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SOLVING GEOMETRIC PROGRAMMING PROBLEMS WITH TRIANGULAR
AND TRAPEZOIDAL UNCERTAINTY DISTRIBUTIONS

Tapas Mondal* , Akshay Kumar Ojha and Sabyasachi Pani

Abstract. The geometric programming problem is an important optimization technique that is of-
ten used to solve different nonlinear optimization problems and engineering problems. The geometric
programming models that are commonly used are generally based on deterministic and accurate pa-
rameters. However, it is observed that in real-world geometric programming problems, the parameters
are frequently inaccurate and ambiguous. In this paper, we consider chance-constrained geometric pro-
gramming problems with uncertain coefficients and with geometric programming techniques in the
uncertain-based framework. We show that the associated chance-constrained uncertain geometric pro-
gramming problem can be converted into a crisp geometric programming problem by using triangular
and trapezoidal uncertainty distributions for the uncertain variables. The main aim of this paper is
to provide the solution procedures for geometric programming problems under triangular and trape-
zoidal uncertainty distributions. To show how well the procedures and algorithms work, two numerical
examples and an application in the inventory model are given.
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1. Introduction

Geometric programming (GP) is a powerful optimization tool to solve various nonlinear optimization problems
under posynomial constraints. In 1967, Duffin et al. [8] developed the fundamental theories of the GP technique.
Subsequently, this technique is used by many researchers to solve various engineering design problems such as
circuit design, inventory modelling, production planning, risk management, chemical processing, information
theory, and structural design [2–6,10–12,15,24,25,33].

In the literature, many researchers have worked on the GP problems with exact and deterministic coefficients
of the objective and constraint functions [2, 3, 7, 9, 13,14,19,21–23,34,35].

For the traditional GP problems, the coefficients of cost and constraint functions are precisely known. How-
ever, it is observed that the values of the parameters in real-world GP problems may be imprecise and ambiguous.
As a result, numerous strategies in connection with inaccurate and inconclusive data in GP models are proposed.

Stochastic GP was established by Avriel and Wilde [1], with deterministic exponents along with the coeffi-
cients, which are nonnegative random variables. Peykani et al. [20] introduced a novel Fuzzy Data Envelopment
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Analysis (FDEA) model by the use of possibility, necessity, and credibility approaches. They displayed com-
parative research work between the FDEA model and the Robust Fuzzy Data Envelopment Analysis (RFDEA)
model. Shiraz et al. [29] studied a chance-constrained Data Envelopment Analysis (DEA) model with random-
rough data inputs and outputs and investigated the stability and robustness through sensitivity analysis. The
authors considered a chance-constrained DEA model with random and rough input and output data. They
proposed a deterministic equivalent model with quadratic constraints to solve the model.

Liu [16] developed a strategy to find out the range of the values of the posynomial objective function for
the GP problems with interval coefficients and exponents. Subsequently, the same author [17] solved the GP
problems with fuzzy coefficients and exponents.

Liu [18] worked on uncertainty theory, which is a new area of mathematics. Solano-Charris et al. [32] solved the
bi-objective robust vehicle routing problem with uncertain costs and demands by nontraditional methods such
as the Non-dominated Sorting Genetic Algorithm (NSGAII) and the Multiobjective Evolutionary Algorithm
(MOEA). The authors considered it a robust optimization problem with uncertain demands and travel times.
They used the min-max optimization criterion to address the uncertainties in the objective function. Shiraz
et al. [27] constructed the GP problems based on an uncertainty frame model with the cost and constraint
coefficients which follow normal, linear, and zigzag uncertainty distributions. Subsequently, Shiraz et al. [28]
solved the fuzzy chance-constrained GP problems with possibility, necessity, and credibility approaches. Shiraz
and Fukuyama [26] later developed the GP problems using the rough set theory. Recently, Shiraz et al. [30]
used the copula theory approach to solve the stochastic GP problems. The authors considered a joint chance-
constrained GP problem with copula and converted it into deterministic convex programming. They used
sequential convex approximation and piecewise tangent approximation to find the lower and upper limits of the
objective function.

From the literature survey, we see that much research has been done on the traditional GP problems with
precise coefficients of posynomial objective and constraint functions. However, in real-world GP problems, the
coefficients may be imprecise. The GP problems with uncertainty have been solved under normal, linear, zigzag
uncertainty distributions, and L-R fuzzy and rough fuzzy environments. However, the GP problems may have
triangular and trapezoidal uncertainty in the coefficients of posynomial objective and constraint functions. There
is no previous research work on the GP problems when the coefficients of cost and constraint functions follow
triangular and trapezoidal uncertainty distributions. Thus, we make an attempt to study the GP problems with
triangular and trapezoidal uncertainty distributions. The main contributions to this paper are the followings.

– We introduce the uncertain GP problems along with the coefficients of cost and constraint functions, which
are independent uncertain variables.

– The equivalent chance-constrained GP problem is developed under triangular and trapezoidal uncertainty
distributions.

– We show how the uncertain chance-constrained GP models can be converted into crisp GP models and,
consequently, the crisp GP models can be solved in a conventional way.

– Two numerical examples and one application in an inventory model are incorporated to validate our proposed
method.

The organization of the rest of the paper is as follows.
The preliminaries are discussed in Section 2. In Section 3, we consider the chance-constrained GP problems

with triangular and trapezoidal uncertain coefficients and show how the chance-constrained uncertain GP mod-
els can be converted into crisp GP models. In Section 4, two numerical examples are given to demonstrate
the efficiency of the procedures. Furthermore, an application based problem in an inventory model is solved
under triangular and trapezoidal uncertainty distributions in Section 5. Finally, a conclusion on the work is
incorporated in Section 6.

2. Preliminaries

In this section, we discuss some basic concepts of uncertainty theory and credibility theory referred to [18].



GPP WITH TRIANGULAR AND TRAPEZOIDAL UDS 2835

Definition 2.1. Let ℒ be a 𝜎-algebra defined on a nonempty set Ω. The set function ℳ : ℒ → [0, 1] is said to
be uncertain measure if and only if it satisfies the following properties.

Property 1. (Normality) ℳ{Ω} = 1.
Property 2. (Monotonicity) ℳ{Υ1} ≤ ℳ{Υ2} whenever Υ1 ⊂ Υ2.
Property 3. (Self-Duality) ℳ{Υ}+ℳ{Υ𝑐} = 1 for any event Υ.

Property 4. (Countable Subadditivity) ℳ
{︀ ∞⋃︀

𝑖=1

Υ𝑖

}︀
≤

∞∑︀
𝑖=1

ℳ{Υ𝑖} for every countable sequence of events {Υ𝑖}.

Definition 2.2. Let 𝒫 be the power set of a nonempty set Θ. The set function 𝐶𝑟 : 𝒫 → [0, 1] is said to be
credibility measure if and only if it satisfies the following properties.

Property 1. (Normality) 𝐶𝑟{Θ} = 1.
Property 2. (Monotonicity) 𝐶𝑟{Υ1} ≤ 𝐶𝑟{Υ2} whenever Υ1 ⊂ Υ2.
Property 3. (Self-Duality) 𝐶𝑟{Υ}+ 𝐶𝑟{Υ𝑐} = 1 for any event Υ.

