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SOLVING THE MULTI-MODAL TRANSPORTATION PROBLEM VIA THE
ROUGH INTERVAL APPROACH

Dharmadas Mardanya1 , Gurupada Maity1, Sankar Kumar Roy1,*

and Vincent F. Yu2

Abstract. This research studies a transportation problem to minimize total transportation cost under
the rough interval approximation by considering the multi-modal transport framework, referred to here
as the rough Multi-Modal Transportation Problem (MMTP). The parameters of MMTP are rough
intervals, because the problem is chosen from a real-life scenario. To solve MMTP under a rough
environment, we employ rough chance-constrained programming and the expected value operator for
the rough interval and then outline the main advantages of our suggested method over those existing
methods. Next, we propose an algorithm to optimally solve the problem and present a numerical
example to examine the proposed technique. Finally, the solution is analyzed by the proposed method
with rough-chance constrained programming and expected value operator.
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1. Introduction

Transportation Problems (TPs) are widely studied within the operations research literature, with many real-
life problems can be considered and modeled by them. Most studies in the TP literature consider to satisfy the
availabilities of sources and demands for destinations and reduce transportation costs from sources to different
destinations. In reality, a number of additional decision-making challenges appear such as, product benefits,
benefits for purchasers, making decisions on various objective functions in real life, and so on. Multi-Model
Transportation Problem (MMTP) is comparable to a TP involving the use of several modes of transportation
(see Fig. 1). It is also called the combined TP that permits transporting goods under a solitary contract, but
it operates under more than one mode of transportation; the bearer is liable (in the usual sense) for the whole
movement, despite the fact that several/different modes of transportation are considered, such as road, sea, train,
etc. The bearer does not need to utilize all modes for transport, and in normal practice this is not valid. The
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transportation is frequently executed by subcontracted bearers (normally one for each unique transportation
mode).

The fundamental transportation model was first started by Kantorovich [11], who proposed an incomplete
calculation for figuring the arrangement of the TP. Hitchcock [7] examined the issue of limiting the cost of giving
an item from a few distribution centers to various buyers. Since the reality of TP has many facets, each one of
them is usually studied separately. Murphy [25] developed a TP, described its advantages for the dual of TP
and gave its implications for land-use and transport planning. Huang et al. [9] solved a stochastic dairy TP with
considering collection and delivery phases. Maity et al. [17] analyzed an MMTP and its application to artificial
intelligence. Kaur et al. [12] investigated a capacitated TP with two-stage and restricted flow for the aim of time
minimization. Roy et al. [35] described a new approach for solving intuitionistic fuzzy multi-objective TP. James
et al. [10] improved transportation benefit quality in view of a combination of data. Maity et al. [16] proposed a
new approach for solving dual-hesitant fuzzy TP with restrictions. Mardanya and Roy [18] introduced the time-
variant in the multi-objective linear fractional transportation problem. Later, Mardanya et al. [20] introduced
the just-in-time concept in the multi-objective environment. Ebrahimnejad [3] addressed a problem including
interval-valued trapezoidal fuzzy variables and provided a method for linear programming. Myung et al. [26]
developed freight transportation network model with bundling option. Zhang et al. [40] derived a reactive
tabu search algorithm for the multi-depot container truck transportation problem. Other studies related to
transportation security arrangement have been presented by Ergun et al. [4], Luathep et al. [14], Zhi-Chun
et al. [41], Abdel-Aty et al. [1] and Xu et al. [38]. Moreover the multi-objective transportation problem has been
discussed by many authors, such as Dalman [2], Ghosh and Roy [5], Kumar et al. [13], Mahapatra et al. [15],
Mardanya et al. [19], Midya and Roy [21], Midya et al. [22, 23], Paraman et al. [28], Roy et al. [33, 34, 36], and
others.

Vagueness appears in reality within TP. This is due to the lack of increasing awareness within a transportation
policy and different types of unexpected elements such as a lack of evidence, etc. In reality, the main aim of the
problem is to optimize the objective function under certain conditions.

In 1982, Pawlak [29,30] proposed the rough set theory. It is a technique that simultaneously considers vague-
ness and uncertainties. The rough set theory plays an important role in analyzing a vaguely described problem
for finding a different course of actions in real-life decision-making problems [31]. The rough set theory has a
wide scope of application in several fields, such as decision analysis, machine learning, and knowledge discov-
ery from a database, civil engineering problems, and other areas. Recently, rough programming accommodates
real-world vagueness and uncertainty, thus spurring the attention of researchers (cf. [6, 27,32,39]).

Many researchers have focused on Rough Interval (RI) concepts in order to apply the various properties of
RI on several optimization problems related to transporting systems.

However, there seems to be a gap in the application of RI concepts on MMTP. Since transportation cost
in the transportation system depends on many factors, they have an inherent inclination for being complex,
inexact, and/or vague. The interval approximation can imagine this inaccuracy or vagueness so that the Deci-
sion Maker (DM) can have an idea of the overall cost of transportation in interval form. Furthermore, in an
multi-modal transportation system, DMs have no exact information about the data related to different trans-
portation parameters in different modes, the parameters in the problem that are an approximate representation
of the demands at the destinations, the capacity of supply at origins, selling price, unit cost, etc. Due to these
unpredictable factors, the feasible region becomes uncertain. Considering the rough inclination approximation
to an uncertain feasible region, DMs acquire better flexibility in the decision-making process. This practical
necessity motivates us to study MMTP with RI approximation under the following objectives.

– To investigate MMTP with RI coefficients.
– To explain how the decision-making system smooth and relaxed with the help of RI in contrast with utilizing

an exact crisp number.
– To derive the simplest form of the solution for the linear optimization problem, i.e., an MMTP is solved by

using existing methods, viz., expected value operator and rough chance-constrained programming (RCCP).
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The remaining paper is arranged as follows. Section 2 formulates the problem studied. Section 3 discusses the
basic definitions and properties of RI. Section 4 proposes a new model for MMTP. Section 5 presents a solution
procedure of the proposed method. To demonstrate the utilization of the proposed model of MMTP, Section 6
gives a numerical illustration. Section 7 shows the results and discussion of the proposed method. Finally, this
paper ends with conclusions and future study in Section 8.

2. Problem background

To define MMTP, we need to know ground origins, final destinations, and transshipment origins.

Definition 2.1 (Ground Origin (GO)). In a TP, ground origins are the nodes with no capacity to gather the
goods, but from where the next nodes receive goods.

Definition 2.2 (Final Destination (FD)). In a TP, final destinations are the nodes that receive goods with no
capability to supply them.

Due to the capacity/multiple routes of transportation, goods cannot supply on-demand from the GO nodes
to the FD nodes. In this case, certain destination nodes with the capacity to simultaneously supply and receive
goods are needed. Such nodes are called transshipment origins.

Definition 2.3 (Transshipment Origin (TO)). In a TP, the destination nodes that can collect the goods and
the capacity to deliver the goods are called transshipment origins.

In Figure 1, 𝐺1, 𝐺2, . . . , 𝐺𝑚1 are the nodes of GD; 𝑇11, 𝑇12, . . . , 𝑇1𝑚2 are the nodes of TO of level 1; and
𝐷1, 𝐷2, . . . , 𝐷𝑛1 are taken as the nodes of FD.

The TP under the consideration of at least one node of TO is depicted as MMTP. In order to accommodate
the real-life TP, the usage of a single mode of transportation cannot always possibly fulfill customer demand at
the destination points. There are sometimes certain restrictions on transporting the goods, and so the multi-
modes of transportation from different nodes need to be addressed. At that point the transportation is not a
simple TP, but turns into an MMTP.

3. Prelimiaries

We now provide some background and properties on rough set theory along with a rough interval TP.

Approximation space. Suppose 𝑋 ̸= 𝜑 is a finite set of objects. We define an equivalence relation 𝑅 on 𝑋
that partitions 𝑋 into a family of pairwise disjoined subsets 𝐸1, 𝐸2, . . . , 𝐸𝑛, each of which is an equivalence class
of 𝑅 and called elementary sets. The pair (𝑋,𝑅) is called the approximation space and is denoted by Appr(𝑅).

In the approximation space, Appr(𝑅) = (𝑋, 𝑅), and given an arbitrary set 𝐵 ⊆ 𝑋, one may represent 𝐵 by
a pair of lower approximation (LA) and upper approximation (UA):

Appr(𝐵) =
⋃︁

𝐸𝑖⊆𝐵

𝐸𝑖 = {𝑦 ∈ 𝑋 : [𝑦]𝑅 ⊆ 𝐵},

Appr(𝐵) =
⋃︁

𝐸𝑖∩𝐵 ̸=𝜑

𝐸𝑖 = {𝑦 ∈ 𝑋 : [𝑦]𝑅 ∩𝐵 ̸= 𝜑}.

Here, [𝑦]𝑅 signifies the equivalence class containing 𝑦. The LA and UA of 𝐵 can be equivalently described as:

Appr(𝐵) = {𝑦 ∈ 𝑋 : ∀ 𝑧 ∈ 𝑋, 𝑦𝑅𝑧 ⇒ 𝑧 ∈ 𝐵},
Appr(𝐵) = {𝑦 ∈ 𝑋 : ∃ 𝑧 ∈ 𝑋 such that 𝑦𝑅𝑧 and 𝑧 ∈ 𝐵}.

The pair (Appr(𝐵), Appr(𝐵)) is called the rough set of 𝐵.
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Figure 1. Graphical representation of an MMTP.

Rough intervals. The concept of RI [32] was proposed as a unique instance of a rough set that fulfills all of
the rough set properties. In addition, fundamental ideas are defined including definitions of UA and LA. There
are two components of RI: Lower Approximation Interval (LAI) and Upper Approximation Interval (UAI). In
particular, RI may be expressed as a trademark an incentive from a suspicious idea defined on a variable 𝑥 ∈ 𝑅.

The concept of RIs was introduced by Rebolledo [32] as a special case of a rough set. The distinctive point of
RIs is that they can be used to treat parameters and variables that are partially unknown. RIs are applied in
the literature to overcome the inherent limitations of the rough set property, as rough sets were originally used
only to treat discrete object, and could not define continuous variables. However, RIs can use the concepts of
the rough set as continuous variables in a model by applying them. This is a special case of a rough set that
satisfies all the rough set properties and basic concepts including the UA and LA definitions. Some explanations
are presented on RI as follows.

(i) If 𝑦 ∈ Appr(𝐵) ⇒ 𝑦 ∈ 𝐵 then 𝑦 is surely taken by 𝐵.
(ii) If 𝑦 ∈ Appr(𝐵), then 𝑦 is possibly taken by 𝐵.
(iii) If 𝑦 /∈ Appr(𝐵) ⇒ 𝑦 /∈ 𝐵 then 𝑦 surely does not belong to 𝐵.

Remark. Let 𝑆 =
(︀[︀

𝑠𝑙, 𝑠𝑢
]︀
,
[︀
𝑠𝑙, 𝑠𝑢

]︀)︀
be a RI. Presently, if 𝑠𝑙 = 𝑠𝑙 and 𝑠𝑢 = 𝑠𝑢, then there are no extraordinary

cases in that RI, and at that point this RI degenerates into simply an interval. Along these lines, the RI is a
sensible era of the widely known crisp interval.

Rough interval arithmetic. The RI arithmetic operations are similar to Moore’s interval arithmetic [24]. In
this consequence, some arithmetic operations of RIs are presented minutely. A detailed discussion of Rough
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Interval Arithmetic (RIA) is in [32]. Presently, as indicated by Hamzehee et al. [6], 𝑆 =
(︀[︀

𝑠𝑙, 𝑠𝑢
]︀
,
[︀
𝑠𝑙, 𝑠𝑢

]︀)︀
and

𝑇 =
(︁[︀

𝑡𝑙, 𝑡𝑢
]︀
,
[︁
𝑡
𝑙
, 𝑡

𝑢
]︁)︁

are two RIs. At that point, the RIA on these two RIs is given by the following.

(3.1) Addition: 𝑆 + 𝑇 =
(︁[︀

𝑠𝑙 + 𝑡𝑙, 𝑠𝑢 + 𝑡𝑢
]︀
,
[︁
𝑠𝑙 + 𝑡

𝑙
, 𝑠𝑢 + 𝑡

𝑢
]︁)︁

.

(3.2) Subtraction: 𝑆 − 𝑇 =
(︁[︀

𝑠𝑙 − 𝑡𝑢, 𝑠𝑢 − 𝑡𝑙
]︀
,
[︁
𝑠𝑙 − 𝑡

𝑢
, 𝑠𝑢 − 𝑡

𝑙
]︁)︁

.

(3.3) Negation: −𝑆 =
(︀[︀
−𝑠𝑢,−𝑠𝑙

]︀
,
[︀
−𝑠𝑢,−𝑠𝑙

]︀)︀
.

(3.4) Intersection: 𝑆 ∩ 𝑇 =
(︁[︀

max
{︀
𝑠𝑙, 𝑡𝑙

}︀
, min{𝑠𝑢, 𝑡𝑢}

]︀
,
[︁
max{𝑠𝑙, 𝑡

𝑙}, min{𝑠𝑢, 𝑡
𝑢}

]︁)︁
.

