Solving the multi-modal transportation problem via the rough interval approach
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 3155-3185

This research studies a transportation problem to minimize total transportation cost under the rough interval approximation by considering the multi-modal transport framework, referred to here as the rough Multi-Modal Transportation Problem (MMTP). The parameters of MMTP are rough intervals, because the problem is chosen from a real-life scenario. To solve MMTP under a rough environment, we employ rough chance-constrained programming and the expected value operator for the rough interval and then outline the main advantages of our suggested method over those existing methods. Next, we propose an algorithm to optimally solve the problem and present a numerical example to examine the proposed technique. Finally, the solution is analyzed by the proposed method with rough-chance constrained programming and expected value operator.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022131
Classification : 90B06
Keywords: Transportation problem, multi-modal system, rough interval, rough chance-constrained programming, expected value operator, decision making problem
@article{RO_2022__56_4_3155_0,
     author = {Mardanya, Dharmadas and Maity, Gurupada and Roy, Sankar Kumar and Yu, Vincent F.},
     title = {Solving the multi-modal transportation problem \protect\emph{via} the rough interval approach},
     journal = {RAIRO. Operations Research},
     pages = {3155--3185},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022131},
     mrnumber = {4475689},
     zbl = {1501.90009},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022131/}
}
TY  - JOUR
AU  - Mardanya, Dharmadas
AU  - Maity, Gurupada
AU  - Roy, Sankar Kumar
AU  - Yu, Vincent F.
TI  - Solving the multi-modal transportation problem via the rough interval approach
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 3155
EP  - 3185
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022131/
DO  - 10.1051/ro/2022131
LA  - en
ID  - RO_2022__56_4_3155_0
ER  - 
%0 Journal Article
%A Mardanya, Dharmadas
%A Maity, Gurupada
%A Roy, Sankar Kumar
%A Yu, Vincent F.
%T Solving the multi-modal transportation problem via the rough interval approach
%J RAIRO. Operations Research
%D 2022
%P 3155-3185
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022131/
%R 10.1051/ro/2022131
%G en
%F RO_2022__56_4_3155_0
Mardanya, Dharmadas; Maity, Gurupada; Roy, Sankar Kumar; Yu, Vincent F. Solving the multi-modal transportation problem via the rough interval approach. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 3155-3185. doi: 10.1051/ro/2022131

[1] M. Abdel-Aty, J. Lee, C. Siddiqui and K. Choi, Geographical unit based analysis in the context of transportation safety planning. Transp. Res. Part A: Policy Pract. 49 (2013) 62–75.

[2] H. Dalman, Uncertain programming model for multi-item solid transportation problem. Int. J. Mach. Learn. Cybern. 9 (2018) 559–567. | DOI

[3] A. Ebrahimnejad, A method for solving linear programming with interval-valued trapezoidal fuzzy variables. RAIRO: Oper. Res. 52 (2018) 955–979. | MR | Zbl | Numdam | DOI

[4] O. Ergun, G. Kuyzu and M. Savelsbergh, Reducing truckload transportation costs through collaboration. Transp. Sci. 41 (2007) 206–221. | DOI

[5] S. Ghosh and S. K. Roy, Fuzzy-rough multi-objective product blending fixed-charge transportation problem with truck load constraints through transfer station. RAIRO: Oper. Res. 55 (2021) S2923–S2952. | MR | Zbl | Numdam | DOI

[6] A. Hamzehee, M.A. Yaghoobi and M. Mashinchi, Linear programming with rough interval coefficients. J. Intell. Fuzzy Syst. 26 (2014) 1179–1189. | MR | Zbl

[7] F. L. Hitchcock, The distribution of a product from several sources to numerous localities. J. Math. Phys. 20 (1941) 224–230. | MR | JFM | DOI

[8] M. E. T. Horn, Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems. Transp. Res. Part A: Policy Pract. 36 (2002) 167–188.

[9] K. Huang, K. F. Wu and M. N. Ardiansyah, A stochastic dairy transportation problem considering collection and delivery phases. Transp. Res. Part E: Logistics Transp. Rev. 129 (2019) 325–338. | DOI

[10] J. H. L. James, C. C. Hsu and Y. S. Chen, Improving transportation service quality based on information fusion. Transp. Res. Part A: Policy Pract. 67 (2014) 225–239.

[11] L. V. Kantorovich, Mathematical methods of organizing and planning production. Manage. Sci. 6 (1960) 366–422. | MR | Zbl | DOI

[12] P. Kaur, V. Verma and K. Dahiya, Capacitated two-stage time minimization transportation problem with restricted flow RAIRO: Oper. Res. 51 (2017) 447–467. | MR | Zbl | Numdam | DOI

[13] V. P. Kumar and M. Bierlaire, Multi-objective airport gate assignment problem in planning and operations. J. Adv. Transp. 48 (2014) 902–926. | DOI

[14] P. Luathep, A. Sumalee, W. H. K. Lam, Z. C. Li and H. K. Lo, Global optimization method for mixed transportation network design problem: a mixed-integer linear programming approach. Transp. Res. Part B: Methodol. 45 (2011) 808–827. | DOI

[15] D. R. Mahapatra, S. K. Roy and M. P. Biswal, Multi-choice stochastic transportation problem involving extreme value distribution. Appl. Math. Modell. 37 (2013) 2230–2240. | MR | Zbl | DOI