Property 4. (Maximality) 𝐶𝑟
{︀ ∞⋃︀

𝑖=1

Υ𝑖

}︀
= Sup

𝑖
𝐶𝑟{Υ𝑖} for every countable sequence of events {Υ𝑖} with Sup

𝑖

𝐶𝑟{Υ𝑖} < 0.5.

Note: The credibility measure is also countably subadditive i.e.,

𝐶𝑟
{︀ ∞⋃︀

𝑖=1

Υ𝑖

}︀
≤

∞∑︀
𝑖=1

𝐶𝑟{Υ𝑖} for every countable sequence of events {Υ𝑖}.

Theorem 2.3. An uncertain measure is a credibility measure if and only if it satisfies the maximality property.

Definition 2.4. If Ω is a nonempty set, ℒ is a 𝜎-algebra over Ω and ℳ is an uncertain measure, then the
triplet (Ω,ℒ,ℳ) is labeled as uncertainty space.

Definition 2.5. If Θ is a nonempty set, 𝒫 is a power set of Θ and Cr is a credibility measure, then the triplet
(Θ,𝒫, 𝐶𝑟) is labeled as credibility space.

Definition 2.6. A measurable function 𝜂 : (Ω,ℒ,ℳ) → R is called uncertain variable (UV), where (Ω,ℒ,ℳ)
is the uncertainty space and R is the set of real numbers.

Definition 2.7. A measurable function 𝜉 : (Θ,𝒫, 𝐶𝑟) → R is called fuzzy variable (FV), where (Θ,𝒫, 𝐶𝑟) is
the credibility space and R is the set of real numbers.

Theorem 2.8. A UV is an FV if and only if the uncertain measure is a credibility measure.

Definition 2.9. A UV 𝜂 is positive if and only if ℳ{𝜂 ≤ 0} = 0 and nonnegative if and only if ℳ{𝜂 < 0} = 0.

Definition 2.10. An FV 𝜉 is positive if and only if 𝐶𝑟{𝜉 ≤ 0} = 0 and nonnegative if and only if 𝐶𝑟{𝜉 < 0} = 0.

Definition 2.11. The uncertainty distribution (UD) function Φ𝜂 : R → [0, 1] corresponding to the UV 𝜂 is
defined as Φ𝜂(𝑥) = ℳ{𝜂 ≤ 𝑥} for every 𝑥 ∈ R.

Definition 2.12. The credibility distribution (CD) function Φ𝜉 : R → [0, 1] corresponding to the FV 𝜉 is defined
as Φ𝜉(𝑥) = 𝐶𝑟{𝜉 ≤ 𝑥} for every 𝑥 ∈ R.

Definition 2.13. A UV 𝜂 is said to be triangular if and only if it has UD of the form⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑥 ≤ 𝑎;

(𝑥−𝑎)2

(𝑏−𝑎)(𝑐−𝑎) , 𝑎 ≤ 𝑥 ≤ 𝑏;

1− (𝑐−𝑥)2

(𝑐−𝑎)(𝑐−𝑏) , 𝑏 ≤ 𝑥 ≤ 𝑐;
1, 𝑥 ≥ 𝑐;

where 𝑎, 𝑏, 𝑐 ∈ R, 𝑎 < 𝑏 < 𝑐. In notation, it can be written as 𝜂 ∼ ∇(𝑎, 𝑏, 𝑐).
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Figure 1. Triangular UD.

The graphical representation of triangular UD is given in Figure 1.

Definition 2.14. A UV 𝜂 is said to be trapezoidal if and only if it has UD of the form⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, 𝑥 ≤ 𝑎;
(𝑥−𝑎)2

(𝑑+𝑐−𝑎−𝑏)(𝑏−𝑎) , 𝑎 ≤ 𝑥 ≤ 𝑏;
(2𝑥−𝑎−𝑏)
(𝑑+𝑐−𝑎−𝑏) , 𝑏 ≤ 𝑥 ≤ 𝑐;

1− (𝑑−𝑥)2

(𝑑+𝑐−𝑎−𝑏)(𝑑−𝑐) , 𝑐 ≤ 𝑥 ≤ 𝑑;
1, 𝑥 ≥ 𝑑;

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, 𝑎 < 𝑏 < 𝑐 < 𝑑. In notation, it can be written as 𝜂 ∼ 𝑇 (𝑎, 𝑏, 𝑐, 𝑑).

The graphical representation of trapezoidal UD is given in Figure 2.

Definition 2.15. If 𝜂 is a UV, then the mean value of 𝜂 is

𝐸[𝜂] =

∞∫︁
0

ℳ{𝜂 ≥ 𝜏}𝑑𝜏 −
0∫︁

−∞

ℳ{𝜂 ≤ 𝜏}𝑑𝜏,

provided at least one of the two integral is finite.

Proposition 2.16. If 𝑓 is a real valued measurable function of 𝜂1, 𝜂2, . . . , 𝜂𝑛, where 𝜂1, 𝜂2, . . . , 𝜂𝑛 are UVs,
then 𝑓(𝜂1, 𝜂2, . . . , 𝜂𝑛) is a UV.

Theorem 2.17. If 𝜂1, 𝜂2, . . . , 𝜂𝑛 are independent UVs with UDs Φ𝜂1 , Φ𝜂2 , . . . , Φ𝜂𝑛 respectively,
ℎ(𝑥, 𝜂1, 𝜂2, . . . , 𝜂𝑛) is a strictly increasing constraint function with respect to 𝜂1, 𝜂2, . . . , 𝜂𝑛 and 𝐶 is a
constant, then for every 𝛾 ∈ (0, 1),

ℳ[ℎ(𝑥, 𝜂1, 𝜂2, . . . , 𝜂𝑛) ≤ 𝐶] ≥ 𝛾 is equivalent to ℎ(𝑥, Φ−1
𝜂1

(𝛾), Φ−1
𝜂2

(𝛾), . . . , Φ−1
𝜂𝑛

(𝛾)) ≤ 𝐶.
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Figure 2. Trapezoidal UD.

3. Chance-constrained geometric programming model with uncertain
coefficients

A traditional GP problem permits solving a minimization problem where the objective function as well as
the constraints are posynomials. GP problems whose coefficients and decision variables are all positive except
the exponents, are called posynomial problems. A classical primal GP model and its dual form are defined as
follows.

Primal problem.

min 𝑓0(x) =
𝑁0∑︁
𝑖=1

𝛽𝑖0

𝑛∏︁
𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

s.t.

𝑓𝑘(x) =
𝑁𝑘∑︁
𝑖=1

𝛽𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1, 𝑘 = 1, 2, . . . 𝐾,

(3.1)

where 𝛽𝑖𝑘 > 0, 𝑥𝑗 > 0, 𝛼𝑘𝑖𝑗 ∈ R,∀𝑖, 𝑗, 𝑘. Here, 𝑁0 and 𝑁𝑘 are the total number of terms present in the objective
function and 𝑘𝑡ℎ constraints respectively.

To define the dual problem of the above primal problem (3.1), let 𝑁 =
𝐾∑︀

𝑘=0

𝑁𝑘 be the total numbers of terms

presents in the primal GP problem (3.1) and 𝛿𝑖𝑘 be the dual variables such that 𝜆𝑘 =
𝑁𝑘∑︀
𝑖=1

𝛿𝑖𝑘, 𝑘 = 0, 1, 2, . . . ,𝐾.

