially
the 2nd and the 3rd method. To this aim, we consider the columns of Table 9. Given a method, the average of
the obtained lower efficiencies and the average of the obtained upper efficiencies for the branches are indicated,
respectively, by AVELE and AVEUE. As Figure 2 illustrates, in the absence of the DM’s preference information
of type II, the 3rd method has a better state than the 2nd method in terms of maximizing the efficiencies.
According to Table 8, for both methods, the efficiencies have been obtained under the situation that the flexible
indicators are considered as inputs. The output weights from the 2nd method are greater than or equal to the
corresponding ones in the 3rd method. However, it is not a contradiction and confirms that the magnitude of
the obtained efficiencies is not only dependent on the magnitude of the output weights. In fact, as expected,
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Table 9. The efficiencies.

The 1st method The 2nd method The 3rd method

Branch 𝐸𝑙
𝑗 𝐸𝑢

𝑗 𝐸𝑗 𝐸𝑙
𝑗 𝐸𝑢

𝑗 𝐸𝑗 𝐸𝑙
𝑗 𝐸𝑢

𝑗 𝐸𝑗

Branch1 0.037685 0.067479 0.052582 0.01888 0.02639 0.022635 0.040821 0.073398 0.057109
Branch2 0.031556 0.047557 0.039556 0.00592 0.009879 0.007899 0.036169 0.053803 0.044986
Branch3 0.098799 0.184821 0.14181 0.143045 0.188959 0.166002 0.096739 0.188151 0.142445
Branch4 0.432671 1 0.716335 0.275761 1 0.637881 0.453072 1 0.726536
Branch5 0.015423 0.034135 0.024779 0.001159 0.008106 0.004633 0.017999 0.038767 0.028383
Branch6 0.025227 0.040298 0.032763 0.027813 0.039932 0.033873 0.025502 0.040618 0.03306
Branch7 0.147698 0.317257 0.232478 0.008721 0.011115 0.009918 0.168234 0.368746 0.26849
Branch8 0.054245 0.074621 0.064433 0.048561 0.052647 0.050604 0.055408 0.077132 0.06627
Branch9 0.25492 0.46648 0.3607 0.054091 0.068408 0.06125 0.283194 0.521546 0.40237
Branch10 0.021818 0.046784 0.034301 0.000595 0.001846 0.001221 0.024919 0.0533 0.039109
Branch11 0.019562 0.028611 0.024086 0.00293 0.004799 0.003864 0.022668 0.033182 0.027925
Branch12 0.024075 0.050204 0.037139 0.002972 0.043205 0.023089 0.027339 0.050989 0.039164
Branch13 0.019015 0.028312 0.023664 0.001389 0.004177 0.002783 0.022021 0.032357 0.027189
Branch14 0.015341 0.038668 0.027005 0.002063 0.004185 0.003124 0.017548 0.044816 0.031182
Branch15 0.015448 0.025908 0.020678 0.001302 0.002458 0.00188 0.017907 0.030012 0.02396
Branch16 0.01351 0.026758 0.020134 0.000067 0.006531 0.003299 0.016632 0.030525 0.023579
Branch17 0.012049 0.021506 0.016777 0.000929 0.00292 0.001925 0.013838 0.024733 0.019286
Branch18 0.023564 0.040162 0.031863 0.003493 0.005275 0.004384 0.026225 0.044837 0.035531
Branch19 0.009958 0.017246 0.013602 0.000473 0.001981 0.001227 0.011407 0.019759 0.015583
Branch20 0.034591 0.052482 0.043536 0.000944 0.002723 0.001833 0.042046 0.065505 0.053775

Table 10. The obtained ranking scores by using the original data.

Branch The 1st
method

The 2nd
method

The 3rd
method

Branch1 6 7 6
Branch2 8 9 8
Branch3 4 2 4
Branch4 1 1 1
Branch5 14 10 14
Branch6 11 5 12
Branch7 3 8 3
Branch8 5 4 5
Branch9 2 3 2
Branch10 10 20 10
Branch11 15 12 15
Branch12 9 6 9
Branch13 16 15 16
Branch14 13 14 13
Branch15 17 17 17
Branch16 18 13 18
Branch17 19 16 19
Branch18 12 18 11
Branch19 20 19 20
Branch20 7 18 7
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Figure 2. The trends of changes in the ranking scores (using the normalized data) by increasing
𝜏𝑗 .