(3.5) Union: 𝑆 ∪ 𝑇 =
(︁[︀

min
{︀
𝑠𝑙, 𝑡𝑙

}︀
, max{𝑠𝑢, 𝑡𝑢}

]︀
,
[︁
min

{︁
𝑠𝑙, 𝑡

𝑙
}︁

, max
{︀
𝑠𝑢, 𝑡

𝑢}︀]︁)︁
.

The set and logic operations with RIs are basically analyzed by similar operations with a fuzzy set. Fuzzy
sets must deal with continuous membership functions and cannot utilize Moore’s interval calculus.

Order relation of a rough interval. Suppose 𝑆 and 𝑇 are any two RIs, and then the order relations “≤”
and “<” between 𝑆 and 𝑇 are characterized as 𝑆 ≤ 𝑇 ⇔ 𝑠𝑙+𝑠𝑢

2 ≤ 𝑡𝑙+𝑡𝑢

2 , 𝑠𝑙+𝑠𝑢

2 ≤ 𝑡
𝑙
+𝑡

𝑢

2 ; and 𝑆 < 𝑇 ⇔ 𝑆 ≤ 𝑇
with 𝑆 ̸= 𝑇, respectively.

The order relation either “≤” or “<” demonstrates the inclination of DMs for the distinctive decisions in view
of the uppermost extreme midpoint in the ordinary case and in the exceptional case, by regarding a maximization
problem. Expected value maximization and vulnerability minimization are the choices of reasoning. We note
that the order relations “≤” and “<” so-characterized are partially ordered relations.

Definition 3.1. Abdel-Aty et al. [1] presented the concept of a measure on the approximation space. If 𝑋 =
(Appr(𝑋), Appr(𝑋)) is a rough value on the approximation space, then the lower and upper trust measures of
the rough event {𝑋 ≤ 𝑟} are respectively defined by:

Tr{𝑋 ≤ 𝑟} =
Card

(︀
𝑝 ∈ Appr(𝑋)|𝑝 ≤ 𝑟

)︀
Card

(︀
Appr(𝑋)

)︀ , Tr{𝑋 ≤ 𝑟} =
Card

(︀
𝑝 ∈ Appr(𝑋)|𝑝 ≤ 𝑟

)︀
Card

(︀
Appr(𝑋)

)︀ .

Here, Card() denotes the cardinality of a given set.
The trust measure of the rough event is given by:

Tr{𝑋 ≤ 𝑟} =
1
2
[︀
Tr{𝑋 ≤ 𝑟}+ Tr{𝑋 ≤ 𝑟}

]︀
.

The trust measure may be defined as any convex combination of the lower and upper trusts.

Definition 3.2. Suppose 𝛾 =
(︀
[𝑎𝑙, 𝑎𝑢],

[︀
𝑎̄𝑙, 𝑎̄𝑢

]︀)︀
, where 𝑎̄𝑙 ≤ 𝑎𝑙 ≤ 𝑎𝑢 ≤ 𝑎̄𝑢, is RI; then according to Defini-

tion 3.1, the trust measures of rough events {𝛾 ≤ 𝑟} and {𝛾 ≥ 𝑟} are denoted by Tr{𝛾 ≤ 𝑟}, Tr{𝛾 ≥ 𝑟} and
defined as follows:

Tr{𝛾 ≤ 𝑟} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑟 ≤ 𝑎̄𝑙;

1
2

(︁
𝑎̄𝑙−𝑟

𝑎̄𝑙−𝑎̄𝑢

)︁
, if 𝑎̄𝑙 ≤ 𝑟 ≤ 𝑎𝑙;

1
2

(︁
𝑎̄𝑙−𝑟

𝑎̄𝑙−𝑎̄𝑢 + 𝑎𝑙−𝑟
𝑎𝑙−𝑎𝑢

)︁
, if 𝑎𝑙 ≤ 𝑟 ≤ 𝑎𝑢;

1
2

(︁
𝑎̄𝑙−𝑟

𝑎̄𝑙−𝑎̄𝑢 + 1
)︁
, if 𝑎𝑢 ≤ 𝑟 ≤ 𝑎̄𝑢;

1, if 𝑟 ≥ 𝑎̄𝑢.

Tr{𝛾 ≥ 𝑟} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑟 ≥ 𝑎̄𝑢;

1
2

(︁
𝑎̄𝑢−𝑟
𝑎̄𝑢−𝑎̄𝑙

)︁
, if 𝑎𝑢 ≤ 𝑟 ≤ 𝑎̄𝑢;

1
2

(︁
𝑎̄𝑢−𝑟
𝑎̄𝑢−𝑎̄𝑙 + 𝑎𝑢−𝑟

𝑎𝑢−𝑎𝑙

)︁
, if 𝑎𝑙 ≤ 𝑟 ≤ 𝑎𝑢;

1
2

(︁
𝑎̄𝑢−𝑟
𝑎̄𝑢−𝑎̄𝑙 + 1

)︁
, if 𝑎𝑙 ≤ 𝑎̄𝑙;

1, if 𝑟 ≤ 𝑎̄𝑢.
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The 𝛼-optimistic value and the 𝛼-pessimistic value of the rough interval are given by equations (3.1) and
(3.2) as:

𝛾sup(𝛼) =

⎧⎪⎪⎨⎪⎪⎩
(1− 2𝛼)𝑎̄𝑢 + 2𝛼𝑎̄𝑙, if 𝛼 ≤ 𝑎̄𝑢−𝑎𝑢

2(𝑎̄𝑢−𝑎̄𝑙)
;

2(1− 𝛼)𝑎̄𝑢 + (2𝛼− 1)𝑎̄𝑙, if 𝛼 ≥ 2𝑎̄𝑢−𝑎𝑙−𝑎̄𝑙

2(𝑎̄𝑢−𝑎̄𝑙)
;

𝑎̄𝑢(𝑎𝑢−𝑎𝑙)+𝑎𝑢(𝑎𝑢−𝑎𝑙)−2𝛼(𝑎𝑢−𝑎𝑙)(𝑎̄𝑢−𝑎̄𝑙)
(𝑎𝑢−𝑎𝑙)+(𝑎𝑢−𝑎̄𝑙)

, otherwise.

(3.1)

𝛾inf(𝛼) =

⎧⎪⎪⎨⎪⎪⎩
(1− 2𝛼)𝑎̄𝑙 + 2𝛼𝑎̄𝑢, if 𝛼 ≤ 𝑎𝑙−𝑎̄𝑙

2(𝑎̄𝑢−𝑎̄𝑙)
;

2(1− 𝛼)𝑎̄𝑙 + (2𝛼− 1)𝑎̄𝑢, if 𝛼 ≥ 𝑎𝑢+𝑎̄𝑢−2𝑎𝑙

2(𝑎𝑢−𝑎̄𝑙)
;

𝑎̄𝑙(𝑎𝑢−𝑎𝑙)+𝑎𝑙(𝑎𝑢−𝑎𝑙)−2𝛼(𝑎𝑢−𝑎𝑙)(𝑎̄𝑢−𝑎̄𝑙)
(𝑎𝑢−𝑎𝑙)+(𝑎̄𝑢−𝑎̄𝑙)

, otherwise.

(3.2)

Expected value of a rough interval. The expected value operator is used to reduce a RI to a crisp interval.
As our discussion is confined into a TP in rough intervals, we have to define some important concepts on the
expected value operator.

Definition 3.3. Suppose 𝑋 = {𝑧 ∈ 𝑋 : 𝛾(𝑧) ∈ 𝐵}, where 𝛾 : 𝑋 → R is a real function, 𝐵 ⊂ R; and 𝑋
is approximated by (𝑋, 𝑋) according to the equivalence relation 𝑅. The lower expected, upper expected, and
expected values of 𝑋 are then defined as follows:

𝐸[𝑋] =
∫︁ +∞

0

Appr{𝛾 ≥ 𝑥}d𝑥−
∫︁ 0

−∞
Appr{𝛾 ≤ 𝑥}d𝑥,

𝐸[𝑋] =
∫︁ +∞

0

Appr{𝛾 ≥ 𝑥}d𝑥−
∫︁ 0

−∞
Appr{𝛾 ≤ 𝑥}d𝑥,

𝐸[𝑋] =
∫︁ +∞

0

Appr{𝛾 ≥ 𝑥}d𝑥−
∫︁ 0

−∞
Appr{𝛾 ≤ 𝑥}d𝑥.

The correlation among the expected value 𝐸(𝑋), the lower expected value 𝐸(𝑋), and the upper expected
value 𝐸(𝑋) is placed into the following proposition.

Proposition. Let 𝑋 = {𝑧 ∈ 𝑋 : 𝛾(𝑧) ∈ 𝐵}, where 𝛾 : 𝑋 → R is a real function, 𝐵 ⊂ R; and 𝑋 is approximated
by

(︀
𝑋, 𝑋

)︀
according to the similarity relation 𝑅, and 𝜂 is a given parameter predetermined by using the DM

preference. The expected value of 𝑋 is denoted by 𝐸(𝑋) and is defined as 𝐸(𝑋) = 𝜂𝐸(𝑋) + (1− 𝜂)𝐸(𝑋).

Proof. For proof, one can see [37]. �

Theorem 3.4 ([37]). Suppose 𝐵 = ([𝑎1, 𝑏1], [𝑐1, 𝑑1]) is a RI, where 𝑐1 ≤ 𝑎1 ≤ 𝑏1 ≤ 𝑑1. The expected value of 𝐵
is then 𝐸(𝐵) = 1

2 [𝜂 · (𝑎1 + 𝑏1) + (1− 𝜂) · (𝑐1 + 𝑑1)].

Proof. For proof, one can see [37]. �

Remark. For 𝜂 = 0.5 the expected value of 𝐵 is 1
4 (𝑎1 + 𝑏1 + 𝑐1 + 𝑑1).

The mathematical model of the proposed MMTP is depicted in points of interest in the following section.

Theorem 3.5. If 𝛾 =
(︀
[𝑎𝑙, 𝑎𝑢],

[︀
𝑎̄𝑙, 𝑎̄𝑢

]︀)︀
, where 𝑎̄𝑙 ≤ 𝑎𝑙 ≤ 𝑎𝑢 ≤ 𝑎̄𝑢 is a rough variable, then for a predetermined

𝛼, 0 < 𝛼 ≤ 1, Tr{𝛾 ≤ 𝑟} ≥ 𝛼 is equivalent to

(i) (1− 2𝛼)𝑎̄𝑢 + 2𝛼𝑎̄𝑙 ≤ 𝑟, if 𝛼 ≤ 𝑎̄𝑢−𝑎𝑢

2(𝑎̄𝑢−𝑎̄𝑙)
;

(ii) 2(1− 𝛼)𝑎̄𝑢 + (2𝛼− 1)𝑎̄𝑙 ≤ 𝑟, if 𝛼 ≥ 2𝑎̄𝑢−𝑎𝑙−𝑎̄𝑙

2(𝑎̄𝑢−𝑎̄𝑙)
;

(iii) 𝑎̄𝑢(𝑎𝑢−𝑎𝑙)+𝑎𝑢(𝑎𝑢−𝑎𝑙)−2𝛼(𝑎𝑢−𝑎𝑙)(𝑎̄𝑢−𝑎̄𝑙)
(𝑎𝑢−𝑎𝑙)+(𝑎𝑢−𝑎̄𝑙)

≤ 𝑟, otherwise.
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Proof. Given a value 𝑟 and 𝛾 = ([𝑎𝑙, 𝑎𝑢], [𝑎̄𝑙, 𝑎̄𝑢]), given by equation (3.1), consider the following cases.

Case I. For 𝑎̄𝑙 ≤ 𝑟 ≤ 𝑎𝑙 and a predetermined 𝛼 from equation (3.1) we have

Tr{𝛾 ≤ 𝑟} ≥ 𝛼 =⇒ 𝑟 − 𝑎̄𝑢

2(𝑎̄𝑙 − 𝑎̄𝑢)
≥ 𝛼

=⇒ (1− 2𝛼)𝑎̄𝑢 + 2𝛼𝑎̄𝑙 ≤ 𝑟.

However, in this case, the maximum possible value of Tr{𝛾 ≤ 𝑟} ≥ 𝛼 can be 𝑎̄𝑢−𝑎𝑢

2(𝑎̄𝑢−𝑎̄𝑙)
and the minimum

possible value is 0 so the value of 𝛼 must be less than or equal to 𝑎̄𝑢−𝑎𝑢

2(𝑎̄𝑢−𝑎̄𝑙)
.

Case II. For 𝑎𝑢 ≤ 𝑟 ≤ 𝑎̄𝑢 and a predetermined 𝛼,

Tr{𝛾 ≤ 𝑟} ≥ 𝛼 =⇒ 1
2

(︂
𝑟 − 𝑎̄𝑢

(𝑎̄𝑙 − 𝑎̄𝑢)
+ 1

)︂
≥ 𝛼

=⇒ 2(1− 𝛼)𝑎̄𝑢 + (2𝛼− 1)𝑎̄𝑙 ≤ 𝑟.