Then
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Dual problem.

max 𝑉 (𝛿) =
𝑁∏︁

𝑖=1

(︂
𝛽𝑖𝑘

𝛿𝑖𝑘

)︂𝛿𝑖𝑘
(︂

𝜆𝑘

)︂𝜆𝑘

s.t.
𝑁0∑︁
𝑖=1

𝛿𝑖0 = 𝜆0 = 1, (Normality condition)

𝑁∑︁
𝑖=1

𝛿𝑖𝑘𝛼𝑘𝑖𝑗 = 0, 𝑗 = 1, 2, . . . , 𝑛. (Orthogonality conditions)

(3.2)

Here is the relationship between primal and dual problems.

Primal-dual relationship. The relationship between primal and dual GP problems due to strong duality
theorem [7,8] is as follows.

𝑛∑︁
𝑗=1

𝛼0𝑖𝑗 ln(𝑥𝑗) = ln
(︂

𝛿𝑖0𝑓0(x)
𝛽𝑖0

)︂
, 𝑖 = 1, 2, . . . , 𝑁0,

𝑛∑︁
𝑗=1

𝛼𝑘𝑖𝑗 ln(𝑥𝑗) = ln
(︂

𝛿𝑖𝑘

𝜆𝑘𝛽𝑖𝑘

)︂
, 𝑖 = 1, 2, . . . , 𝑁𝑘, 𝑘 = 1, 2, . . . ,𝐾.

(3.3)

Now, depending on 𝑁 , we have the following two cases.

Case I. If 𝑁 ≥ 𝑛 + 1, then the dual problem given in equation (3.2) is feasible as the number of equations
is less than or equal to the number of dual variables, which guarantees the existence of solution for dual
variables (Beightler and Philips [3]).

Case II. If 𝑁 < 𝑛+1, then the dual problem given in equation (3.2) is inconsistent as the number of equations
is greater than the number of dual variables. It guarantees that there is no analytical solution for dual
variables. However, an approximate solution can be found by least square or linear programming method
(Sinha et al. [31]).

Now, we expand a chance-constrained GP model with uncertain coefficients. First, we convert the standard GP
model given in equation (3.1) in an uncertain GP model as

min 𝑓0(x) =
𝑁0∑︁
𝑖=1

̃︁𝛽𝑖0

𝑛∏︁
𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

s.t.

𝑓𝑘(x) =
𝑁𝑘∑︁
𝑖=1

̃︁𝛽𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1, 𝑘 = 1, 2, . . . 𝐾,

(3.4)

where ̃︁𝛽𝑖𝑘 are UVs, 𝑥𝑗 > 0, 𝛼𝑘𝑖𝑗 ∈ R,∀𝑖, 𝑗, 𝑘. The chance-constrained uncertain GP model can be formulated
based on equation (3.4) as

min 𝐸

[︂ 𝑁0∑︁
𝑖=1

̃︁𝛽𝑖0

𝑛∏︁
𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

]︂
s.t.

ℳ
(︂ 𝑁𝑘∑︁

𝑖=1

̃︁𝛽𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1
)︂
≥ 𝛾, 𝑘 = 1, 2, . . . 𝐾,

(3.5)
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where 𝛾 ∈ (0, 1) is predefined uncertainty level, 𝑥𝑗 > 0, 𝑗 = 1, 2, . . . , 𝑛. In the following two subsections, we
develop the equivalent crisp primal-dual GP model of the above uncertain model (3.5) under triangular and
trapezoidal UDs.

3.1. Uncertain chance-constrained geometric programming problem with triangular
uncertainty distribution

We propose a solving technique for the chance-constrained uncertain GP problem given in equation (3.5)
considering the coefficients to be UVs with triangular UDs. Let the coefficients ̃︁𝛽𝑖𝑘 given in equation (3.5)
be independent triangular UVs i.e., ̃︁𝛽𝑖𝑘 ∼ ∇(𝑎𝑖𝑘, 𝑏𝑖𝑘, 𝑐𝑖𝑘). The following lemmas are helpful to transform the
chance-constrained uncertain GP model given in equation (3.5) to a crisp or deterministic model. Accordingly,
we solve it by converting into the dual form.

Lemma 3.1. ([18]) The expected value of a triangular UV ̃︀𝜂 ∼ ∇(𝑎, 𝑏, 𝑐) is

𝐸[̃︀𝜂] =
𝑎 + 𝑏 + 𝑐

3
·

Lemma 3.2. Let ̃︀𝜂𝑝 ∼ ∇(𝑎𝑝, 𝑏𝑝, 𝑐𝑝), 𝑝 = 1, 2, . . . , 𝑃 , be independent, and 𝑈𝑝, 𝑝 = 1, 2, . . . , 𝑃 , be nonnegative
variables, then for every 𝛾 ∈ (0, 1),

ℳ
(︂ 𝑃∑︁

𝑝=1

̃︀𝜂𝑝𝑈𝑝 ≤ 1
)︂
≥ 𝛾

is equivalent to ⎧⎪⎪⎨⎪⎪⎩
𝑃∑︀

𝑝=1
𝑈𝑝

(︂
𝑎𝑝 +

√︀
(𝑐𝑝 − 𝑎𝑝)(𝑏𝑝 − 𝑎𝑝)𝛾

)︂
≤ 1, if 0 < 𝛾 ≤ 𝑏𝑝−𝑎𝑝

𝑐𝑝−𝑎𝑝
;

𝑃∑︀
𝑝=1

𝑈𝑝

(︂
𝑐𝑝 −

√︀
(𝑐𝑝 − 𝑎𝑝)(𝑐𝑝 − 𝑏𝑝)(1− 𝛾)

)︂
≤ 1, if 𝑏𝑝−𝑎𝑝

𝑐𝑝−𝑎𝑝
≤ 𝛾 < 1.

By Lemma (3.1), the objective function given in equation (3.5) becomes

𝐸

[︂ 𝑁0∑︁
𝑖=1

̃︁𝛽𝑖0

𝑛∏︁
𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

]︂
=

𝑁0∑︁
𝑖=1

𝐸[̃︁𝛽𝑖0]
𝑛∏︁

𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗 , (3.6)

where 𝐸[̃︁𝛽𝑖0] = 𝑎𝑖0+𝑏𝑖0+𝑐𝑖0
3 . Subsequently, by Lemma (3.2), the constraints given in equation (3.5) can be written

as

𝑁𝑘∑︁
𝑖=1

𝜁𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1, 𝑘 = 1, 2, . . . 𝐾, (3.7)

where

𝜁𝑖𝑘 =

⎧⎨⎩
𝑎𝑖𝑘 +

√︀
(𝑐𝑖𝑘 − 𝑎𝑖𝑘)(𝑏𝑖𝑘 − 𝑎𝑖𝑘)𝛾, if 0 < 𝛾 ≤ 𝑏𝑖𝑘−𝑎𝑖𝑘

𝑐𝑖𝑘−𝑎𝑖𝑘
;

𝑐𝑖𝑘 −
√︀

(𝑐𝑖𝑘 − 𝑎𝑖𝑘)(𝑐𝑖𝑘 − 𝑏𝑖𝑘)(1− 𝛾), if 𝑏𝑖𝑘−𝑎𝑖𝑘

𝑐𝑖𝑘−𝑎𝑖𝑘
≤ 𝛾 < 1.