Figure 3. Comparison of the averages of the efficiencies (by using the original data).

the summation of the input weights (that includes 3 indicators in the optimality) in the 3rd method is greater
than that of the 2nd method. But, in the 3rd method, 𝑣*1 is significantly larger than the other weights whereas
the values of the first input indicator, number of employees, are considerably less than the others’. However,
in the 2nd method, 𝑤*1 (that in the optimality acts as the weight of the second input indicator) is significantly
larger than the other weights, and the values of the corresponding indicator is also considerable rather than
the others’. Thus, the large value of 𝑤*1 in the 2nd method has been generally more effective in the obtained
amounts of the efficiencies rather than the value of 𝑣*1 in the 2nd method.

As Figure 3 illustrates, the 1st method has a relatively good state in terms of maximizing the efficiencies. Of
course, this is not the concern of the 1st method but shows that concentrating on the weights may also lead to
relatively acceptable results in terms of maximizing the efficiencies.
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Figure 4. The ranking scores obtained from the 1st method using the normalized and the original.

Ultimately, the ranking scores obtained from the 1st method (as the main approach) in two cases of considering
the normalized data and the original data are compared visually in Figure 4.

7. Conclusion

In this paper, we propose a new ranking method using common weights with a different point of view as it is
conventional. DM’s preference information has a substantial role in this method. The information is categorized
into two groups to be used in the model structure. Albeit, the model can be also developed to be used in the
absence of the preference information through some modifications. In fact, we study another perspective to
generate a CSW. The goal of our approach is to emphasize on the influence of some valuable indicators (in
DM’s viewpoint) as much as possible in the evaluation process. The approach is implemented on a data set
regarding with a number of bank branches. The instance includes interval data and some flexible measures.
Hence, the proposed approach is developed to encounter with the issues. Considering two cases of the original
data and the normalized data, the results are discussed. It is noticeable that the structure of the feasible region
of the proposed model is not a directly consequence of the considered criterion to select a CSW. Hence, the
model can not be interpreted as one that makes the feasible region originally regarding its objective.
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[35] M. Luptáčik and E. Nežinský, Measuring income inequalities beyond the Gini coefficient. Cent. Eur. J. Oper. Res. 28 (2020)
561–578.

[36] S. Mehrabian, G.R. Jahanshahloo, M.R. Alirezaei and G.R. Amin, An assurance interval of the non-Archimedean epsilon in
DEA models. Eur. J. Oper. Res. 48 (1998) 344–347.

[37] L.P. Navas, F. Montes, S. Abolghasem, R.J. Salas, M. Toloo and R. Zarama, Colombian higher education institutions evaluation.
Soc.-Econ. Plan. Sci. 71 (2020) 100801.

[38] A. Oukil, Ranking via composite weighting schemes under a DEA cross-evaluation framework. Comput. Ind. Eng. 117 (2018)
217–224.

[39] V.V. Podinovski and T. Bouzdine-Chameeva, Consistent weight restrictions in data envelopment analysis. Eur. J. Oper. Res.
244 (2015) 201–209.

[40] S. Ramazani-Tarkhorani, M. Khodabakhshi, S. Mehrabian and F. Nuri-Bahmani, Ranking decision-makingunits using common
weights in DEA. Appl. Math. Model. 38 (2013) 3890–3896.

[41] Y. Roll, W.D. Cook and B. Golany, Controlling factor weighs in data envelopment analysis. IIE Trans. 24 (2013) 1991.

https://doi.org/10.1155/2013/492421


3940 S. RAMEZANI-TARKHORANI AND M. EINI

[42] J.L. Ruiz and I. Sirvent, Common benchmarking and ranking of units with DEA. Omega 65 (2016) 1–9.
[43] M. Salahi, N. Torabi and A. Amiri, An optimistic robust optimization approach to common set of weights in DEA. Measurement

93 (2016) 67–73.
[44] M. Salahi, M. Toloo and N. Torabi, A new robust optimization approach to common weights formulation in DEA. J. Oper.