In this case, the maximum possible value of Tr{𝛾 ≤ 𝑟} ≥ 𝛼 can be 1 and the minimum possible value

is 1
2

(︂
𝑟−𝑎̄𝑢

(𝑎̄𝑙−𝑎̄𝑢)
+ 1

)︂
so the value of 𝛼 must be greater than or equal to 1

2

(︂
𝑟−𝑎̄𝑢

(𝑎̄𝑙−𝑎̄𝑢)
+ 1

)︂
, which implies

𝛼 ≥ 2𝑎̄𝑢−𝑎𝑙−𝑎̄𝑙

2(𝑎̄𝑢−𝑎̄𝑙)
.

Case III. For 𝑎𝑙 ≤ 𝑟 ≤ 𝑎𝑢 and a predetermined 𝛼,

Tr{𝛾 ≤ 𝑟} ≥ 𝛼 =⇒ 1
2

(︂
𝑟 − 𝑎̄𝑢

𝑎̄𝑢 − 𝑎̄𝑙
+

𝑟 − 𝑎𝑢

𝑎𝑢 − 𝑎𝑙

)︂
≥ 𝛼

=⇒ 𝑎̄𝑢(𝑎𝑢 − 𝑎𝑙) + 𝑎𝑢(𝑎𝑢 − 𝑎𝑙)− 2𝛼(𝑎𝑢 − 𝑎𝑙)(𝑎̄𝑢 − 𝑎̄𝑙)
(𝑎𝑢 − 𝑎𝑙) + (𝑎𝑢 − 𝑎̄𝑙)

≤ 𝑟.

In this case (i.e., 𝑎𝑙 ≤ 𝑟 ≤ 𝑎𝑢), minimum possible value of Tr{𝛾 ≤ 𝑟} ≥ 𝛼 can be 𝑎̄𝑢−𝑎𝑢

2(𝑎̄𝑢−𝑎̄𝑙)
and maximum

possible value is 1
2

(︁
1 + 𝑎̄𝑢−𝑎𝑢

2(𝑎̄𝑢−𝑎̄𝑙)

)︁
= 2𝑎̄𝑢−𝑎𝑙−𝑎̄𝑙

2(𝑎̄𝑢−𝑎̄𝑙)
and hence the proof is completed.

�

Theorem 3.6. If 𝛾 =
(︀
[𝑎𝑙, 𝑎𝑢],

[︀
𝑎̄𝑙, 𝑎̄𝑢

]︀)︀
, where 𝑎̄𝑙 ≤ 𝑎𝑙 ≤ 𝑎𝑢 ≤ 𝑎̄𝑢 is a rough variable, then for a predetermined

𝛼, 0 < 𝛼 ≤ 1, Tr{𝛾 ≥ 𝑟} ≥ 𝛼 is equivalent to

(i) (1− 2𝛼)𝑎̄𝑙 + 2𝛼𝑎̄𝑢 ≥ 𝑟, if 𝛼 ≤ 𝑎𝑙−𝑎̄𝑙

2(𝑎̄𝑢−𝑎̄𝑙)
;

(ii) 2(1− 𝛼)𝑎̄𝑙 + (2𝛼− 1)𝑎̄𝑢 ≥ 𝑟, if 𝛼 ≥ 𝑎𝑢+𝑎̄𝑢−2𝑎𝑙

2(𝑎𝑢−𝑎̄𝑙)
;

(iii) 𝑎̄𝑙(𝑎𝑢−𝑎𝑙)+𝑎𝑙(𝑎𝑢−𝑎𝑙)−2𝛼(𝑎𝑢−𝑎𝑙)(𝑎̄𝑢−𝑎̄𝑙)
(𝑎𝑢−𝑎𝑙)+(𝑎̄𝑢−𝑎̄𝑙)

≥ 𝑟, otherwise.

Proof. Using the expression of Tr{𝛾 ≥ 𝑟} ≥ 𝛼 as given in equation (3.2), the proof is similar to the proof of
Theorem 3.4. �

4. Mathematical model

We use the following notations to design the mathematical formulation of the classical TP.
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Notations

𝑝 Origin
𝑞 Destination
𝑠 Total origin nodes
𝑡 Total destination nodes
𝑐𝑝𝑞 Unit commodity transportation cost from 𝑝th node of origin to 𝑞th node of destination
𝑎𝑝 Goods available at 𝑝th node of origin
𝑏𝑞 Demand at 𝑞th node of destination
𝑥𝑝𝑞 The transported amount of goods from 𝑝th node of origin to 𝑞th node of destination

The mathematical model of a classical TP is defined as follows:

Model 1

minimize 𝑧 =
𝑠∑︁

𝑝=1

𝑡∑︁
𝑞=1

𝑐𝑝𝑞𝑥𝑝𝑞 (4.1)

subject to
𝑡∑︁

𝑞=1

𝑥𝑝𝑞 ≤ 𝑎𝑝 (𝑝 = 1, 2, . . . , 𝑠), (4.2)

𝑠∑︁
𝑝=1

𝑥𝑝𝑞 ≥ 𝑏𝑞 (𝑞 = 1, 2, . . . , 𝑡), (4.3)

𝑥𝑝𝑞 ≥ 0 ∀ 𝑝 and 𝑞. (4.4)

The constraint (4.2) signifies that the amount of transported goods at the destinations should be less or equal
to the availability at the origins. The constraints (4.3) represents that the amount of transported goods from
the origins should be greater or equal to the demand at the destinations. The constraint (4.4) indicates that
the amount of transported goods cannot be negative. The feasible condition for the optimal solution of Model
1 is

∑︀𝑠
𝑝=1 𝑎𝑝 ≥

∑︀𝑡
𝑞=1 𝑏𝑞.

A TP with transshipment origins is referred to as MMTP [8]. We employ the following notations throughout
the discussion to formulate the mathematical formulation of MMTP.

Notations

𝑠1 Total GO nodes
𝑡1 Total FD nodes
𝑠𝑚 Total TO nodes at (𝑚− 1)th level, 𝑚 = 2, 3, . . . , 𝑟
𝑟 Total levels for origins
𝑎1

𝑝 Goods availability at 𝑝th node of GO
𝑎𝑚

𝑝 Goods availability at 𝑝th node of 𝑚th level TO, 𝑚 = 2, 3, . . . , 𝑟
𝑏𝑞 Demand at 𝑞th node of FD
𝛼1

1 A single vehicle carrying capacity from GO nodes to FD nodes
𝛼𝑚

𝑣 A single vehicle carrying capacity from TO nodes of (𝑚 − 1)th level, 𝑣 = 2, 3, . . . , 𝑟, to TO nodes of
(𝑣 − 1)th level, 𝑣 = 𝑟, 𝑟 − 1, . . . , 2

𝑐1
𝑝𝑞1 Unit commodity transportation cost from 𝑝th node of GO to 𝑞th node of FD

𝑐𝑚
𝑝𝑞1 Unit commodity transportation cost for transportation from 𝑝th node of TO of (𝑚 − 1)th level to 𝑞th

node of FD where 𝑚 = 2, 3, . . . , 𝑟
𝑐1
𝑝𝑞𝑣 Unit commodity transportation cost for transportation from 𝑝th node of GO to 𝑞th node of TO of

(𝑣 − 1)th level, 𝑣 = 2, 3, . . . , 𝑟,



SOLVING THE MMTP VIA THE RI APPROACH 3163

Figure 2. Graphical representation of transportation for 𝑧1.

𝑐𝑚
𝑝𝑞𝑣 Unit commodity transportation cost for transportation from 𝑝th node of TO of (𝑚 − 1)th level to 𝑞th

node of TO of (𝑣 − 1)th level, 𝑚 = 2, 3, . . . , 𝑟 − 1; 𝑣 = 2, 3, . . . , 𝑟 with 𝑚 < 𝑣
𝑥1

𝑝𝑞1 Total vehicles required for transportation from 𝑝th node of FD to 𝑞th node of GO,
𝑥𝑚

𝑝𝑞1 Total vehicles for transportation from 𝑝th node of TO of (𝑚 − 1)th level to 𝑞th node of FD where
𝑚 = 2, 3, . . . , 𝑟

𝑥1
𝑝𝑞𝑣 Total vehicles for transportation from 𝑝th node of GO to 𝑞th node of TO of (𝑣−1)th level, 𝑣 = 2, 3, . . . , 𝑟

𝑥𝑚
𝑝𝑞𝑣 Total vehicles for transportation from 𝑝th node of TO of (𝑚− 1)th level to 𝑞th node of TO of (𝑣− 1)th

level, 𝑚 = 2, 3, . . . , 𝑟 − 1; 𝑣 = 2, 3, . . . , 𝑟 with 𝑚 < 𝑣
𝑧1 Objective function to minimize transportation cost from GO and all TO nodes to FD nodes
𝑧𝑟 Objective function to minimize transportation cost from GO to nodes of 1st level TO,
𝑧𝑖 Objective function to minimize transportation cost from GO and all TO nodes of (𝑟 − 𝑖)th level, 𝑖 =

2, 3, . . . , 𝑟 − 1 to (𝑟 − 𝑖 + 1)th level nodes.

To formulate the mathematical model of MMTP, we consider the following ways.
First, we take the objective function (𝑧1) for the transportation of goods from GO to FD and TO to FD in

all levels.
We design the transportation network for the objective function 𝑧1, which is shown in Figure 2, and the

routes of transportation are summarized in Table 1.

𝑧1 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1

(︀[︀
𝑐1𝑙
𝑝𝑞1, 𝑐

1𝑢
𝑝𝑞1

]︀
,
[︀
𝑐1𝑙
𝑝𝑞1, 𝑐

1𝑢
𝑝𝑞1

]︀)︀
𝑥1

𝑝𝑞1 +
𝑠2∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1

(︀[︀
𝑐2𝑙
𝑝𝑞1, 𝑐

2𝑢
𝑝𝑞1

]︀
,
[︀
𝑐2𝑙
𝑝𝑞1, 𝑐

2𝑢
𝑝𝑞1

]︀)︀
𝑥2

𝑝𝑞1

+ . . . +
𝑠𝑟∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1

(︀[︀
𝑐𝑟𝑙
𝑝𝑞1, 𝑐

𝑟𝑢
𝑝𝑞1

]︀
,
[︀
𝑐𝑟𝑙
𝑝𝑞1, 𝑐

𝑟𝑢
𝑝𝑞1

]︀)︀
𝑥𝑟

𝑝𝑞1.

It is essential to satisfy the demands at the nodes of FD corresponding to the objective function 𝑧1 (cf. Fig. 2).
Therefore the following constraints must be satisfied.

𝑠1∑︁
𝑝=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝛼2
1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥

(︁[︁
𝑏𝑙
𝑞, 𝑏

𝑢
𝑞

]︁
,
[︀
𝑏̄𝑙
𝑞, 𝑏̄

𝑢
𝑞

]︀)︁
(𝑞 = 1, 2, . . . , 𝑡1).
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Table 1. Routes of transportation corresponding to objective function 𝑧1.

Route of transportation Objective function

GO to FD
𝑠1∑︀

𝑝=1

𝑡1∑︀
𝑞=1

𝛼1
1

(︀[︀
𝑐1𝑙

𝑝𝑞1, 𝑐
1𝑢
𝑝𝑞1

]︀
,
[︀
𝑐1𝑙

𝑖𝑗1, 𝑐
1𝑢
𝑝𝑞1

]︀)︀
𝑥1

𝑝𝑞1

TO of level 1 to FD
𝑠2∑︀

𝑝=1

𝑡1∑︀
𝑞=1

𝛼2
1

(︀[︀
𝑐2𝑙

𝑝𝑞1, 𝑐
2𝑢
𝑝𝑞1

]︀
,
[︀
𝑐2𝑙

𝑝𝑞1, 𝑐
2𝑢
𝑝𝑞1

]︀)︀
𝑥2

𝑝𝑞1;

...
...

TO of level 𝑟 − 1 to FD
𝑠𝑟∑︀

𝑝=1

𝑡1∑︀
𝑞=1

𝛼𝑟
1

(︀[︀
𝑐𝑟𝑙

𝑝𝑞1, 𝑐
𝑟𝑢
𝑖𝑗1

]︀
,
[︀
𝑐𝑟𝑙

𝑝𝑞1, 𝑐
𝑟𝑢
𝑝𝑞1

]︀)︀
𝑥𝑟

𝑝𝑞1

Figure 3. Graphical representation of transportation for 𝑧2.

To construct the objective function (𝑧2) for transportation to TO of levels 𝑟 − 1 and 𝑟 − 2 from GO we design
the network corresponding to the objective function 𝑧2, which is shown in Figure 3, and routes of transportation
are summarized in Table 2.

𝑧2 =
𝑠1∑︁

𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼1
𝑟

(︀[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀
,
[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀)︀
𝑥1

𝑝𝑞𝑟 +
𝑠2∑︁

𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼2
𝑟

(︀[︀
𝑐2𝑙
𝑝𝑞𝑟, 𝑐

2𝑢
𝑝𝑞𝑟

]︀
,
[︀
𝑐2𝑙
𝑝𝑞𝑟, 𝑐

2𝑢
𝑝𝑞𝑟

]︀)︀
𝑥2

𝑝𝑞𝑟

+ . . . +
𝑠𝑟−1∑︁
𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼𝑟
𝑟−1

(︁[︁
𝑐(𝑟−1)𝑙
𝑝𝑞𝑟 , 𝑐(𝑟−1)𝑢

𝑝𝑞𝑟

]︁
,
[︁
𝑐(𝑟−1)𝑙
𝑝𝑞𝑟 , 𝑐(𝑟−1)𝑢

𝑝𝑞𝑟

]︁)︁
𝑥𝑟−1

𝑝𝑞𝑟 .