2840 T. MONDAL ET AL.

Equations (3.6) and (3.7) are the objective function and the constraints of the transformed crisp primal GP
model, respectively. Therefore, the equivalent crisp GP model of (3.5) is

min
𝑁0∑︁
𝑖=1

𝐸[̃︁𝛽𝑖0]
𝑛∏︁

𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

s.t.
𝑁𝑘∑︁
𝑖=1

𝜁𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1, 𝑘 = 1, 2, . . . 𝐾,

(3.8)

where 𝐸[̃︁𝛽𝑖0], 𝜁𝑖𝑘 are given in (3.6),(3.7) respectively. Consequently, the dual problem of the primal model (3.8)
is

max
𝑁0∏︁
𝑖=1

(︂
𝐸[̃︁𝛽𝑖0]

𝛿𝑖0

)︂𝛿𝑖0 𝐾∏︁
𝑘=1

𝑁𝑘∏︁
𝑖=1

(︂
𝜁𝑖𝑘

𝛿𝑖𝑘

)︂𝛿𝑖𝑘
(︂

𝜆𝑘

)︂𝜆𝑘

s.t.
𝑁0∑︁
𝑖=1

𝛿𝑖0 = 𝜆0 = 1, (Normality condition)

𝑁∑︁
𝑖=1

𝛿𝑖𝑘𝛼𝑘𝑖𝑗 = 0, 𝑗 = 1, 2, . . . , 𝑛, (Orthogonality conditions)

(3.9)

where 𝑁 =
𝐾∑︀

𝑘=0

𝑁𝑘, 𝜆𝑘 =
𝑁𝑘∑︀
𝑖=1

𝛿𝑖𝑘, 𝑘 = 0, 1, 2, . . . ,𝐾.

3.2. Uncertain chance-constrained geometric programming problem with trapezoidal
uncertainty distribution

We propose a solving technique for the chance-constrained uncertain GP problem given in equation (3.5).
We consider the coefficients to be UVs with trapezoidal UDs. Let the coefficients ̃︁𝛽𝑖𝑘 given in equation (3.5) be
independent trapezoidal UVs i.e., ̃︁𝛽𝑖𝑘 ∼ 𝑇 (𝑎𝑖𝑘, 𝑏𝑖𝑘, 𝑐𝑖𝑘, 𝑑𝑖𝑘). Similar to the previous discussion, we present the
following two lemmas that transform the chance-constrained uncertain GP model given in equation (3.5) to a
crisp or deterministic model and, hence, we solve it by converting into the dual form as earlier.

Lemma 3.3. ([18]) The expected value of a trapezoidal UV ̃︀𝜂 ∼ 𝑇 (𝑎, 𝑏, 𝑐, 𝑑) is

𝐸[̃︀𝜂] =
1

3(𝑑 + 𝑐− 𝑎− 𝑏)

(︂
𝑑3 − 𝑐3

𝑑− 𝑐
− 𝑏3 − 𝑎3

𝑏− 𝑎

)︂
.

Lemma 3.4. Let ̃︀𝜂𝑝 ∼ 𝑇 (𝑎𝑝, 𝑏𝑝, 𝑐𝑝, 𝑑𝑝) be independent for 𝑝 = 1, 2, . . . , 𝑃 and 𝑈𝑝 be a nonnegative variables for
𝑝 ∈ {1, 2, . . . , 𝑃}. Then for every 𝛾 ∈ (0, 1),

ℳ
(︂ 𝑃∑︁

𝑝=1

̃︀𝜂𝑝𝑈𝑝 ≤ 1
)︂
≥ 𝛾
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is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑃∑︁
𝑝=1

𝑈𝑝

(︂
𝑎𝑝 +

√︁
(𝑑𝑝 + 𝑐𝑝 − 𝑎𝑝 − 𝑏𝑝)(𝑏𝑝 − 𝑎𝑝)𝛾

)︂
≤ 1, if 0 < 𝛾 ≤ 𝑏𝑝−𝑎𝑝

𝑑𝑝+𝑐𝑝−𝑎𝑝−𝑏𝑝
;

𝑃∑︁
𝑝=1

𝑈𝑝

(︂
1
2

[︂
(𝑎𝑝 + 𝑏𝑝) + 𝛾(𝑑𝑝 + 𝑐𝑝 − 𝑎𝑝 − 𝑏𝑝)

]︂)︂
≤ 1, if 𝑏𝑝−𝑎𝑝

𝑑𝑝+𝑐𝑝−𝑎𝑝−𝑏𝑝
≤ 𝛾 ≤ 2𝑐𝑝−𝑏𝑝−𝑎𝑝

𝑑𝑝+𝑐𝑝−𝑎𝑝−𝑏𝑝
;

𝑃∑︁
𝑝=1

𝑈𝑝

(︂
𝑑𝑝 −

√︁
(𝑑𝑝 + 𝑐𝑝 − 𝑎𝑝 − 𝑏𝑝)(𝑑𝑝 − 𝑐𝑝)(1− 𝛾)

)︂
≤ 1, if 2𝑐𝑝−𝑏𝑝−𝑎𝑝

𝑑𝑝+𝑐𝑝−𝑎𝑝−𝑏𝑝
≤ 𝛾 < 1.

By Lemma (3.3), the objective function given in equation (3.5) becomes

𝐸

[︂ 𝑁0∑︁
𝑖=1

̃︁𝛽𝑖0

𝑛∏︁
𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

]︂
=

𝑁0∑︁
𝑖=1

𝐸[̃︁𝛽𝑖0]
𝑛∏︁

𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗 , (3.10)

where 𝐸[̃︁𝛽𝑖0] = 1
3(𝑑𝑖0+𝑐𝑖0−𝑎𝑖0−𝑏𝑖0)

(︂
𝑑3

𝑖0−𝑐3
𝑖0

𝑑𝑖0−𝑐𝑖0
− 𝑏3𝑖0−𝑎3

𝑖0
𝑏𝑖0−𝑎𝑖0

)︂
. Moreover, by Lemma (3.4), the constraints given in equa-

tion (3.5) can be written as

𝑁𝑘∑︁
𝑖=1

𝜁𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1, 𝑘 = 1, 2, . . . 𝐾, (3.11)

where

𝜁𝑖𝑘 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑎𝑖𝑘 +

√︀
(𝑑𝑖𝑘 + 𝑐𝑖𝑘 − 𝑎𝑖𝑘 − 𝑏𝑖𝑘)(𝑏𝑖𝑘 − 𝑎𝑖𝑘)𝛾, if 0 < 𝛾 ≤ 𝑏𝑖𝑘−𝑎𝑖𝑘

𝑑𝑖𝑘+𝑐𝑖𝑘−𝑎𝑖𝑘−𝑏𝑖𝑘
;

1
2

[︀
(𝑎𝑖𝑘 + 𝑏𝑖𝑘) + 𝛾(𝑑𝑖𝑘 + 𝑐𝑖𝑘 − 𝑎𝑖𝑘 − 𝑏𝑖𝑘)

]︀
, if 𝑏𝑖𝑘−𝑎𝑖𝑘

𝑑𝑖𝑘+𝑐𝑖𝑘−𝑎𝑖𝑘−𝑏𝑖𝑘
≤ 𝛾 ≤ 2𝑐𝑖𝑘−𝑏𝑖𝑘−𝑎𝑖𝑘

𝑑𝑖𝑘+𝑐𝑖𝑘−𝑎𝑖𝑘−𝑏𝑖𝑘
;

𝑑𝑖𝑘 −
√︀

(𝑑𝑖𝑘 + 𝑐𝑖𝑘 − 𝑎𝑖𝑘 − 𝑏𝑖𝑘)(𝑑𝑖𝑘 − 𝑐𝑖𝑘)(1− 𝛾), if 2𝑐𝑖𝑘−𝑏𝑖𝑘−𝑎𝑖𝑘

𝑑𝑖𝑘+𝑐𝑖𝑘−𝑎𝑖𝑘−𝑏𝑖𝑘
≤ 𝛾 < 1.