[16] G. Maity, D. Mardanya, S. K. Roy and G. W. Weber, A new approach for solving dual-hesitant fuzzy transportation problem with restrictions. Sadhana 44 (2019) 75. | MR | DOI

[17] G. Maity, S. K. Roy and J.-L. Verdegay, Analyzing multimodal transportation problem and its application to artificial intelligence. Neural Comput. App. 32 (2020) 2243–2256. | DOI

[18] D. Mardanya and S. K. Roy, Time variant multi-objective linear fractional interval-valued transportation problem. Appl. Math. J. Ch. Univ. 37 (2022) 111–130. | MR | Zbl | DOI

[19] D. Mardanya, G. Maity and S. K. Roy, Solving bi-level multi-objective transportation problem under fuzziness. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 29 (2021) 411–433. | MR | Zbl | DOI

[20] D. Mardanya, G. Maity and S. Kumar Roy, The multi-objective multi-item just-in-time transportation problem. Optimization (2021) 1–32. DOI: . | DOI | MR | Zbl

[21] S. Midya and S. K. Roy, Analysis of interval programming in different environments and its application to fixed-charge transportation problem. Discrete Math. Algorithms App. 9 (2017) 1750040. | MR | Zbl | DOI

[22] S. Midya, S. K. Roy and V. F. Yu, Intuitionistic fuzzy multi-stage multi-objective fixed-charge solid transportation problem in a green supply chain. Int. J. Mach. Learn. Cybern. 12 (2021) 699–717. | DOI

[23] S. Midya, S. K. Roy and G.-W. Weber, Fuzzy multiple objective fractional optimization in rough approximation and its aptness to the fixed-charge transportation problem. RAIRO: Oper. Res. 55 (2021) 1715–1741. | MR | Zbl | Numdam | DOI

[24] R. Moore, Interval Analysis. Prentice-Hall, Englewood-Cliffs, NJ, USA (1996). | MR

[25] E. Murphy, Urban spatial location advantage: the dual of the transportation problem and its implications for land-use and transport planning. Transp. Res. Part A: Policy Pract. 46 (2012) 91–101.

[26] Y. S. Myung and Y. M. Yu, Freight transportation network model with bundling option. Transp. Res. Part E: Logistics Transp. Rev. 133 (2020) 101827. | DOI

[27] M. S. Osman, E. F. Lashein, E. A. Youness and T. E. M. Atteya, Mathematical programming in rough environment. Optimization 60 (2011) 603–611. | MR | Zbl | DOI

[28] A. Paraman, R. Bheeman and A. Antony, Goal programming approach for solving multi-objective fractional transportation problem with fuzzy parameters. RAIRO: Oper. Res. 53 (2019) 157–178. | MR | Zbl | Numdam | DOI

[29] Z. Pawlak, Rough sets. Int. J. Comput. Inf. Sci. 11 (1982) 341–356. | MR | Zbl | DOI

[30] Z. Pawlak, Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic Publishers, Dordrecht (1991). | Zbl | DOI

[31] Z. Pawlak and A. Skowron, Rudiments of rough sets. Inf. Sci. 177 (2007) 3–27. | MR | Zbl | DOI

[32] M. Rebolledo, Rough intervals-enhancing intervals for qualitative modeling of technical systems. Artif. Intell. 170 (2006) 667–685. | DOI

[33] S. K. Roy, G. Maity and G. W. Weber, Multi-objective two-stage grey transportation problem using utility function with goals. Cent. Eur. J. Oper. Res. 5 (2017) 417–439. | MR | Zbl | DOI

[34] S. K. Roy, S. Midya and V. F. Yu, Multi-objective fixed-charge transportation problem with random rough variables. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 26 (2018) 971–996. | MR | Zbl | DOI

[35] S. K. Roy, A. Ebrahimnejad, J.-L. Verdegay and S. Das, New approach for solving intuitionistic fuzzy multi-objective transportation problem. Sadhana 43 (2018) 3. | MR | Zbl | DOI

[36] S. K. Roy, S. Midya and G.-W. Weber, Multi-objective multi-item fixed-charge solid transportation problem under two-fold uncertainty. Neural Comput. App. 31 (2019) 8593–8613. | DOI

[37] S. Xiao and E. M. K. Lai, A rough programming approach to power-balanced instruction scheduling for VLIW digital signal processors. IEEE Trans. Signal Process. 56 (2008) 1698–1709. | MR | Zbl | DOI

[38] S. X. Xu and Q. H. George, Transportation service procurement in periodic sealed double auctions with stochastic demand and supply. Transp. Res. Part B: Methodol. 56 (2013) 136–160. | DOI

[39] E. A. Youness, Characterizing solutions of rough programming problems. Eur. J. Oper. Res. 168 (2006) 1019–1029. | MR | Zbl | DOI

[40] R. Zhang, W. Y. Yun and I. Moon, A reactive tabu search algorithm for the multi-depot container truck transportation problem. Transp. Res. Part E: Logistics Transp. Rev. 45 (2009) 904–914. | DOI

[41] L. Zhi-Chun, W. H. K. Lam and S. C. Wong, Modeling intermodal equilibrium for bimodal transportation system design problems in a linear monocentric city. Transp. Res. Part B: Methodol. 46 (2012) 30–49. | DOI

Cité par Sources :