In the transportation corresponding to the objective function 𝑧2 (cf. Fig. 3), the stored items in TO nodes
of level 𝑟 − 1 must be larger than the amount of goods transported from TO nodes of level 𝑟 − 1 to FD nodes.
Therefore, the following constraints need to be satisfied.

𝑡1∑︁
𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑚𝑞1 ≤

𝑠1∑︁
𝑝=1

𝛼1
𝑟𝑥

1
𝑝𝑚𝑟 +

𝑠2∑︁
𝑝=1

𝛼2
𝑟𝑥

2
𝑝𝑚𝑟 + . . . +

𝑠𝑟−1∑︁
𝑝=1

𝛼𝑟−1
𝑟 𝑥𝑟−1

𝑝𝑚𝑟 (𝑚 = 1, 2, . . . , 𝑠𝑟).
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Table 2. Routes of transportation corresponding to objective function 𝑧2.

Route of transportation Objective function

GO to TO of level 𝑟 − 1
𝑠1∑︀

𝑝=1

𝑠𝑟∑︀
𝑞=1

𝛼1
𝑟

(︀[︀
𝑐1𝑙

𝑝𝑞𝑟, 𝑐
1𝑢
𝑝𝑞𝑟

]︀
,
[︀
𝑐1𝑙

𝑝𝑞𝑟, 𝑐
1𝑢
𝑝𝑞𝑟

]︀)︀
𝑥1

𝑝𝑞𝑟

TO of level 1 to TO of level 𝑟 − 1
𝑠2∑︀

𝑝=1

𝑠𝑟∑︀
𝑞=1

𝛼2
𝑟

(︀[︀
𝑐2𝑙

𝑝𝑞𝑟, 𝑐
2𝑢
𝑝𝑞𝑟

]︀
,
[︀
𝑐2𝑙

𝑝𝑞𝑟, 𝑐
2𝑢
𝑝𝑞𝑟

]︀)︀
𝑥2

𝑝𝑞𝑟

...
...

TO of level 𝑟 − 2 to TO of level 𝑟 − 1
𝑠𝑟−1∑︀
𝑝=1

𝑠𝑟∑︀
𝑞=1

𝛼𝑟
𝑟−1

(︁[︁
𝑐(𝑟−1)𝑙

𝑝𝑞𝑟 , 𝑐(𝑟−1)𝑢
𝑝𝑞𝑟

]︁
,
[︁
𝑐
(𝑟−1)𝑙
𝑝𝑞𝑟 , 𝑐

(𝑟−1)𝑢
𝑝𝑞𝑟

]︁)︁
𝑥𝑟−1

𝑝𝑞𝑟

Again the goods stored at TO nodes of level 𝑟 − 1 must be less than its storing capacity.

𝑠1∑︁
𝑝=1

𝛼1
𝑟𝑥

1
𝑝𝑚𝑟 +

𝑠2∑︁
𝑝=1

𝛼2
𝑟𝑥

2
𝑝𝑚𝑟 + . . . +

𝑠𝑟−1∑︁
𝑝=1

𝛼𝑟−1
𝑟 𝑥𝑟−1

𝑝𝑚𝑟 ≤ 𝑎𝑚
𝑟 , (𝑚 = 1, 2, . . . , 𝑠𝑟).

In level 1, for transporting the goods from GO to TO we construct 𝑧𝑝 (𝑝 = 2, 3, . . . , 𝑟 − 1) in the same way as
mentioned above.

In level 1, the construction of the objective function (𝑧𝑟) for transportation from GO to TO is described in
the following way.

In Figure 4, the transportation network is shown corresponding to the objective function 𝑧𝑟. In level 1 the
objective function for the transportation from GO to TO is:

𝑧𝑟 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼2
1

(︀[︀
𝑐1𝑙
𝑝𝑞2, 𝑐

1𝑢
𝑝𝑞2

]︀
,
[︀
𝑐1𝑙
𝑝𝑞2, 𝑐

1𝑢
𝑝𝑞2

]︀)︀
𝑥1

𝑝𝑞2.

In the transportation corresponding to the objective function 𝑧𝑟 (cf. Fig. 4), the stored items in TO nodes of
level 1 must be larger than the amount of transported goods to TO nodes of levels 𝑡, 𝑡 = 2, 3, . . . , (𝑟 − 1) and
FD node from there. Therefore, we consider the following constraints as:

𝑡1∑︁
𝑞=1

𝛼2
1𝑥

2
𝑚𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼2
𝑟𝑥

2
𝑚𝑞𝑟 + . . . +

𝑠3∑︁
𝑞=1

𝛼2
3𝑥

2
𝑚𝑞3 ≤

𝑠1∑︁
𝑝=1

𝛼1
2𝑥

1
𝑝𝑚2 (𝑚 = 1, 2, . . . , 𝑠2).

Again, the stored capacity at TOs of level 1 must be less than the storing capacity.
𝑠1∑︁

𝑝=1

𝛼1
2𝑥

1
𝑝𝑚2 ≤ 𝑎2

𝑚 (𝑚 = 1, 2, . . . , 𝑠2).

The complete MMTP model (see Fig. 2) is the network aggregated by using the objective functions 𝑧𝑖, 𝑖 =
1, 2, . . . , 𝑟 together with the constraints needed to construct the objective functions 𝑧𝑖, 𝑖 = 1, 2, . . . , 𝑟. We
explain the mathematical model on MMTP as follows:

Model 2

minimize 𝑧 = 𝑧1 + 𝑧2 + . . . + 𝑧𝑟,

𝑧1 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1

(︀[︀
𝑐1𝑙
𝑝𝑞1, 𝑐

1𝑢
𝑝𝑞1

]︀
,
[︀
𝑐1𝑙
𝑝𝑞1, 𝑐

1𝑢
𝑝𝑞1

]︀)︀
𝑥1

𝑝𝑞1 +
𝑠2∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1

(︀[︀
𝑐2𝑙
𝑝𝑞1, 𝑐

2𝑢
𝑝𝑞1

]︀
,
[︀
𝑐2𝑙
𝑝𝑞1, 𝑐

2𝑢
𝑝𝑞1

]︀)︀
𝑥2

𝑝𝑞1
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Figure 4. Graphical representation of transportation for 𝑧3.

+ . . . +
𝑠𝑟∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1

(︀[︀
𝑐𝑟𝑙
𝑝𝑞1, 𝑐

𝑟𝑢
𝑝𝑞1

]︀
,
[︀
𝑐𝑟𝑙
𝑝𝑞1, 𝑐

𝑟𝑢
𝑝𝑞1

]︀)︀
𝑥𝑟

𝑝𝑞1,

𝑧2 =
𝑠1∑︁

𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼1
𝑟

(︀[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀
,
[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀)︀
𝑥1

𝑝𝑞𝑟 +
𝑠2∑︁

𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼2
𝑟

(︀[︀
𝑐2𝑙
𝑝𝑞𝑟, 𝑐

2𝑢
𝑝𝑞𝑟

]︀
,
[︀
𝑐2𝑙
𝑝𝑞𝑟, 𝑐

2𝑢
𝑝𝑞𝑟

]︀)︀
𝑥2

𝑝𝑞𝑟

+ . . . +
𝑠𝑟−1∑︁
𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼𝑟−1
𝑟

(︁[︁
𝑐(𝑟−1)𝑙
𝑝𝑞𝑟 , 𝑐(𝑟−1)𝑢

𝑝𝑞𝑟

]︁
,
[︁
𝑐(𝑟−1)𝑙
𝑝𝑞𝑟 , 𝑐(𝑟−1)𝑢

𝑝𝑞𝑟

]︁)︁
𝑥𝑟−1

𝑝𝑞𝑟 ,

𝑧3 =
𝑠1∑︁

𝑝=1

𝑠𝑟−1∑︁
𝑞=1

𝛼1
𝑟−1

(︁[︁
𝑐1𝑙
𝑝𝑞(𝑟−1), 𝑐

1𝑢
𝑝𝑞(𝑟−1)

]︁
,
[︁
𝑐1𝑙
𝑝𝑞(𝑟−1), 𝑐

1𝑢
𝑝𝑞(𝑟−1)

]︁)︁
𝑥1

𝑝𝑞(𝑟−1)

+
𝑠2∑︁

𝑝=1

𝑠𝑟−1∑︁
𝑞=1

𝛼2
𝑟

(︁[︁
𝑐2𝑙
𝑝𝑞(𝑟−1), 𝑐

2𝑢
𝑝𝑞(𝑟−1)

]︁
,
[︁
𝑐2𝑙
𝑝𝑞(𝑟−1), 𝑐

2𝑢
𝑝𝑞(𝑟−1)

]︁)︁
𝑥2

𝑝𝑞(𝑟−1)

+ . . . +
𝑠𝑟−2∑︁
𝑝=1

𝑠𝑟−1∑︁
𝑞=1

𝛼𝑟−1
𝑟−2

(︁[︁
𝑐
(𝑟−2)𝑙
𝑝𝑞(𝑟−1), 𝑐

(𝑟−2)𝑢
𝑝𝑞(𝑟−1)

]︁
,
[︁
𝑐
(𝑟−2)𝑙
𝑝𝑞(𝑟−1), 𝑐

(𝑟−2)𝑢
𝑝𝑞(𝑟−1)

]︁)︁
𝑥𝑟−2

𝑝𝑞(𝑟−1),

...

𝑧𝑟 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
2

(︀[︀
𝑐1𝑙
𝑝𝑞2, 𝑐

1𝑢
𝑝𝑞2

]︀
,
[︀
𝑐1𝑙
𝑝𝑞2, 𝑐

1𝑢
𝑝𝑞2

]︀)︀
𝑥1

𝑝𝑞2,

subject to the constraints regarding availability at GO and TO of all levels
𝑡1∑︁

𝑞=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 + . . . +

𝑠2∑︁
𝑞=1

𝛼1
2𝑥

1
𝑝𝑞2

≤
(︀[︀

𝑎1𝑙
𝑝 , 𝑎1𝑢

𝑝

]︀
,
[︀
𝑎̄1𝑙

𝑖 , 𝑎̄1𝑢
𝑝

]︀)︀
(𝑝 = 1, 2, . . . , 𝑠1), (4.5)

𝑡1∑︁
𝑝=1

𝛼2
1𝑥

1
𝑝𝑞1 +

𝑠𝑟∑︁
𝑝=1

𝛼2
𝑟𝑥

2
𝑝𝑞𝑟 + . . . +

𝑠3∑︁
𝑝=1

𝛼2
3𝑥

2
𝑝𝑞3
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≤
(︀[︀

𝑎2𝑙
𝑝 , 𝑎2𝑢

𝑝

]︀
,
[︀
𝑎̄2𝑙

𝑝 , 𝑎̄2𝑢
𝑝

]︀)︀
(𝑝 = 1, 2, . . . , 𝑠2), (4.6)

𝑡1∑︁
𝑞=1

𝛼3
1𝑥

3
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼3
𝑟𝑥

3
𝑝𝑞𝑟 + . . . +

𝑚4∑︁
𝑞=1

𝛼3
4𝑥

3
𝑝𝑞4

≤
(︀[︀

𝑎3𝑙
𝑝 , 𝑎3𝑢

𝑝

]︀
,
[︀
𝑎̄3𝑙

𝑝 , 𝑎̄3𝑢
𝑝

]︀)︀
(𝑝 = 1, 2, . . . , 𝑠3), (4.7)

...
𝑡1∑︁

𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≤

(︀[︀
𝑎𝑟𝑙

𝑝 , 𝑎𝑟𝑢
𝑝

]︀
,
[︀
𝑎̄𝑟𝑙

𝑝 , 𝑎̄𝑟𝑢
𝑝

]︀)︀
, (4.8)

the constraints regarding least demands at the FD
𝑠1∑︁

𝑝=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝛼2
1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1

≥
(︁[︁

𝑏1𝑙
𝑞 , 𝑏1𝑢

𝑞

]︁
,
[︀
𝑏̄1𝑙
𝑞 , 𝑏̄1𝑢

𝑞

]︀)︁
, (4.9)

the constraints regarding storing and distributing
of goods at nodes of TO of all levels
𝑡1∑︁

𝑞=1

𝛼2
1𝑥

2
𝑚𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼2
𝑟𝑥

2
𝑚𝑞𝑟 + . . . +

𝑠3∑︁
𝑞=1

𝛼2
3𝑥

2
𝑚𝑞3 ≤

𝑠1∑︁
𝑝=1

𝛼1
2𝑥

1
𝑝𝑚2, (4.10)

𝑡1∑︁
𝑞=1

𝛼3
1𝑥

3
𝑚𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼3
𝑟𝑥

3
𝑚𝑞𝑟 + . . . +

𝑠4∑︁
𝑞=1

𝛼3
4𝑥

3
𝑚𝑞4

≤
𝑠1∑︁

𝑝=1

𝛼1
3𝑥

1
𝑝𝑚3 +

𝑠2∑︁
𝑝=1

𝛼2
3𝑥

2
𝑝𝑚3, (4.11)

...
𝑡1∑︁

𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑚𝑞1 ≤

𝑠1∑︁
𝑝=1

𝛼1
𝑟𝑥

1
𝑝𝑚𝑟 +

𝑠2∑︁
𝑝=1

𝛼2
𝑟𝑥

2
𝑝𝑚𝑟 + . . . +

𝑠𝑟−1∑︁
𝑝=1

𝛼𝑟−1
𝑟 𝑥𝑟−1

𝑝𝑚𝑟

≤
(︀[︀

𝑎𝑚𝑙
𝑟 , 𝑎𝑚𝑢

𝑟

]︀
,
[︀
𝑎̄𝑚𝑙

𝑟 , 𝑎̄𝑚𝑢
𝑟

]︀)︀
, (4.12)

𝑥
(𝑣)
𝑝𝑞𝑘 ≥ 0 ∀ 𝑝, 𝑞, 𝑣 and 𝑘. (4.13)

Model 2 has a feasible solution only when
∑︀𝑠1

𝑝=1

(︀[︀
𝑎𝑙

𝑝, 𝑎
𝑢
𝑝

]︀
,
[︀
𝑎̄𝑙

𝑝, 𝑎̄
𝑢
𝑝

]︀)︀
≥

∑︀𝑡1
𝑞=1

(︁[︁
𝑏𝑙
𝑞, 𝑏

𝑢
𝑞

]︁
,
[︀
𝑏̄𝑙
𝑞, 𝑏̄

𝑢
𝑞

]︀)︁
.