Equation (3.10) and the equation (3.11) are the objective function and the constraints of the transformed
crisp primal GP model, respectively. Therefore, the equivalent crisp GP model of (3.5) is

min
𝑁0∑︁
𝑖=1

𝐸[̃︁𝛽𝑖0]
𝑛∏︁

𝑗=1

𝑥
𝛼0𝑖𝑗

𝑗

s.t.
𝑁𝑘∑︁
𝑖=1

𝜁𝑖𝑘

𝑛∏︁
𝑗=1

𝑥
𝛼𝑘𝑖𝑗

𝑗 ≤ 1, 𝑘 = 1, 2, . . . 𝐾,

(3.12)

where 𝐸[̃︁𝛽𝑖0], 𝜁𝑖𝑘 are given in (3.10),(3.11) respectively. Consequently, the dual problem of the primal model
(3.12) is

max
𝑁0∏︁
𝑖=1

(︂
𝐸[̃︁𝛽𝑖0]

𝛿𝑖0

)︂𝛿𝑖0 𝐾∏︁
𝑘=1

𝑁𝑘∏︁
𝑖=1

(︂
𝜁𝑖𝑘

𝛿𝑖𝑘

)︂𝛿𝑖𝑘
(︂

𝜆𝑘

)︂𝜆𝑘
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s.t.
𝑁0∑︁
𝑖=1

𝛿𝑖0 = 𝜆0 = 1, (Normality condition) (3.13)

𝑁∑︁
𝑖=1

𝛿𝑖𝑘𝛼𝑘𝑖𝑗 = 0, 𝑗 = 1, 2, . . . , 𝑛, (Orthogonality conditions)

where 𝑁 =
𝐾∑︀

𝑘=0

𝑁𝑘, 𝜆𝑘 =
𝑁𝑘∑︀
𝑖=1

𝛿𝑖𝑘, 𝑘 = 0, 1, 2, . . . ,𝐾. Now, we provide the numerical illustration of our proposed

method in the following section.

4. Numerical examples

Here, we present two numerical examples to demonstrate the efficiency of the triangular and trapezoidal
uncertain GP models.

Example 4.1. Consider the following GP problem with uncertain coefficients

min 𝑓0(x) = ̃︁𝛽10𝑥1𝑥3 + ̃︁𝛽20𝑥2𝑥3 + ̃︁𝛽30𝑥1𝑥2

s.t.

𝑓1(x) =
̃︁𝛽11

𝑥1𝑥2𝑥3
≤ 1,

(4.1)

where all the coefficients are treated as UVs and 𝑥1, 𝑥2, 𝑥3 > 0.

Triangular case. Let ̃︁𝛽10 ∼ ∇(5, 8, 10), ̃︁𝛽20 ∼ ∇(8, 12, 14), ̃︁𝛽30 ∼ ∇(6, 9, 11) and ̃︁𝛽11 ∼ ∇(2, 4, 5). Then, using
Lemma (3.1), we get 𝐸[ ̃︁𝛽10] = 7.67, 𝐸[ ̃︁𝛽20] = 11.33, 𝐸[ ̃︁𝛽30] = 8.67. Therefore, the equivalent crisp model of
uncertain primal GP problem given in equation (4.1) is

min 7.67𝑥1𝑥3 + 11.33𝑥2𝑥3 + 8.67𝑥1𝑥2

s.t.
𝜁11

𝑥1𝑥2𝑥3
≤ 1,

𝑥1, 𝑥2, 𝑥3 > 0.

(4.2)

The equivalent dual problem is

max
(︂

7.67
𝛿10

)︂𝛿10
(︂

11.33
𝛿20

)︂𝛿20
(︂

8.67
𝛿30

)︂𝛿30
(︂

𝜁11

𝛿11

)︂𝛿11

(𝛿11)𝛿11

s.t.
𝛿10 + 𝛿20 + 𝛿30 = 1,

𝛿10 + 𝛿30 − 𝛿11 = 0,

𝛿20 + 𝛿30 − 𝛿11 = 0,

𝛿10 + 𝛿20 − 𝛿11 = 0.

(4.3)

Using (3.7), we find that 𝜁11 has the following form.

𝜁11 =

⎧⎨⎩2 +
√

6𝛾, if 0 < 𝛾 ≤ 2
3 ;

5−
√︀

3(1− 𝛾), if 2
3 ≤ 𝛾 < 1.
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Table 1. Optimal solutions under triangular UD.

𝛾 𝜁11 𝑥*1 𝑥*2 𝑥*3 𝛿*10 𝛿*20 𝛿*30 𝛿*11 𝑓*

0.1 2.775 1.750 1.184 1.339 0.333 0.333 0.334 0.667 53.907
0.2 3.095 1.815 1.228 1.389 0.333 0.333 0.334 0.667 57.975
0.3 3.342 1.862 1.260 1.425 0.333 0.333 0.334 0.667 61.020
0.4 3.549 1.899 1.286 1.453 0.333 0.333 0.334 0.667 63.515
0.5 3.732 1.931 1.307 1.478 0.333 0.333 0.334 0.667 65.680
0.6 3.897 1.959 1.326 1.499 0.333 0.333 0.334 0.667 67.602
0.7 4.051 1.985 1.344 1.519 0.333 0.333 0.334 0.667 69.371
0.8 4.225 2.013 1.363 1.540 0.333 0.333 0.334 0.667 71.343
0.9 4.452 2.048 1.387 1.567 0.333 0.333 0.334 0.667 73.876

Consequently, we solve the dual problem (4.3) for different uncertainty levels 𝛾 ∈ (0, 1) and provide the primal-
dual solutions corresponding to different uncertainty levels in Table 1.

Trapezoidal case. We follow the similar approach for this case. Let ̃︁𝛽10 ∼ 𝑇 (5, 6, 9, 10), ̃︁𝛽20 ∼ 𝑇 (8, 10, 12, 13),̃︁𝛽30 ∼ 𝑇 (6, 8, 9, 10) and ̃︁𝛽11 ∼ 𝑇 (1, 2, 4, 5). Then, by Lemma (3.3), we have 𝐸[ ̃︁𝛽10] = 7.5, 𝐸[ ̃︁𝛽20] = 10.71, 𝐸[ ̃︁𝛽30] =
8.2. Therefore, the equivalent crisp model of uncertain primal GP problem given in equation (4.1) is

min 7.5𝑥1𝑥3 + 10.71𝑥2𝑥3 + 8.2𝑥1𝑥2

s.t.
𝜁11

𝑥1𝑥2𝑥3
≤ 1,

𝑥1, 𝑥2, 𝑥3 > 0.

