Solving geometric programming problems with triangular and trapezoidal uncertainty distributions
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2833-2851

The geometric programming problem is an important optimization technique that is often used to solve different nonlinear optimization problems and engineering problems. The geometric programming models that are commonly used are generally based on deterministic and accurate parameters. However, it is observed that in real-world geometric programming problems, the parameters are frequently inaccurate and ambiguous. In this paper, we consider chance-constrained geometric programming problems with uncertain coefficients and with geometric programming techniques in the uncertain-based framework. We show that the associated chance-constrained uncertain geometric programming problem can be converted into a crisp geometric programming problem by using triangular and trapezoidal uncertainty distributions for the uncertain variables. The main aim of this paper is to provide the solution procedures for geometric programming problems under triangular and trapezoidal uncertainty distributions. To show how well the procedures and algorithms work, two numerical examples and an application in the inventory model are given.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022132
Classification : 90C30, 90C46, 90C47
Keywords: Uncertainty theory, uncertain variable, chance-constrained geometric programming, triangular uncertainty distribution, trapezoidal uncertainty distribution
@article{RO_2022__56_4_2833_0,
     author = {Mondal, Tapas and Ojha, Akshay Kumar and Pani, Sabyasachi},
     title = {Solving geometric programming problems with triangular and trapezoidal uncertainty distributions},
     journal = {RAIRO. Operations Research},
     pages = {2833--2851},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022132},
     mrnumber = {4471379},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022132/}
}
TY  - JOUR
AU  - Mondal, Tapas
AU  - Ojha, Akshay Kumar
AU  - Pani, Sabyasachi
TI  - Solving geometric programming problems with triangular and trapezoidal uncertainty distributions
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2833
EP  - 2851
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022132/
DO  - 10.1051/ro/2022132
LA  - en
ID  - RO_2022__56_4_2833_0
ER  - 
%0 Journal Article
%A Mondal, Tapas
%A Ojha, Akshay Kumar
%A Pani, Sabyasachi
%T Solving geometric programming problems with triangular and trapezoidal uncertainty distributions
%J RAIRO. Operations Research
%D 2022
%P 2833-2851
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022132/
%R 10.1051/ro/2022132
%G en
%F RO_2022__56_4_2833_0
Mondal, Tapas; Ojha, Akshay Kumar; Pani, Sabyasachi. Solving geometric programming problems with triangular and trapezoidal uncertainty distributions. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2833-2851. doi: 10.1051/ro/2022132

[1] M. Avriel and D. J. Wilde, Engineering design under uncertainty. Ind. Eng. Chem. Process Des. Dev. 8 (1969) 127–131. | DOI

[2] M. Avriel, R. Dembo and U. Passy, Solution of generalized geometric programs. Int. J. Numer. Method Eng. 9 (1975) 149–168. | MR | DOI

[3] C. S. Beightler and D. T. Phillips, Applied Geometric Programming. Wiley, New York (1976). | MR

[4] T. C. E. Cheng, An economic order quantity model with demand-dependent unit production cost and imperfect production process. IIE Trans. 23 (1991) 23–28. | DOI

[5] J. C. Choi and D. L. Bricker, Effectiveness of a geometric programming algorithm for optimization of machining economics models. Comput. Oper. Res. 10 (1996) 957–961. | DOI

[6] C. Chu and D. F. Wong, VLSI circuit performance optimization by geometric programming. Ann. Oper. Res. 105 (2001) 37–60. | MR | DOI

[7] R. J. Duffin and E. L. Peterson, Geometric programming with signomials. J. Optim. Theory Appl. 11 (1973) 3–35. | MR | DOI

[8] R. J. Duffin, E. L. Peterson and C. M. Zener, Geometric Programming Theory and Applications. Wiley, New York (1967). | MR

[9] S. C. Fang, E. L. Peterson and J. R. Rajasekera, Controlled dual perturbations for posynomial programs. Eur. J. Oper. Res. 35 (1988) 111–117. | MR | DOI

[10] M. D. Hershenson, S. P. Boyd and T. H. Lee, Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aid. Design. 20 (2001) 1–21. | DOI

[11] H. Jung and C. M. Klein, Optimal inventory policies under decreasing cost functions via geometric programming. Eur. J. Oper. Res. 132 (2001) 628–642. | DOI

[12] D. Kim and W. J. Lee, Optimal joint pricing and lot sizing with fixed and variable capacity. Eur. J. Oper. Res. 109 (1998) 212–227. | DOI