In Model 2, the maximum number of decision variables is (𝑠1 × 𝑠2 × · · · × 𝑠𝑟 × 𝑡1). The feasible region of the
proposed model is composed of considering the accompanying discussions.

– There is 𝑠1 number of availability constraints that are present in equation (4.5) for GO nodes.
– For FD nodes, the number of demand constraints considered in equation (4.6) is 𝑡1.
– Since there are storage capacity constraints in the TO nodes, we assume (𝑠2 + 𝑠3 + . . . + 𝑠𝑟) number of

inequalities from equations (4.7) and (4.8).
– Again, the conveyed measure of merchandise from the TOs does not exceed the supplied amount of merchan-

dise to the separate TOs. To do this, we present (𝑠2 + 𝑠3 + . . . + 𝑠𝑟) number of in-equations from equations
(4.9) to (4.13).
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In this manner, the detailed mathematical model comprises (𝑠1 × 𝑠2 × · · · × 𝑠𝑟 × 𝑡1) number of factors and
[2(𝑠2 + 𝑠3 + . . . + 𝑠𝑟) + 𝑠1 + 𝑡1] limitations along with the non-negative conditions.

4.1. Equivalent deterministic model

Due to the presence of RI in MMTP, we cannot directly solve MMTP. Thus, we convert MMTP into the
deterministic model by accompanying the following properties.

–
[︀
𝑐𝑘𝑙
𝑝𝑞1, 𝑐

𝑘𝑢
𝑝𝑞1

]︀
⊆

[︀
𝑐𝑘𝑙
𝑝𝑞1, 𝑐

𝑘𝑢
𝑝𝑞1

]︀
⇒ 𝑐𝑘𝑙

𝑝𝑞1 ≤ 𝑐𝑘𝑙
𝑝𝑞1 ≤ 𝑐𝑘𝑢

𝑝𝑞1 ≤ 𝑐𝑘𝑢
𝑝𝑞1 (𝑘 = 1, 2, . . . , 𝑟).

–
[︀
𝑐𝑣𝑙
𝑝𝑞2, 𝑐

𝑣𝑢
𝑝𝑞2

]︀
⊆

[︀
𝑐𝑣𝑙
𝑝𝑞2, 𝑐

𝑣𝑢
𝑝𝑞2

]︀
⇒ 𝑐𝑣𝑙

𝑝𝑞1 ≤ 𝑐𝑣𝑙
𝑝𝑞2 ≤ 𝑐𝑣𝑢

𝑝𝑞2 ≤ 𝑐𝑣𝑢
𝑝𝑞2 (𝑣 = 1, 2, . . . , 𝑟 − 1).

–
[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀
⊆

[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀
⇒ 𝑐1𝑙

𝑝𝑞𝑟 ≤ 𝑐1𝑙
𝑝𝑞𝑟 ≤ 𝑐1𝑢

𝑝𝑞𝑟 ≤ 𝑐1𝑢
𝑝𝑞𝑟.

–
[︀
𝑎𝑙

𝑝, 𝑎
𝑢
𝑝

]︀
⊆

[︀
𝑎̄𝑙

𝑝, 𝑎̄
𝑢
𝑝

]︀
⇒ 𝑎̄𝑙

𝑝 ≤ 𝑎𝑙
𝑝 ≤ 𝑎𝑢

𝑝 ≤ 𝑎̄𝑢
𝑝 .

–
[︁
𝑏𝑙
𝑞, 𝑏

𝑢
𝑞

]︁
⊆

[︀
𝑏̄𝑙
𝑞, 𝑏̄

𝑢
𝑞

]︀
⇒ 𝑏̄𝑙

𝑞 ≤ 𝑏𝑙
𝑞 ≤ 𝑏𝑢

𝑞 ≤ 𝑏̄𝑢
𝑞 .

Concerning Model 2, we develop the methodology and theoretical background by defining some sets that lead
us to solve MMTP with RI approximation.

𝑈̄ 𝑙 = 𝑥 ∈ R𝑛 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀𝑡1
𝑞=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 + . . . +

∑︀𝑠2
𝑞=1 𝛼1

2𝑥
1
𝑝𝑞2 ≤ 𝑎̄1𝑙

𝑝∑︀𝑡1
𝑝=1 𝛼2

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑝=1 𝛼2
𝑟𝑥

2
𝑝𝑞𝑟 + . . . +

∑︀𝑠3
𝑝=1 𝛼2

3𝑥
2
𝑝𝑞3 ≤ 𝑎̄2𝑙

𝑝∑︀𝑡1
𝑞=1 𝛼3

1𝑥
3
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑝𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑝𝑞4 ≤ 𝑎̄3𝑙

𝑝

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑝𝑞1 ≤ 𝑎̄𝑟𝑙

𝑝∑︀𝑠1
𝑝=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠2
𝑝=1 𝛼2

1𝑥
2
𝑝𝑞1 + . . . +

∑︀𝑠𝑟

𝑝=1 𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥ 𝑏̄1𝑙

𝑞∑︀𝑡1
𝑞=1 𝛼2

1𝑥
2
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼2
𝑟𝑥

2
𝑚𝑞𝑟 + . . . +

∑︀𝑠3
𝑞=1 𝛼2

3𝑥
2
𝑚𝑞3 ≤

∑︀𝑠1
𝑝=1 𝛼1

2𝑥
1
𝑝𝑚2∑︀𝑡1

𝑞=1 𝛼3
1𝑥

3
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑚𝑞𝑟 + . . . +

∑︀𝑚4
𝑞=1 𝛼3

4𝑥
3
𝑚𝑞4

≤
∑︀𝑠1

𝑝=1 𝛼1
3𝑥

1
𝑝𝑚3 +

∑︀𝑠2
𝑞=1 𝛼2

3𝑥
2
𝑝𝑚3

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑚𝑞1 ≤

∑︀𝑠1
𝑝=1 𝛼1

𝑟𝑥
1
𝑝𝑚𝑟 +

∑︀𝑠2
𝑝=1 𝛼2

𝑟𝑥
2
𝑝𝑚𝑟 + . . . +

∑︀𝑠𝑟−1
𝑝=1 𝛼𝑟−1

𝑟 𝑥𝑟−1
𝑝𝑚𝑟

≤ 𝑎̄𝑚𝑙
𝑟

𝑥
(𝑣)
𝑝𝑞𝑘 ≥ 0 ∀ 𝑝, 𝑞, 𝑣 and 𝑘.
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𝑈 𝑙 = 𝑥 ∈ R𝑛 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀𝑡1
𝑞=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 + . . . +

∑︀𝑠2
𝑞=1 𝛼1

2𝑥
1
𝑝𝑞2 ≤ 𝑎1𝑙

𝑝∑︀𝑡1
𝑝=1 𝛼2

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑝=1 𝛼2
𝑟𝑥

2
𝑝𝑞𝑟 + . . . +

∑︀𝑠3
𝑝=1 𝛼2

3𝑥
2
𝑝𝑞3 ≤ 𝑎2𝑙

𝑝∑︀𝑡1
𝑞=1 𝛼3

1𝑥
3
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑝𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑝𝑞4 ≤ 𝑎3𝑙

𝑝

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑝𝑞1 ≤ 𝑎𝑟𝑙

𝑝∑︀𝑠1
𝑝=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠2
𝑝=1 𝛼2

1𝑥
2
𝑝𝑞1 + . . . +

∑︀𝑠𝑟

𝑝=1 𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥ 𝑏1𝑙

𝑞∑︀𝑡1
𝑞=1 𝛼2

1𝑥
2
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼2
𝑟𝑥

2
𝑚𝑞𝑟 + . . . +

∑︀𝑠3
𝑞=1 𝛼2

3𝑥
2
𝑚𝑞3 ≤

∑︀𝑠1
𝑝=1 𝛼1

2𝑥
1
𝑝𝑚2∑︀𝑡1

𝑞=1 𝛼3
1𝑥

3
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑚𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑚𝑞4

≤
∑︀𝑠1

𝑝=1 𝛼1
3𝑥

1
𝑝𝑚3 +

∑︀𝑠2
𝑝=1 𝛼2

3𝑥
2
𝑝𝑚3

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑚𝑞1 ≤

∑︀𝑠1
𝑝=1 𝛼1

𝑟𝑥
1
𝑝𝑚𝑟 +

∑︀𝑠2
𝑝=1 𝛼2

𝑟𝑥
2
𝑝𝑚𝑟 + . . . +

∑︀𝑠𝑟−1
𝑝=1 𝛼𝑟−1

𝑟 𝑥𝑟−1
𝑝𝑚𝑟

≤ 𝑎𝑚𝑙
𝑟

𝑥
(𝑣)
𝑝𝑞𝑘 ≥ 0 ∀ 𝑝, 𝑞, 𝑣 and 𝑘.

𝑈𝑢 = 𝑥 ∈ R𝑛 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀𝑡1
𝑞=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 + . . . +

∑︀𝑠2
𝑞=1 𝛼1

2𝑥
1
𝑝𝑞2 ≤ 𝑎1𝑢

𝑝∑︀𝑡1
𝑝=1 𝛼2

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑝=1 𝛼2
𝑟𝑥

2
𝑝𝑞𝑟 + . . . +

∑︀𝑠3
𝑝=1 𝛼2

3𝑥
2
𝑝𝑞3 ≤ 𝑎2𝑢

𝑝∑︀𝑡1
𝑞=1 𝛼3

1𝑥
3
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑝𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑝𝑞4 ≤ 𝑎3𝑢

𝑝

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑝𝑞1 ≤ 𝑎𝑟𝑢

𝑝∑︀𝑠1
𝑝=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠2
𝑝=1 𝛼2

1𝑥
2
𝑝𝑞1 + . . . +

∑︀𝑠𝑟

𝑝=1 𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥ 𝑏1𝑢

𝑞∑︀𝑡1
𝑞=1 𝛼2

1𝑥
2
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼2
𝑟𝑥

2
𝑚𝑞𝑟 + . . . +

∑︀𝑠3
𝑞=1 𝛼2

3𝑥
2
𝑚𝑞3 ≤

∑︀𝑠1
𝑝=1 𝛼1

2𝑥
1
𝑝𝑚2∑︀𝑡1

𝑞=1 𝛼3
1𝑥

3
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑚𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑚𝑞4

≤
∑︀𝑠1

𝑝=1 𝛼1
3𝑥

1
𝑝𝑚3 +

∑︀𝑠2
𝑝=1 𝛼2

3𝑥
2
𝑝𝑚3

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑚𝑞1 ≤

∑︀𝑠1
𝑝=1 𝛼1

𝑟𝑥
1
𝑝𝑚𝑟 +

∑︀𝑠2
𝑝=1 𝛼2

𝑟𝑥
2
𝑝𝑚𝑟 + . . . +

∑︀𝑠𝑟−1
𝑝=1 𝛼𝑟−1

𝑟 𝑥𝑟−1
𝑝𝑚𝑟

≤ 𝑎𝑚𝑢
𝑟

𝑥
(𝑣)
𝑝𝑞𝑘 ≥ 0 ∀ 𝑝, 𝑞, 𝑣 and 𝑘.