(4.4)

The equivalent dual problem is

max
(︂

7.5
𝛿10

)︂𝛿10
(︂

10.71
𝛿20

)︂𝛿20
(︂

8.2
𝛿30

)︂𝛿30
(︂

𝜁11

𝛿11

)︂𝛿11

(𝛿11)𝛿11

s.t.
𝛿10 + 𝛿20 + 𝛿30 = 1,

𝛿10 + 𝛿30 − 𝛿11 = 0,

𝛿20 + 𝛿30 − 𝛿11 = 0,

𝛿10 + 𝛿20 − 𝛿11 = 0.

(4.5)

Using (3.11), we find that 𝜁11 has the following form.

𝜁11 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 +

√
6𝛾, if 0 < 𝛾 ≤ 1

6 ;

1
2 (3 + 6𝛾), if 1

6 ≤ 𝛾 ≤ 5
6 ;

5−
√︀

6(1− 𝛾), if 5
6 ≤ 𝛾 < 1.

Consequently, we solve the dual problem (4.5) for different uncertainty levels 𝛾 ∈ (0, 1) and provide the primal-
dual solutions corresponding to different uncertainty levels in Table 2.

The expected values of the objective function under triangular and trapezoidal cases for different uncertainty
levels 𝛾 ∈ (0, 1) are shown in Figure 3.
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Table 2. Optimal solutions under trapezoidal UD.

𝛾 𝜁11 𝑥*1 𝑥*2 𝑥*3 𝛿*10 𝛿*20 𝛿*30 𝛿*11 𝑓*

0.1 1.775 1.490 1.044 1.141 0.333 0.333 0.334 0.667 38.266
0.2 2.100 1.576 1.104 1.207 0.333 0.333 0.334 0.667 42.804
0.3 2.400 1.648 1.154 1.262 0.333 0.333 0.334 0.667 46.790
0.4 2.700 1.714 1.200 1.312 0.333 0.333 0.334 0.667 50.612
0.5 3.000 1.775 1.243 1.359 0.333 0.333 0.334 0.667 54.295
0.6 3.300 1.833 1.283 1.403 0.333 0.333 0.334 0.667 57.856
0.7 3.600 1.887 1.321 1.444 0.333 0.333 0.334 0.667 61.312
0.8 3.900 1.938 1.357 1.483 0.333 0.333 0.334 0.667 64.672
0.9 4.225 1.990 1.394 1.524 0.333 0.333 0.334 0.667 68.217

Figure 3. Expected values of objective function under triangular and trapezoidal cases.

Example 4.2. Let us consider the GP problem with uncertain coefficients as

min 𝑓0(x) = ̃︁𝛽10𝑥
−1
1 𝑥

− 1
2

2 𝑥−1
3 + ̃︁𝛽20𝑥1𝑥3 + ̃︁𝛽30𝑥1𝑥2𝑥3

s.t.

𝑓1(x) = ̃︁𝛽11𝑥
−2
1 𝑥−2

2 + ̃︁𝛽21𝑥
1
2
2 𝑥−1

3 ≤ 1,

(4.6)

where all the coefficients are treated as UVs and 𝑥1, 𝑥2, 𝑥3 > 0.

Triangular case.

Let ̃︁𝛽10 ∼ ∇(10, 20, 40), ̃︁𝛽20 ∼ ∇(15, 25, 35), ̃︁𝛽30 ∼ ∇(35, 65, 75), ̃︁𝛽11 ∼ ∇( 1
3 , 2

3 , 1) and ̃︁𝛽21 ∼ ∇( 2
3 , 1, 4

3 ).
Then, by Lemma (3.1), we have 𝐸[ ̃︁𝛽10] = 23.33, 𝐸[ ̃︁𝛽20] = 25, 𝐸[ ̃︁𝛽30] = 58.33. Therefore, the equivalent crisp
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Table 3. Optimal solutions under triangular UD.

𝛾 𝜁11 𝜁21 𝑥*1 𝑥*2 𝑥*3 𝛿*10 𝛿*20 𝛿*30 𝛿*11 𝛿*21 𝑓*

0.1 0.482 0.816 2.806 0.429 0.801 0.124 0.438 0.438 0.376 0.753 128.262
0.2 0.544 0.877 2.981 0.429 0.861 0.098 0.451 0.451 0.402 0.805 142.233
0.3 0.592 0.925 3.109 0.429 0.908 0.082 0.459 0.459 0.418 0.836 153.839
0.4 0.631 0.965 3.210 0.429 0.948 0.072 0.464 0.464 0.429 0.857 163.818
0.5 0.667 1.000 3.300 0.429 0.982 0.064 0.468 0.468 0.436 0.879 173.050
0.6 0.702 1.035 3.386 0.429 1.016 0.056 0.472 0.472 0.443 0.886 182.426
0.7 0.742 1.075 3.481 0.429 1.056 0.050 0.475 0.475 0.450 0.900 193.439
0.8 0.789 1.123 3.590 0.429 1.103 0.044 0.478 0.478 0.456 0.913 206.934
0.9 0.851 1.184 3.728 0.429 1.163 0.036 0.482 0.482 0.463 0.927 224.949

model of uncertain primal GP problem given in equation (4.6) is

min 23.33𝑥−1
1 𝑥

− 1
2

2 𝑥−1
3 + 25𝑥1𝑥3 + 58.33𝑥1𝑥2𝑥3

s.t.

𝜁11𝑥
−2
1 𝑥−2

2 + 𝜁21𝑥
1
2
2 𝑥−1

3 ≤ 1,

𝑥1, 𝑥2, 𝑥3 > 0.

(4.7)

The equivalent dual problem is

max
(︂

23.33
𝛿10

)︂𝛿10
(︂

25
𝛿20

)︂𝛿20
(︂

58.33
𝛿30

)︂𝛿30
(︂

𝜁11

𝛿11

)︂𝛿11
(︂

𝜁21

𝛿21

)︂𝛿21

(𝛿11 + 𝛿21)(𝛿11+𝛿21)

s.t.
𝛿10 + 𝛿20 + 𝛿30 = 1,

− 𝛿10 + 𝛿20 + 𝛿30 − 2𝛿11 = 0,

− 1
2
𝛿10 + 𝛿30 − 2𝛿11 +

1
2
𝛿21 = 0,

− 𝛿10 + 𝛿20 + 𝛿30 − 𝛿21 = 0.

(4.8)

We determine the values of 𝜁11, 𝜁21 by (3.7) as

𝜁11 =

⎧⎪⎨⎪⎩
1+
√

2𝛾
3 , if 0 < 𝛾 ≤ 1

2 ;

3−
√

2(1−𝛾)

3 , if 1
2 ≤ 𝛾 < 1.

𝜁21 =

⎧⎪⎨⎪⎩
2+
√

2𝛾
3 , if 0 < 𝛾 ≤ 1

2 ;

4−
√

2(1−𝛾)

3 , if 1
2 ≤ 𝛾 < 1.

Subsequently, solve the dual problem (4.8) for different uncertainty levels 𝛾 ∈ (0, 1) and provide the primal-dual
solutions corresponding to different uncertainty levels in Table 3.