[13] K. O. Kortanek and H. No, A second order affine scaling algorithm for the geometric programming dual with logarithmic barrier. Optimization 23 (1992) 303–322. | MR | DOI

[14] K. O. Kortanek, X. Xu and Y. Ye, An infeasible interior-point algorithm for solving primal and dual geometric programs. Math. Program. 76 (1997) 155–181. | MR | DOI

[15] W. J. Lee, Determining order quantity and selling price by geometric programming. Optimal solution, bounds, and sensitivity. Decis. Sci. 24 (1993) 76–87. | DOI

[16] S. T. Liu, Posynomial geometric programming with parametric uncertainty. Eur. J. Oper. Res. 168 (2006) 345–353. | MR | DOI

[17] S. T. Liu, Geometric programming with fuzzy parameters in engineering optimization. Int. J. Approx. Reason. 46 (2007) 484–498. | DOI

[18] B. Liu, Uncertainty Theory, 4th edition. Springer, Berlin (2015). | MR

[19] C. D. Maranas and C. A. Floudas, Global optimization in generalized geometric programming. Comput. Chem. Eng. 21 (1997) 351–369. | DOI

[20] P. Peykani, E. Mohammadi, M. Saman Pishvaee, M. Rostami Malkhalifeh and A. Jabbarzadeh, A novel fuzzy data envelopment analysis based on robust possibilistic programming: possibility, necessity and credibility-based approaches. RAIRO-Oper. Res. 52 (2018) 1445–1463. | MR | Zbl | Numdam | DOI

[21] J. Rajgopal, An alternative approach to the refined duality theory of geometric programming, J. Math. Anal. Appl. 167 (1992) 266–288. | MR | DOI

[22] J. Rajgopal and D. L. Bricker, Posynomial geometric programming as a special case of semi-infinite linear programming. J. Optim. Theory Appl. 66 (1990) 455–475. | MR | DOI

[23] J. Rajgopal and D. L. Bricker, Solving posynomial geometric programming problems via generalized linear programming. Comput. Optim. Appl. 21 (2002) 95–109. | MR | DOI

[24] T. K. Roy and M. Maiti, A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Eur. J. Oper. Res. 99 (1997) 425–432. | DOI

[25] C. H. Scott and T. R. Jefferson, Allocation of resources in project management. Int. J. Syst. Sci. 26 (1995) 413–420. | DOI

[26] R. K. Shiraz and H. Fukuyama, Integrating geometric programming with rough set theory. Oper. Res. Int. J. 18 (2018) 1–32. | DOI

[27] R. K. Shiraz, M. Tavana, D. Di Caprio and H. Fukuyama, Solving geometric programming problems with normal, linear and zigzag uncertainty distributions. J. Optim. Theory Appl. 170 (2016) 243–265. | MR | DOI

[28] R. K. Shiraz, M. Tavana, H. Fukuyama and D. Di Caprio, Fuzzy chance-constrained geometric programming: the possibility, necessity and credibility approaches. Oper. Res. Int. J. 17 (2017) 67–97. | DOI

[29] R. K. Shiraz, M. Tavana and D. Di Caprio, Chance-constrained data envelopment analysis modeling with random-rough data. RAIRO-Oper. Res. 52 (2018) 259–284. | MR | Zbl | Numdam | DOI

[30] R. K. Shiraz, S. Khodayifar and P. M. Pardalos, Copula theory approach to stochastic geometric programming. J. Global Optim. 81 (2021) 435–468. | MR | DOI

[31] S. B. Sinha, A. Biswas and M. P. Biswal, Geometric programming problems with negative degrees of difficulty. Eur. J. Oper. Res. 28 (1987) 101–103. | MR | DOI

[32] E. L. Solano-Charris, C. Prins and A. C. Santos, Solving the bi-objective robust vehicle routing problem with uncertain costs and demands. RAIRO-Oper. Res. 50 (2016) 689–714. | MR | Zbl | Numdam | DOI

[33] B. M. Worrall and M. A. Hall, The analysis of an inventory control model using posynomial geometric programming. Int. J. Prod. Res. 20 (1982) 657–667. | DOI

[34] H. H. Yang and D. L. Bricker, Investigation of path-following algorithms for signomial geometric programming problems. Eur. J. Oper. Res. 103 (1997) 230–241. | DOI

[35] J. Zhu, K. O. Kortanek and S. Huang, Controlled dual perturbations for central path trajectories in geometric programming. Eur. J. Oper. Res. 73 (1994) 524–531. | DOI

Cité par Sources :