3170 D. MARDANYA ET AL.

𝑈̄𝑢 = 𝑥 ∈ R𝑛 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑︀𝑡1
𝑞=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 + . . . +

∑︀𝑠2
𝑞=1 𝛼1

2𝑥
1
𝑝𝑞2 ≤ 𝑎̄1𝑢

𝑝∑︀𝑡1
𝑝=1 𝛼2

1𝑥
1
𝑝𝑞1 +

∑︀𝑠𝑟

𝑝=1 𝛼2
𝑟𝑥

2
𝑝𝑞𝑟 + . . . +

∑︀𝑠3
𝑝=1 𝛼2

3𝑥
2
𝑝𝑞3 ≤ 𝑎̄2𝑢

𝑝∑︀𝑡1
𝑞=1 𝛼3

1𝑥
3
𝑝𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑝𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑝𝑞4 ≤ 𝑎̄3𝑢

𝑝

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑝𝑞1 ≤ 𝑎̄𝑟𝑢

𝑝∑︀𝑠1
𝑝=1 𝛼1

1𝑥
1
𝑝𝑞1 +

∑︀𝑠2
𝑝=1 𝛼2

1𝑥
2
𝑝𝑞1 + . . . +

∑︀𝑠𝑟

𝑝=1 𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥ 𝑏̄1𝑢

𝑞∑︀𝑡1
𝑞=1 𝛼2

1𝑥
2
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼2
𝑟𝑥

2
𝑚𝑞𝑟 + . . . +

∑︀𝑠3
𝑞=1 𝛼2

3𝑥
2
𝑚𝑞3 ≤

∑︀𝑠1
𝑝=1 𝛼1

2𝑥
1
𝑝𝑚2∑︀𝑡1

𝑞=1 𝛼3
1𝑥

3
𝑚𝑞1 +

∑︀𝑠𝑟

𝑞=1 𝛼3
𝑟𝑥

3
𝑚𝑞𝑟 + . . . +

∑︀𝑠4
𝑞=1 𝛼3

4𝑥
3
𝑚𝑞4

≤
∑︀𝑠1

𝑝=1 𝛼1
3𝑥

1
𝑝𝑚3 +

∑︀𝑠2
𝑝=1 𝛼2

3𝑥
2
𝑝𝑚3

...∑︀𝑡1
𝑞=1 𝛼𝑟

1𝑥
𝑟
𝑚𝑞1 ≤

∑︀𝑠1
𝑝=1 𝛼1

𝑟𝑥
1
𝑝𝑚𝑟 +

∑︀𝑠2
𝑝=1 𝛼2

𝑟𝑥
2
𝑝𝑚𝑟 + . . . +

∑︀𝑠𝑟−1
𝑝=1 𝛼𝑟−1

𝑟 𝑥𝑟−1
𝑝𝑚𝑟

≤ 𝑎̄𝑚𝑢
𝑟

𝑥
(𝑣)
𝑝𝑞𝑘 ≥ 0 ∀ 𝑝, 𝑞, 𝑣 and 𝑘.

To proof the equivalence between the deterministic model and the MMTP i.e., Model 2, we derive the following
proposition.

Proposition 4.1. The relation between the sets 𝑈̄ 𝑙, 𝑈 𝑙, 𝑈𝑢, and 𝑈̄𝑢 is 𝑈̄ 𝑙 ≤ 𝑈 𝑙 ≤ 𝑈𝑢 ≤ 𝑈̄𝑢.

Proof. From the properties of rough interval we have,[︀
𝑎𝑖𝑙

𝑝 , 𝑎𝑖𝑢
𝑝

]︀
⊆

[︀
𝑎̄𝑖𝑙

𝑝 , 𝑎̄𝑖𝑢
𝑝

]︀
=⇒ 𝑎̄𝑖𝑙

𝑝 ≤ 𝑎𝑖𝑙
𝑝 ≤ 𝑎𝑖𝑢

𝑝 ≤ 𝑎̄𝑖𝑢
𝑝 , 𝑖 = 1, 2, . . . , 𝑟.[︁

𝑏1𝑙
𝑝 , 𝑏1𝑢

𝑝

]︁
⊆

[︀
𝑏̄1𝑙
𝑝 , 𝑏̄1𝑢

𝑝

]︀
=⇒ 𝑏̄1𝑙

𝑝 ≤ 𝑏1𝑙
𝑝 ≤ 𝑏1𝑢

𝑝 ≤ 𝑏̄1𝑢
𝑝 .[︀

𝑎𝑚𝑙
𝑟 , 𝑎𝑚𝑢

𝑟

]︀
⊆

[︀
𝑎̄𝑚𝑙

𝑟 , 𝑎̄𝑚𝑢
𝑟

]︀
=⇒ 𝑎̄𝑚𝑙

𝑟 ≤ 𝑎𝑚𝑙
𝑟 ≤ 𝑎𝑚𝑢

𝑟 ≤ 𝛼̄𝑚𝑢
𝑟 .

From the above relations, we have for any 𝑥 ∈ 𝑈 𝑙, 𝑥 ∈ 𝑈̄ 𝑙, 𝑥 ∈ 𝑈𝑢 and 𝑥 ∈ 𝑈̄𝑢. �

Next, we formulate two problems from Model 2 using interval costs, and these are referred to as TP-1 and
TP-2. Furthermore, TP-1 and TP-2 are reduced to two crisp valued TPs, referred to as TP-1.1 and TP-1.2 from
TP-1 and TP-2.1 and TP-2.2 from TP-2.

TP-1

minimize 𝑧 = 𝑧1𝑙 + 𝑧2𝑙 + . . . + 𝑧𝑟𝑙,

𝑧1𝑙 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1

[︀
𝑐1𝑙
𝑝𝑞1, 𝑐

1𝑢
𝑝𝑞1

]︀
𝑥1

𝑝𝑞1 +
𝑠2∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1

[︀
𝑐2𝑙
𝑝𝑞1, 𝑐

2𝑢
𝑝𝑞1

]︀
𝑥2

𝑝𝑞1 + . . .

+
𝑠𝑟∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1

[︀
𝑐𝑟𝑙
𝑝𝑞1, 𝑐

𝑟𝑢
𝑝𝑞1

]︀
𝑥𝑟

𝑝𝑞1,
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𝑧2𝑙 =
𝑠1∑︁

𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼1
𝑟

[︀
𝑐1𝑙
𝑝𝑞𝑟, 𝑐

1𝑢
𝑝𝑞𝑟

]︀
𝑥1

𝑝𝑞𝑟 +
𝑠2∑︁

𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼2
𝑟

[︀
𝑐2𝑙
𝑝𝑞𝑟, 𝑐

2𝑢
𝑝𝑞𝑟

]︀
𝑥2

𝑝𝑞𝑟

+ . . . +
𝑠𝑟−1∑︁
𝑝=1

𝑠𝑟∑︁
𝑞=1

𝛼𝑟
𝑟−1

[︁
𝑐(𝑟−1)𝑙
𝑝𝑞𝑟 , 𝑐(𝑟−1)𝑢

𝑝𝑞𝑟

]︁
𝑥𝑟

𝑝𝑞𝑟,

...

𝑧𝑟𝑙 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
2

[︀
𝑐1𝑙
𝑝𝑞2, 𝑐

1𝑢
𝑝𝑞2

]︀
𝑥1

𝑝𝑞2,

subject to
𝑡1∑︁

𝑞=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 + . . . +

𝑠2∑︁
𝑞=1

𝛼1
2𝑥

1
𝑝𝑞2 ≤

[︀
𝑎1𝑙

𝑝 , 𝑎1𝑢
𝑝

]︀
, (4.14)

𝑡1∑︁
𝑝=1

𝛼2
1𝑥

1
𝑝𝑞1 +

𝑠𝑟∑︁
𝑝=1

𝛼2
𝑟𝑥

2
𝑝𝑞𝑟 + . . . +

𝑠3∑︁
𝑝=1

𝛼2
3𝑥

2
𝑝𝑞3 ≤

[︀
𝑎2𝑙

𝑝 , 𝑎2𝑢
𝑝

]︀
, (4.15)

𝑡1∑︁
𝑞=1

𝛼3
1𝑥

3
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼3
𝑟𝑥

3
𝑝𝑞𝑟 + . . . +

𝑠4∑︁
𝑞=1

𝛼3
4𝑥

3
𝑝𝑞(4) ≤

[︀
𝑎3𝑙

𝑝 , 𝑎3𝑢
𝑝

]︀
, (4.16)

...
𝑡1∑︁

𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≤

[︀
𝑎𝑟𝑙

𝑝 , 𝑎𝑟𝑢
𝑝

]︀
, (4.17)

𝑠1∑︁
𝑝=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝛼2
1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥

[︁
𝑏1𝑙
𝑞 , 𝑏1𝑢

𝑞

]︁
, (4.18)

𝑡1∑︁
𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑚𝑞1 ≤

𝑠1∑︁
𝑝=1

𝛼1
𝑟𝑥

1
𝑝𝑚𝑟 +

𝑠2∑︁
𝑝=1

𝛼2
𝑟𝑥

2
𝑝𝑚𝑟 + . . . +

𝑠𝑟−1∑︁
𝑝=1

𝛼𝑟−1
𝑟 𝑥𝑟−1

𝑝𝑚𝑟

≤
[︀
𝑎𝑚𝑙

𝑟 , 𝑎𝑚𝑢
𝑟

]︀
, (4.19)

the constraints (4.10)–(4.13).

Replacing 𝑐𝑘𝑙
𝑝𝑞1 by 𝑐𝑘𝑙

𝑝𝑞1 (𝑘 = 1, 2, . . . , 𝑟) 𝑐𝑘𝑢
𝑝𝑞1 by 𝑐𝑘𝑢

𝑝𝑞1 (𝑘 = 1, 2, . . . , 𝑟), 𝑐𝑣𝑙
𝑝𝑞𝑟 by 𝑐𝑣𝑙

𝑝𝑞𝑟 (𝑣 = 1, 2, . . . , 𝑟 − 1) 𝑐𝑣𝑢
𝑝𝑞𝑟 by

𝑐𝑣𝑢
𝑝𝑞𝑟 (𝑣 = 1, 2, . . . , 𝑟− 1), 𝑐1𝑙

𝑝𝑞2 by 𝑐1𝑙
𝑝𝑞2, 𝑐1𝑢

𝑝𝑞2 by 𝑐1𝑢
𝑝𝑞2, 𝑎𝑘𝑙

𝑝 by 𝑎̄𝑘𝑙
𝑝 (𝑘 = 1, 2, . . . , 𝑟), 𝑎𝑘𝑢

𝑝 by 𝑎̄𝑘𝑢
𝑝 (𝑘 = 1, 2, . . . , 𝑟), 𝑎𝑚𝑙

𝑟

by 𝑎̄𝑚𝑙
𝑟 , 𝑎𝑚𝑢

𝑟 by 𝑎̄𝑚𝑢
𝑟 , we consider TP-1 as TP-2.

TP-1.1

minimize 𝑍 = 𝑍1𝑙 + 𝑍2𝑙 + . . . + 𝑍𝑟𝑙,

𝑍1𝑙 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1𝑐

1𝑙
𝑝𝑞1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1𝑐

2𝑙
𝑝𝑞1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1𝑐

𝑟𝑙
𝑝𝑞1𝑥

𝑟
𝑝𝑞1,

𝑍2𝑙 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
2𝑐

1𝑙
𝑝𝑞2𝑥

1
𝑝𝑞2 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
2𝑐

2𝑙
𝑝𝑞2𝑥

2
𝑝𝑞2 + . . . +
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𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
2𝑐

(𝑟−1)𝑙
𝑝𝑞2 𝑥𝑟

𝑝𝑞2,

...

𝑍𝑟𝑙 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑐

1𝑙
𝑝𝑞𝑟𝑥

1
𝑝𝑞𝑟,

subject to
𝑡1∑︁

𝑞=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼1
2𝑥

1
𝑝𝑞2 + . . . +

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 ≤ 𝑎𝑙

𝑝, (4.20)

𝑠1∑︁
𝑝=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝛼2
1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟−1∑︁
𝑝=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥ 𝑏𝑙

𝑞, (4.21)

𝑡1∑︁
𝑞=1

𝛼2
1𝑥

2
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼2
2𝑥

2
𝑝𝑞2 + . . . +

𝑠3∑︁
𝑞=1

𝛼2
𝑟−1𝑥

2
𝑝𝑞(𝑟−1) ≤ 𝑎1𝑙

𝑝 , (4.22)

𝑡1∑︁
𝑞=1

𝛼3
1𝑥

3
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼3
2𝑥

3
𝑝𝑞2 + . . . +

𝑠4∑︁
𝑞=1

𝛼3
𝑟−2𝑥

3
𝑝𝑞(𝑟−2) ≤ 𝑎2𝑙

𝑝 , (4.23)

...
𝑡1∑︁

𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≤ 𝑎𝑟𝑙

𝑝 (𝑝 = 1, 2, . . . , 𝑠𝑟), (4.24)

the constraints (4.10)–(4.13).

Replacing 𝑐𝑘𝑙
𝑝𝑞1 by 𝑐𝑘𝑢

𝑝𝑞1 (𝑘 = 1, 2, . . . , 𝑟), 𝑐𝑣𝑙
𝑝𝑞𝑟 by 𝑐𝑣𝑢

𝑝𝑞𝑟 (𝑣 = 1, 2, . . . , 𝑟−1), 𝑐1𝑙
𝑝𝑞2 by 𝑐1𝑢

𝑝𝑞2, 𝑎𝑘𝑙
𝑝 by 𝑎𝑘𝑢

𝑝 (𝑘 = 1, 2, . . . , 𝑟),
𝑎𝑚𝑙

𝑟 by 𝑎𝑚𝑢
𝑟 , we choose TP-1.1 as TP-1.2.