Trapezoidal case.
We follow the similar approach for this case. Let ̃︁𝛽10 ∼ 𝑇 (10, 25, 35, 50), ̃︁𝛽20 ∼ 𝑇 (12, 20, 30, 40), ̃︁𝛽30 ∼

𝑇 (30, 45, 60, 70), ̃︁𝛽11 ∼ 𝑇 ( 1
3 , 2

3 , 1, 4
3 ) and ̃︁𝛽21 ∼ 𝑇 ( 2

3 , 1, 4
3 , 2). Then, by Lemma (3.3), we get 𝐸[ ̃︁𝛽10] = 30, 𝐸[ ̃︁𝛽20] =
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25.58, 𝐸[ ̃︁𝛽30] = 51.06. Therefore, the equivalent crisp model of uncertain primal GP problem given in equa-
tion (4.6) is

min 30𝑥−1
1 𝑥

− 1
2

2 𝑥−1
3 + 25.58𝑥1𝑥3 + 51.06𝑥1𝑥2𝑥3

s.t.

𝜁11𝑥
−2
1 𝑥−2

2 + 𝜁21𝑥
1
2
2 𝑥−1

3 ≤ 1,

𝑥1, 𝑥2, 𝑥3 > 0.

(4.9)

The equivalent dual problem is

max
(︂

30
𝛿10

)︂𝛿10
(︂

25.58
𝛿20

)︂𝛿20
(︂

51.06
𝛿30

)︂𝛿30
(︂

𝜁11

𝛿11

)︂𝛿11
(︂

𝜁21

𝛿21

)︂𝛿21

(𝛿11 + 𝛿21)(𝛿11+𝛿21)

s.t.
𝛿10 + 𝛿20 + 𝛿30 = 1,

− 𝛿10 + 𝛿20 + 𝛿30 − 2𝛿11 = 0,

− 1
2
𝛿10 + 𝛿30 − 2𝛿11 +

1
2
𝛿21 = 0,

− 𝛿10 + 𝛿20 + 𝛿30 − 𝛿21 = 0.

(4.10)

Using (3.11), we determine the values of 𝜁11, 𝜁21 as

𝜁11 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1+2
√

𝛾

3 , if 0 < 𝛾 ≤ 1
4 ;

3+4𝛾
6 , if 1

4 ≤ 𝛾 ≤ 3
4 ;

4−2
√

(1−𝛾)

3 , if 3
4 ≤ 𝛾 < 1.

𝜁21 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

2+
√

5𝛾
3 , if 0 < 𝛾 ≤ 1

5 ;

5+5𝛾
6 , if 1

5 ≤ 𝛾 ≤ 3
5 ;

6−
√

10(1−𝛾)

3 , if 3
5 ≤ 𝛾 < 1.

Subsequently, solve the dual problem (4.10) for different uncertainty levels 𝛾 ∈ (0, 1) and provide the primal-dual
solutions corresponding to different uncertainty levels in Table 4.

The expected values of the objective function under triangular and trapezoidal cases for different uncertainty
levels 𝛾 ∈ (0, 1) are shown in Figure 4.

5. Application in inventory model

We solve a real application based problem under the uncertainty based framework using GP technique applied
in an inventory model. Shiraz et al. [27] solved an uncertain inventory model under normal, linear, and zigzag
UDs. We consider similar kind of inventory model under triangular and trapezoidal UDs. In this model, our
assumptions are the followings.

– Demand is affected by selling price.
– Replenishment is instantaneous.
– No shortage is allowed.
– 𝑝, price per unit in Rs.
– 𝑞, order quantity in units.
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Table 4. Optimal solutions under trapezoidal UD.

𝛾 𝜁11 𝜁21 𝑥*1 𝑥*2 𝑥*3 𝛿*10 𝛿*20 𝛿*30 𝛿*11 𝛿*21 𝑓*

0.1 0.544 0.902 2.550 0.501 0.958 0.122 0.439 0.439 0.378 0.756 142.290
0.2 0.631 1.000 2.746 0.501 1.062 0.088 0.456 0.456 0.411 0.822 163.708
0.3 0.700 1.083 2.893 0.501 1.150 0.070 0.465 0.465 0.430 0.861 182.901
0.4 0.767 1.167 3.028 0.501 1.239 0.056 0.472 0.472 0.444 0.889 203.227
0.5 0.833 1.250 3.155 0.501 1.327 0.046 0.477 0.477 0.455 0.910 224.364
0.6 0.900 1.333 3.280 0.501 1.415 0.038 0.481 0.481 0.463 0.926 246.609
0.7 0.967 1.423 3.400 0.501 1.511 0.030 0.485 0.485 0.470 0.939 271.031
0.8 1.035 1.529 3.517 0.501 1.623 0.024 0.488 0.488 0.475 0.950 299.536
0.9 1.123 1.667 3.664 0.501 1.770 0.020 0.490 0.490 0.481 0.961 338.277

Figure 4. Expected values of objective function under triangular and trapezoidal cases.

– The demand per unit 𝐷(𝑝) is a decreasing function of price per unit.
i.e., 𝐷(𝑝) = 𝛽1𝑝

−𝛼1 , 𝛽1 > 0 is constant, 𝛼1 > 1 is the price elasticity of demand.
– The ordering cost is 𝛽2𝐷(𝑝)

𝑞 , where 𝛽2 is the ordering cost per batch.
– The purchasing cost per unit is 𝐶(𝑞) = 𝛽3𝑞

−𝛼3 , 𝛽3 > 0, 𝛼3 ∈ (0, 1) is the cost elasticity of product.
– The holding cost is 1

2𝛽4𝑞𝐶(𝑞), where 𝛽4 > 0 is the inventory carrying cost rate per unit time.

Therefore, the profit function 𝑃 (𝑝, 𝑞) is given by

max 𝑃 (𝑝, 𝑞) = Revenue−Ordering cost−Holding cost− Purchasing cost

= 𝑝𝐷(𝑝)− 𝛽2𝐷(𝑝)
𝑞

− 1
2
𝛽4𝑞𝐶(𝑞)− 𝐶(𝑞)𝐷(𝑝)

= 𝛽1𝑝
−𝛼1+1 − 𝛽2𝛽1𝑝

−𝛼1𝑞−1 − 1
2
𝛽4𝛽3𝑞

−𝛼3+1 − 𝛽3𝛽1𝑝
−𝛼1𝑞−𝛼3 .

(5.1)
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So, the uncertain inventory model is formulated as

max 𝑇

s.t.

𝛽1𝑝
−𝛼1+1 − 𝛽2𝛽1𝑝

−𝛼1𝑞−1 − 1
2
𝛽4𝛽3𝑞

−𝛼3+1 − 𝛽3𝛽1𝑝
−𝛼1𝑞−𝛼3 ≥ 𝑇.

(5.2)

In standard form, the model (5.2) is of the form

min 𝑇−1

s.t.

𝛽2𝑝
−1𝑞−1 +

1
2
𝛽−1

1 𝛽3𝛽4𝑝
𝛼1−1𝑞−𝛼3+1 + 𝛽3𝑝

−1𝑞−𝛼3 + 𝛽−1
1 𝑝𝛼1−1𝑇 ≤ 1.