Res. Soc. 72 (2020) 1390–1402.
[45] M.S. Shahbazifar, R. Kazemi Matin, M. Khounsiavash and F. Koushki, Group ranking of two-stage production units in network

data envelopment analysis. RAIRO: Oper. Res. 55 (2021) 185.
[46] G.H. Shirdel and S. Ramezani-Tarkhorani, A new method for ranking decision making units using common set of weights: a

developed criterion. J. Ind. Manage. Optim. 16 (2020) 633.
[47] G.H. Shirdel, S. Ramezani-Tarkhorani and Z. Jafari, A method for evaluating the performance of decision making units with

imprecise data using common set of weights. Int. J. Appl. Comput. Math. 3 (2017) 411–423.
[48] J. Sun, J. Wu and D. Guo, Performance ranking of units considering ideal and anti-ideal DMU with common weights. Appl.

Math. Model. 37 (2013) 6301–6310.
[49] M. Tavana and F.J. Santos-Arteaga, An integrated data envelopment analysis and mixed integer non-linear programming

model for linearizing the common set of weights. Cent. Eur. J. Oper. Res. 27 (2019) 887–904.
[50] R.G. Thompson, F.D. Singleton Jr, R.M. Thrall and B.A. Smith, Comparative site evaluations for locating a high-energy

physics lab in Texas. Interfaces 16 (1986) 35–49.
[51] G. Tohidi and F. Matroud, A new non-oriented model for classifying flexible measures in DEA. J. Oper. Res. Soc. 68 (2017)

1019–1029.
[52] M. Toloo, Alternative solutions for classifying inputs and outputs in data envelopment analysis. Comput. Math. Appl. 63

(2012) 1104–1110.
[53] M. Toloo, The most efficient unit without explicit inputs: an extended MILP-DEA model. Measurement 46 (2013) 3628–3634.
[54] M. Toloo, An epsilon-free approach for finding the most efficient unit in DEA. Appl. Math. Model. 38 (2014) 3182–3192.
[55] M. Toloo, Selecting and full ranking suppliers with imprecise data: a new DEA method. Int. J. Adv. Manuf. Technol. 74

(2014) 1141–1148.
[56] M. Toloo, A cost efficiency approach for strategic vendor selection problem under certain input prices assumption. Measurement

85 (2016) 175–183.
[57] M. Toloo and M. Mirbolouki, A new project selection method using data envelopment analysis. Comput. Ind. Eng. 138 (2019)

106119.
[58] M. Toloo and M. Salahi, A powerful discriminative approach for selecting the most efficient unit in DEA. Comput. Ind. Eng.

115 (2018) 269–277.
[59] M. Toloo, B. Sohrabi and S. Nalchigar, A new method for ranking discovered rules from data mining by DEA. Expert Syst.

Appl. 36 (2009) 8503–8508.
[60] M. Toloo, B. Ebrahimi and G.R. Amin, New data envelopment analysis models for classifying flexible measures: the role of

non-Archimedean epsilon. Eur. J. Oper. Res. 292 (2021) 1037–1050.
[61] M. Toloo, E.K. Mensah and M. Salahi, Robust optimization and its duality in data envelopment analysis. Omega 108 (2022)

102583.
[62] Y.M. Wang, Y. Luo and Y.X. Lan, Common weights for fully ranking decision making units by regression analysis. Expert

Syst. Appl. 38 (2011) 9122–9128.
[63] J. Wu, J. Chu, Q. Zhu, Y. Li and L. Liang, Determining common weights in data envelopment analysis based on the satisfaction

degree. J. Oper. Res. Soc. 67 (2016) 1446–1458.
[64] A.P. Yekta, S. Kordrostami, A. Amirteimoori and R. K. Matin, Data envelopment analysis with common weights: the weight

restriction approach. Math. Sci. 12 (2018) 197–203.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Weight restrictions
	Common weights methodology
	The motivation and the purpose of the new method
	Overview of our approach
	An implementation of the proposed approach


	Preliminaries
	CCR model
	Multi-objective programming problem

	The approach
	Categorization of DM's preference information
	The suggested model
	The developed model in the absence of DM's preference information
	The ranking approach

	The development in encountering with the interval data and flexible measures
	Dealing with interval data
	Dealing with flexible measures
	The developed approach dealing with flexible measures and interval data, simultaneously

	A model for comparison
	An implementation
	Implementing the methods on the set of normalized data
	Implementing the methods on the original data set
	Some further discussion on the results

	Conclusion
	References