Similarly, substituting 𝑐𝑘𝑙
𝑝𝑞1 by 𝑐𝑘𝑙

𝑝𝑞1 𝑘 = 1, 2, . . . , 𝑟), 𝑐𝑣𝑙
𝑝𝑞𝑟 by 𝑐𝑣𝑙

𝑝𝑞𝑟 (𝑣 = 1, 2, . . . , 𝑟 − 1), 𝑐1𝑙
𝑝𝑞2 by 𝑐1𝑙

𝑝𝑞2, 𝑎𝑘𝑙
𝑝 by 𝑎̄𝑘𝑙

𝑝

(𝑘 = 1, 2, . . . , 𝑟), 𝑎𝑚𝑙
𝑟 by 𝑎̄𝑚𝑙

𝑟 , we take TP-1.1 as TP-2.1, and replacing 𝑐𝑘𝑙
𝑝𝑞1 by 𝑐𝑘𝑢

𝑝𝑞1 (𝑘 = 1, 2, . . . , 𝑟), 𝑐𝑣𝑙
𝑝𝑞𝑟 by 𝑐𝑣𝑢

𝑝𝑞𝑟

(𝑣 = 1, 2, . . . , 𝑟 − 1), 𝑐1𝑙
𝑝𝑞2 by 𝑐1𝑢

𝑝𝑞2, 𝑎𝑘𝑙
𝑝 by 𝑎̄𝑘𝑢

𝑝 (𝑘 = 1, 2, . . . , 𝑟), 𝑎𝑚𝑙
𝑟 by 𝑎̄𝑚𝑢

𝑟 , we denote TP-2.1 as TP-2.2.

5. Solution procedure

Model 2 (MMTP) contains the transportation parameters in the form of rough intervals. Thus, an algorithm
is adopted for producing four crisp MMTP models as follows:

Algorithm

The procedure to extract the solution of Model 2 is prescribed in the following steps.

Step 1. From Model 2, we develop two TPs involving interval cost, given by TP-1 and TP-2 in Section 4.
Step 2. We find the surely optimal range [𝑧𝑣𝑙, 𝑧𝑣𝑢] by solving TP-1 by breaking it into two classical TPs that

are given by TP-1.1 and TP-1.2 in Section 4.
Step 3. In a similar way as described in Step 2, we extract the possible optimal range [𝑧𝑘𝑙, 𝑧𝑘𝑢] by solving

TP-2.
Step 4. We have three possible outcomes according to the set of decision variables as follows.

Step 4.1. The main problem, i.e., transportation problem rough interval cost (TPRIC), has a rough range
when TP-1 and TP-2 have their optimal ranges. The rough range of TPRIC is ([𝑧𝑣𝑙, 𝑧𝑣𝑢], [𝑧𝑘𝑙, 𝑧𝑘𝑢]).

Step 4.2. TPRIC has an unbounded range when TP-1 and TP-2 have unbounded range.
Step 4.3. TPRIC has no feasible solution once TP-1 and TP-2 have no feasible solution.
The corresponding flowchart of the algorithm is presented in Figure 5.
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Figure 5. Flowchart for solving MMTP under RI.

5.1. Rough chance constrained programming

Before utilizing rough chance constrained programming (RCCP) in the proposed model, we first construct
the following objective functions and use these in the RCCP model.

Consider 𝑍1 = 𝑧11 + 𝑧21 + . . . + 𝑧𝑟1,

𝑍2 = 𝑧12 + 𝑧22 + . . . + 𝑧𝑟2,

𝑍3 = 𝑧13 + 𝑧23 + . . . + 𝑧𝑟3,

𝑍4 = 𝑧14 + 𝑧24 + . . . + 𝑧𝑟4.

where 𝑧11 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1𝑐

1𝑙
𝑝𝑞1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1𝑐

2𝑙
𝑝𝑞1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1𝑐

𝑟𝑙
𝑝𝑞1𝑥

𝑟
𝑝𝑞1,

𝑧21 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
2𝑐

1𝑙
𝑝𝑞2𝑥

1
𝑝𝑞2 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
2𝑐

2𝑙
𝑝𝑞2𝑥

2
𝑝𝑞2 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
2𝑐

(𝑟−1)𝑙
𝑝𝑞2 𝑥𝑟

𝑝𝑞2,

...

𝑧𝑟1 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑐

1𝑙
𝑝𝑞𝑟𝑥

1
𝑝𝑞𝑟,

𝑧12 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1𝑐

1𝑙
𝑝𝑞1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1𝑐

2𝑙
𝑝𝑞1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1𝑐

𝑟𝑙
𝑝𝑞1𝑥

𝑟
𝑝𝑞1,
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𝑧22 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
2𝑐

1𝑙
𝑝𝑞2𝑥

1
𝑝𝑞2 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
2𝑐

2𝑙
𝑝𝑞2𝑥

2
𝑝𝑞2 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
2𝑐

(𝑟−1)𝑙
𝑝𝑞2 𝑥𝑟

𝑝𝑞2,

...

𝑧𝑟2 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑐

1𝑙
𝑝𝑞𝑟𝑥

1
𝑝𝑞𝑟,

𝑧13 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1𝑐

1𝑢
𝑝𝑞1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1𝑐

2𝑢
𝑝𝑞1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1𝑐

𝑟𝑢
𝑝𝑞1𝑥

𝑟
𝑝𝑞1,

𝑧23 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
2𝑐

1𝑢
𝑝𝑞2𝑥

1
𝑝𝑞2 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
2𝑐

2𝑢
𝑝𝑞2𝑥

2
𝑝𝑞2 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
2𝑐

(𝑟−1)𝑢
𝑝𝑞2 𝑥𝑟

𝑝𝑞2,

...

𝑧𝑟3 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑐

1𝑢
𝑝𝑞𝑟𝑥

1
𝑝𝑞𝑟,

𝑧14 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
1𝑐

1𝑢
𝑝𝑞1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
1𝑐

2𝑢
𝑝𝑞1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
1

[︀
𝑐𝑟𝑙
𝑝𝑞1, 𝑐

𝑟𝑢
𝑝𝑞1

]︀
𝑥𝑟

𝑝𝑞1,

𝑧24 =
𝑠1∑︁

𝑝=1

𝑡1∑︁
𝑞=1

𝛼1
2𝑐

1𝑢
𝑝𝑞2𝑥

1
𝑝𝑞2 +

𝑠2∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼2
2𝑐

2𝑢
𝑝𝑞2𝑥

2
𝑝𝑞2 + . . . +

𝑠𝑟∑︁
𝑝=1

𝑡1∑︁
𝑞=1

𝛼𝑟
2𝑐

(𝑟−1)𝑢
𝑝𝑞2 𝑥𝑟

𝑝𝑞2,

...

𝑧𝑟4 =
𝑠1∑︁

𝑝=1

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑐

1𝑢
𝑝𝑞𝑟𝑥

1
𝑝𝑞𝑟.

We need to minimize the least objective function 𝑧, because the main problem is a minimization problem and
all of its parameters are RIs that satisfy Tr{𝑧 ≥ 𝑧} ≥ 𝛼, and 𝛼 ∈ (0, 1] is the degree of trust or confidence
level, which implies maximizing the 𝛼-optimistic value 𝑧inf(𝛼) of 𝑧, which explicitly means that the optimum
objective value will be less than 𝑧 with the trust level 𝛼. We also consider the 𝛼-pessimistic value of the source
and conveyance constraints with confidence level 𝛼 and 𝛼-optimistic value of demand constraints. Thus, RCCP
is:

min(min 𝑧) = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4,

subject to
𝑡1∑︁

𝑞=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼1
2𝑥

1
𝑝𝑞2 + . . . +

𝑠2∑︁
𝑞=1

𝛼1
𝑟𝑥

1
𝑝𝑞𝑟 ≤ 𝑎𝑝 inf(𝛼), (5.1)

𝑠1∑︁
𝑝=1

𝛼1
1𝑥

1
𝑝𝑞1 +

𝑠2∑︁
𝑝=1

𝛼2
1𝑥

2
𝑝𝑞1 + . . . +

𝑠𝑟−1∑︁
𝑝=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≥ 𝑏𝑞 sup(𝛼), (5.2)

𝑡1∑︁
𝑞=1

𝛼2
1𝑥

2
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼2
2𝑥

2
𝑝𝑞2 + . . . +

𝑠3∑︁
𝑞=1

𝛼2
𝑟−1𝑥

2
𝑝𝑞(𝑟−1)

≤ 𝑎1
𝑝 inf(𝛼), (5.3)

𝑡1∑︁
𝑞=1

𝛼3
1𝑥

3
𝑝𝑞1 +

𝑠𝑟∑︁
𝑞=1

𝛼3
2𝑥

3
𝑝𝑞2 + . . . +

𝑠4∑︁
𝑞=1

𝛼3
𝑟−2𝑥

3
𝑝𝑞(𝑟−2)
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≤ 𝑎2
𝑝 inf(𝛼), (5.4)

...
𝑡1∑︁

𝑞=1

𝛼𝑟
1𝑥

𝑟
𝑝𝑞1 ≤ 𝑎𝑟

𝑝 inf(𝛼), (5.5)

the constraints (4.10)–(4.13).

Here, 𝑎𝑝 inf(𝛼), 𝑏𝑞 sup(𝛼), 𝑎1
𝑝 inf(𝛼), 𝑎2

𝑝 inf(𝛼), and 𝑎𝑟
𝑝 inf(𝛼) are to be evaluated using the definitions of 𝛼-optimistic

and 𝛼-pessimistic, for all 𝑝, 𝑞. Using the definition of the 𝛼-optimistic value, we have the objective function as
well as the RCCP model equivalent to the following model.

Model 3

minimize 𝑧′ = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4,

subject to the constraints (5.1)–(5.5)
the constraints (4.10)–(4.13).

where

𝑧′ =

⎧⎪⎪⎨⎪⎪⎩
(1− 2𝛼)𝑍4 + 2𝛼𝑍1, if 𝛼 ≤ 𝑍1−𝑍2

2(𝑍4−𝑍2)
;

2(1− 𝛼)𝑍4 + (2𝛼− 1)𝑍1, if 𝛼 ≥ 𝑍3+𝑍4−2𝑍1
2(𝑍3−𝑍2)

;
𝑍2(𝑍3−𝑍1)+𝑍1(𝑍3−𝑍1)−2𝛼(𝑍3−𝑍1)(𝑍4−𝑍2)

(𝑍3−𝑍1)+(𝑍4−𝑍2)
, otherwise.

(5.6)

We now formulate another RCCP for the proposed model to minimize the maximum objective function 𝑧,
satisfying Tr{𝑧 ≤ 𝑧} ≥ 𝛼, where 𝛼 ∈ (0, 1] is the specified trust or confidence level, which implies that we
maximize the 𝛼-optimistic value 𝑧sup(𝛼) of 𝑧, which directly indicates that the optimum objective value will be
less than 𝑧 with the trust level 𝛼. In addition, we find the 𝛼-pessimistic value of the source and conveyance
constraints with confidence level 𝛼 and 𝛼-optimistic value of demand constraints. Thus, RCCP becomes:

min(max 𝑧) = 𝑧1 + 𝑧2 + . . . + 𝑧𝑟,

subject to the constraints (5.1)–(5.5)
the constraints (4.10)–(4.13).

Using the definition of 𝛼-pessimistic to the objective function, we have an equivalent form of the above RCCP
model as follows.

Model 4

minimize 𝑧′′ = 𝑍1 + 𝑍2 + 𝑍3 + 𝑍4,

subject to the constraints (5.1)–(5.5)
the constraints (4.10)–(4.13).

where

𝑧′′ =

⎧⎪⎪⎨⎪⎪⎩
(1− 2𝛼)𝑍2 + 2𝛼𝑍4, if 𝛼 ≤ 𝑍4−𝑍3

2(𝑍4−𝑍2)
;

2(1− 𝛼)𝑍2 + (2𝛼− 1)𝑍4, if 𝛼 ≥ 2𝑍4−𝑍1−𝑍2
2(𝑍4−𝑍2)

;
𝑍4(𝑍3−𝑍1)+𝑍3(𝑍3−𝑍1)−2𝛼(𝑍3−𝑍1)(𝑍4−𝑍2)

(𝑍3−𝑍1)+(𝑍4−𝑍2)
, otherwise.

(5.7)
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Figure 6. Network corresponding to numerical example.

6. Numerical example

In this section, we introduce a numerical example for the proposed model to clarify the utility of MMTP.
Consider two factories of daily used goods for a company are located in cities 𝑆1 and 𝑆2. The company has three
warehouses (𝑆1.1, 𝑆1.2, and 𝑆1.1.1) in which goods are stored and then sold into markets 𝐷1 and 𝐷2 (see Fig. 6).
It is considered that any number of goods can be transported from 𝑆1 and 𝑆2 to 𝑆1.1 and 𝑆1.2, respectively;
𝑆1.1 and 𝑆1.2 to 𝑆1.1.1; 𝑆1.1.1 to 𝐷1 and 𝐷2. In any other routes, items are transported in multiple forms due
to vehicle restrictions. The limit of the vehicle to transport products is 500 items from 𝑆1 and 𝑆2 to 𝐷1 and
𝐷2. Thus, there is an issue to deliver the products when the requests at the destinations 𝐷1 and 𝐷2 are not a
multiple of 500. Once more, the vehicles are carrying the products from TOs 𝑆1.1 and 𝑆1.2 to destinations 𝐷1

and 𝐷2 with the limit of 50 items. With this consideration, again there is an issue to transfer products when
the measures of goods are not in a multiple of 50. In addition to that, there is a destination 𝑆1.1.1 that takes the
products from 𝑆1, 𝑆2, 𝑆1.1, and 𝑆1.2 and supplies these to the destinations 𝐷1 and 𝐷2. The transportation from
the inside 𝑆1.1.1 to the destinations 𝐷1 and 𝐷2 has no such vehicle limit; i.e., any measure of products can be
transported between the nodes. The customary approach of the TP cannot provide any such numerical model
to tackle the proposed problem. To take care of the problem, we design a numerical model known as MMTP,
based on the above issues.