(5.3)

Let us assume that 𝛽1, 𝛽2, 𝛽3, 𝛽4 be independent UVs. We choose the price elasticity of demand 𝛼1 = 1.5 and
the cost elasticity of product 𝛼3 = 0.02. Therefore, the equivalent deterministic primal GP model is

min 𝑇−1

s.t.

𝜁2𝑝
−1𝑞−1 +

𝜁3𝜁4

2𝜁1
𝑝0.5𝑞0.98 + 𝜁3𝑝

−1𝑞−0.02 +
1
𝜁1

𝑝0.5𝑇 ≤ 1.

(5.4)

Consequently, the dual problem of model (5.4) is

max
(︂

1
𝛿10

)︂𝛿10
(︂

𝜁2

𝛿11

)︂𝛿11
(︂

𝜁3𝜁4

2𝜁1𝛿21

)︂𝛿21
(︂

𝜁3

𝛿31

)︂𝛿31
(︂

1
𝜁1𝛿41

)︂𝛿41

(𝜆)𝜆

s.t.
𝛿10 = 1,

− 𝛿10 + 𝛿41 = 0,

− 𝛿11 + 0.5𝛿21 − 𝛿31 + 0.5𝛿41 = 0,

− 𝛿11 + 0.98𝛿21 − 0.02𝛿31 = 0,

𝜆 = (𝛿11 + 𝛿21 + 𝛿31 + 𝛿41),

(5.5)

where 𝜁1, 𝜁2, 𝜁3, 𝜁4 are crisp values of 𝛽1, 𝛽2, 𝛽3, 𝛽4 respectively.

Triangular case. Let 𝛽1 ∼ ∇(15000, 18000, 21000), 𝛽2 ∼ ∇(60, 90, 110), 𝛽3 ∼ ∇(4, 6, 9) and 𝛽4 ∼
∇(0.2, 0.4, 0.6). Therefore, using (3.7), the crisp values 𝜁1, 𝜁2, 𝜁3, 𝜁4 are determined as

𝜁1 =

⎧⎨⎩15000 + 3000
√

2𝛾, if 0 < 𝛾 ≤ 1
2 ;

21000− 3000
√︀

2(1− 𝛾), if 1
2 ≤ 𝛾 < 1.

𝜁2 =

⎧⎨⎩60 + 10
√

15𝛾, if 0 < 𝛾 ≤ 3
5 ;

110− 10
√︀

10(1− 𝛾), if 3
5 ≤ 𝛾 < 1.

𝜁3 =

⎧⎨⎩4 +
√

10𝛾, if 0 < 𝛾 ≤ 2
5 ;

9−
√︀

15(1− 𝛾), if 2
5 ≤ 𝛾 < 1.
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Table 5. Optimal solutions under triangular UD.

Uncertainty level Price per unit in Rs. Order quantity in units Profit
(𝛾) (𝑝*) (𝑞*) (𝑃 * )

0.25 16 172 2664
0.50 19 143 2605
0.75 22 119 2530

𝜁4 =

⎧⎨⎩0.2 +
√

0.08𝛾, if 0 < 𝛾 ≤ 1
2 ;

0.6−
√︀

0.08(1− 𝛾), if 1
2 ≤ 𝛾 < 1.

Hence, we solve the dual problem (5.5) for different uncertainty levels 𝛾 ∈ (0, 1) for triangular UDs. In
particular, for the uncertainty levels 𝛾 = 0.25, 𝛾 = 0.50, and 𝛾 = 0.75, we find the optimal price per unit,
optimal order quantity in units and maximum profit which are given in Table 5.

Trapezoidal case.
Let 𝛽1 ∼ 𝑇 (14000, 18000, 20000, 22000), 𝛽2 ∼ 𝑇 (50, 80, 100, 120), 𝛽3 ∼ (4, 6, 7, 10), 𝛽4 ∼ (0.2, 0.4, 0.6, 0.8).

Therefore, using (3.11), the crisp values 𝜁1, 𝜁2, 𝜁3, 𝜁4 are determined as

𝜁1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
14000 + 2000

√
10𝛾, if 0 < 𝛾 ≤ 2

5 ;

16000 + 5000𝛾, if 2
5 ≤ 𝛾 ≤ 4

5 ;

22000− 2000
√︀

5(1− 𝛾), if 4
5 ≤ 𝛾 < 1.

𝜁2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
50 + 30

√
3𝛾, if 0 < 𝛾 ≤ 1

3 ;

65 + 45𝛾, if 1
3 ≤ 𝛾 ≤ 7

9 ;

120− 30
√︀

2(1− 𝛾), if 7
9 ≤ 𝛾 < 1.

𝜁3 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
4 +

√
14𝛾, if 0 < 𝛾 ≤ 2

7 ;

10+7𝛾
2 , if 2

7 ≤ 𝛾 ≤ 4
7 ;

10−
√︀

21(1− 𝛾), if 4
7 ≤ 𝛾 < 1.

𝜁4 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0.2 + 0.4

√
𝛾, if 0 < 𝛾 ≤ 1

4 ;

0.3 + 0.4𝛾, if 1
4 ≤ 𝛾 ≤ 3

4 ;

0.8− 0.4
√︀

(1− 𝛾), if 3
4 ≤ 𝛾 < 1.

Hence, as earlier, we solve the dual problem (5.5) for different uncertainty levels 𝛾 ∈ (0, 1) for trapezoidal
UDs. In particular, for the uncertainty levels 𝛾 = 0.25, 𝛾 = 0.50, and 𝛾 = 0.75, we find the optimal price per
unit, optimal order quantity in units and maximum profit which are given in the Table 6.

One obvious question from the preceding two cases is what happens if we change the uncertainty level 𝛾. In
that situation, we get a different solution due to the changes in feasible space. Therefore, the decision maker
has to be very careful about uncertainty levels and what kind of uncertainty is present in that model.
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Table 6. Optimal solutions under trapezoidal UD.

Uncertainty level Price per unit in Rs. Order quantity in units Profit
(𝛾) (𝑝*) (𝑞*) (𝑃 * )

0.25 18 143 2583
0.50 21 115 2537
0.75 24 95 2456

6. Conclusion

Geometric programming (GP) is a powerful optimization tool for solving a wide range of optimization and
engineering design problems. Traditional GP problems assume that the parameters of GP problems are deter-
ministic and specific. However, in real-world GP problems, the parameters may be uncertain and imprecise.
Recently, uncertainty theory has been developed to deal with such kinds of uncertain problems. In this arti-
cle, we solve an uncertain GP problem under triangular and trapezoidal uncertainty distributions. Here, we
develop the equivalent chance-constrained GP models. We solve it conventionally by transforming the uncertain
GP models into crisp GP models. Two numerical examples are given to demonstrate the effectiveness of the
techniques and algorithms. We solve two numerical GP problems under triangular and trapezoidal uncertainty
distributions for different uncertainty levels 𝛾 and find the corresponding expected values of the cost function.
Following that, we plot the expected cost function in relation to the uncertainty level 𝛾. Lastly, we add an
example of how our proposed method could be used in an inventory model to make the most profit.
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and suggestions to improve the quality of the paper. Also the first author is thankful to CSIR for financial support of
this work through file No: 09∖1059(0027)∖2019-EMR-I.
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