The accompanying documentations and presumptions are considered to define the numerical model of MMTP.

– The choice factors for transporting the items are taken into account as follows:
Moving from 𝑆1 and 𝑆2 to 𝐷1 and 𝐷2 is as 𝑥1

𝑖𝑗1, by utilizing the shipping path with vehicle limit 𝛼1
1 = 500.

Moving from 𝑆1.1 and 𝑆1.2 to 𝐷1 and 𝐷2 is taken as 𝑥1
𝑖𝑗2, by choosing the rail-route with vehicle limit

𝛼2
1 = 50. Moving from 𝑆1.1.1 to 𝐷1 and 𝐷2 is assumed as 𝑥1

𝑖𝑗3, by using the street path with no vehicle
limitation; i.e., 𝛼3

1 = 1.
Moving from 𝑆1 and 𝑆2 to 𝑆1.1.1 is taken as 𝑥2

𝑖𝑗1 with vehicle limitation 𝛼1
2 = 250.

Moving from 𝑆1.1 and 𝑆1.2 to 𝑆1.11 is assumed as 𝑥2
𝑖𝑗2 with no vehicle confinement.

Moving from 𝑆1 and 𝑆2 to 𝑆1.1 and 𝑆1.2 is considered as 𝑥3
𝑖𝑗1 and there is not any vehicle limitation.

– The possibility of the numerical illustration comprises the accompanying number of constraints.
The supply limits at the factories 𝑆1 and 𝑆2 are presented by two imperatives. The demands at the last
destinations 𝐷1 and 𝐷2 are considered by two limitations. Keeping the limits at the warehouses 𝑆1.1, 𝑆1.2,
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Table 3. Transportation cost from 𝑆1 and 𝑆2 to 𝐷1 and 𝐷2 (in $).

𝐷1 𝐷2

𝑆1 ([14, 17], [13, 18]) ([12, 16], [10, 17])
𝑆2 ([14, 16], [13, 18]) ([17, 21], [16, 22])

Table 4. Transportation cost from 𝑆1.1 and 𝑆1.2 to 𝐷1 and 𝐷2 (in $).

𝐷1 𝐷2

𝑆1.1 ([7, 10], [6, 11]) ([9, 12], [8, 14])
𝑆1.2 ([8, 11], [6, 12]) ([6, 9], [4, 11])

Table 5. Transportation cost from 𝑆1.1.1 to 𝐷1 and 𝐷2 (in $).

𝐷1 𝐷2

𝑆1.1.1 ([5, 8], [3, 9]) ([4, 8], [3, 9])

Table 6. Transportation cost from 𝑆1 and 𝑆2 to 𝑆1.1.1 (in $).

𝑆1.1.1

𝑆1 ([10, 13], [9, 14])
𝑆2 ([11, 13], [10, 16])

Table 7. Transportation cost from 𝑆1.1 and 𝑆1.2 to 𝑆1.1.1 (in $).

𝑆1.1.1

𝑆1 ([7, 10], [6, 12])
𝑆2 ([8, 10], [7, 14])

Table 8. Transportation cost from 𝑆1 and 𝑆2 to 𝑆1.1 and 𝑆1.2 (in $).

𝑆1.1 𝑆1.2

𝑆1 ([4, 7], [3, 8]) ([3, 5], [2, 8])
𝑆2 ([5, 7], [8, 9]) ([4, 6], [3, 9])

and 𝑆1.1.1, give three limitations. The amounts of products circulating from the warehouses 𝑆1.1, 𝑆1.2, and
𝑆1.1.1 do not surpass the measure of putting away things that produce three requirements. Thus, the quantity
of limitations in MMTP of the numerical problem is 10.

The transportation costs in the various routes are presented in Tables 3–8.
The accessibility of products at each factory 𝑆1 and 𝑆2 is ([1500, 1700], [1400, 1800]) units in the RI shape. The

most extreme limits of putting away at the warehouses 𝑆1.1, 𝑆1.2, and 𝑆1.1.1 are ([1100, 1400], [1000, 1500]) units,



3178 D. MARDANYA ET AL.

([1200, 1500], [1100, 1600]) units, and ([900, 1200], [800, 1300]) units separately in the RI shape. The mathematical
model is planned for relating to the accessible information portrayed in Tables 3–8.

Model 5

minimize 𝑧

𝑧 = 𝑧1 + 𝑧2 + 𝑧3,

𝑧1 = 500
(︀
([14, 17], [13, 18])𝑥1

111 + ([12, 16], [10, 17])𝑥1
121 + ([14, 16], [13, 18])𝑥1

211

+([17, 21], [16, 22])𝑥1
221

)︀
+ 50

(︀
([7, 10], [6, 11])𝑥2

111 + ([9, 12], [8, 14])𝑥2
121

+([8, 11], [6, 12])𝑥2
211 + ([6, 9], [4, 11])𝑥2

221

)︀
+ ([5, 8], [3, 9])𝑥3

111

+([4, 8], [3, 9])𝑥3
121,

𝑧2 = ([4, 7], [3, 8])𝑥1
112 + ([3, 5], [2, 8])𝑥1

122 + ([5, 7], [8, 9])𝑥1
212 + ([4, 6], [3, 9])𝑥1

222,

𝑧3 = 250
(︀
([10, 13], [9, 14])𝑥1

113 + ([11, 13], [10, 16])𝑥1
213

)︀
+ ([7, 10], [6, 12])𝑥2

113

+([8, 10], [7, 14])𝑥2
213,

500
(︀
𝑥1

111 + 𝑥1
121

)︀
+ 250𝑥1

113 + 𝑥1
112 + 𝑥1

122 ≤ ([1500, 1700], [1400, 1800]),
500

(︀
𝑥1

211 + 𝑥1
221

)︀
+ 250𝑥1

213 + 𝑥1
212 + 𝑥1

222 ≤ ([1500, 1700], [1400, 1800]),
500

(︀
𝑥1

111 + 𝑥1
211

)︀
+ 50

(︀
𝑥2

111 + 𝑥2
211

)︀
+ 𝑥3

111 ≥ ([1355, 1655], [1255, 1755]),
500

(︀
𝑥1

121 + 𝑥1
221

)︀
+ 50

(︀
𝑥2

121 + 𝑥2
221

)︀
+ 𝑥3

121 ≥ ([1375, 1675], [1275, 1775]),
𝑥1

112 + 𝑥1
212 ≤ ([1100, 1400], [1000, 1500]),

𝑥1
122 + 𝑥1

222 ≤ ([1200, 1500], [1100, 1600]),
250

(︀
𝑥1

113 + 𝑥1
213

)︀
+ 𝑥2

113 + 𝑥2
213 ≤ ([900, 1200], [800, 1300]),

𝑥1
112 + 𝑥1

212 ≥ 50
(︀
𝑥2

111 + 𝑥2
121

)︀
+ 𝑥2

113,

𝑥1
122 + 𝑥1

222 ≥ 50
(︀
𝑥2

211 + 𝑥2
221

)︀
+ 𝑥2

213,

250
(︀
𝑥1

113 + 𝑥1
213

)︀
+ 𝑥2

113 + 𝑥2
213 ≥ 𝑥3

111 + 𝑥3
121,

𝑥𝑘
𝑝𝑞𝑟 ≥ 0, ∀ 𝑝, 𝑞, 𝑟, 𝑘.

Model 5 reduces to four deterministic TPs namely: TP-1.1, TP-1.2, TP-2.1, and TP-2.2. We then solve TPs
by using our proposed algorithm. The minimum values of objective functions for TP-1.1, TP-1.2, TP-2.1, and
TP-2.2 are $30 185, $51 280, $21 980, and $63 100, respectively. The optimal solutions of TP-1.1, TP-1.2, TP-2.1,
and TP-2.2 are presented in Table 9. In Table 10, the total amounts of transported goods reaching the final
destinations 𝐷1 and 𝐷2 are calculated. Similarly, in Tables 11 and 12, the total amounts of goods reached to
the TOs are shown. Table 13 lists the amount of transported goods stored at the TOs and final destinations.

We now solve Model 5 by two different techniques such as RCCP and using the expected value operator.
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Table 9. Optimal solutions by the proposed method.

Problem Optimal value Optimal solution

TP-1.1 30 185 𝑥1
121 = 1, 𝑥2

111 = 20, 𝑥2
211 = 7, 𝑥2

221 = 17, 𝑥3
111 = 5,

𝑥3
121 = 25, 𝑥2

113 = 30, 𝑥1
122 = 1000, 𝑥1

212 = 1030, 𝑥1
222 = 200,

and other variables are zero.

TP-1.2 51 280 𝑥1
211 = 3, 𝑥2

111 = 3, 𝑥2
121 = 3, 𝑥2

221 = 30, 𝑥3
111 = 5,

𝑥3
121 = 25, 𝑥2

113 = 30, 𝑥1
112 = 200, 𝑥1

122 = 1500, 𝑥1
212 = 130,

and other variables are zero.

TP-2.1 21 980 𝑥1
121 = 1, 𝑥2

111 = 18, 𝑥2
211 = 7, 𝑥2

221 = 15, 𝑥3
111 = 5,

𝑥3
121 = 25, 𝑥2

113 = 30, 𝑥1
112 = 900, 𝑥1

212 = 30, 𝑥1
222 = 1100,

and other variables are zero.

TP-2.2 63 100 𝑥1
121 = 3, 𝑥1

211 = 3, 𝑥2
111 = 5, 𝑥2

221 = 5, 𝑥3
111 = 5,

𝑥3
121 = 25, 𝑥2

113 = 30, 𝑥1
112 = 255, 𝑥1

122 = 45, 𝑥1
212 = 25,

𝑥1
222 = 205, and other variables are zero.

Table 10. The amounts of transported goods to final destinations 𝐷1 and 𝐷2.

TP Variable 𝑥1
111 𝑥1

121 𝑥1
211 𝑥1

221 𝑥2
111 𝑥2

121 𝑥2
211 𝑥2

221 𝑥3
111 𝑥3

121

TP-1.1 (𝑧TP1) Value 0 500 0 0 1000 0 350 850 5 25
TP-1.2 (𝑧TP2) Value 0 0 1500 0 150 150 0 1500 5 25
TP-2.1 (𝑧TP3) Value 0 500 0 0 900 0 350 750 5 25
TP-2.2 (𝑧TP4) Value 0 1500 1500 0 250 0 0 250 5 25

Table 11. The amounts of transported goods to transhipment origins 𝑆1.1 and 𝑆1.2.

TP Variable 𝑥1
112 𝑥1

122 𝑥1
212 𝑥1

222

TP-1.1 (𝑧TP1) Value 0 1000 1030 200
TP-1.2 (𝑧TP2) Value 200 1500 130 0
TP-2.1 (𝑧TP3) Value 900 0 30 1100
TP-2.2 (𝑧TP4) Value 255 45 25 205

Table 12. The amounts of transported goods to transhipment origin 𝑆1.1.1.

TP Variable 𝑥1
113 𝑥1

213 𝑥2
113 𝑥2

213

TP-1.1 (𝑧TP1) Value 0 0 30 0
TP-1.2 (𝑧TP2) Value 0 0 30 0
TP-2.1 (𝑧TP3) Value 0 0 30 0
TP-2.2 (𝑧TP4) Value 0 0 30 0
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Table 13. The amounts of transported goods stored at all TOs and FDs.

TP Node 𝑆1.1 𝑆1.2 𝑆1.1.1 𝐷1 𝐷2

TP-1.1 (𝑧TP1) Value 1030 1200 30 1355 1375
TP-1.2 (𝑧TP2) Value 330 1500 30 1655 1675
TP-2.1 (𝑧TP3) Value 930 1100 30 1255 1275
TP-2.2 (𝑧TP4) Value 280 250 30 1755 1775

Table 14. Optimal solutions by RCCP.

Problem Optimal value Optimal solution

min 𝑧′ 17 071.20 𝑥1
111 = 2, 𝑥2

111 = 6, 𝑥2
121 = 23, 𝑥2

221 = 3, 𝑥1
122 = 215,

𝑥1
212 = 1490, 𝑥1

222 = 15, and other variables are zero.

min 𝑧′′ 52 709 𝑥1
111 = 2, 𝑥2

111 = 5, 𝑥2
111 = 5, 𝑥2

111 = 5, 𝑥2
221 = 2,

𝑥3
111 = 15, 𝑥3

121 = 35, 𝑥2
113 = 50, 𝑥1

112 = 28, 𝑥1
122 = 100,

𝑥1
212 = 1422, and other variables are zero.

Table 15. Optimal solutions by using the expected value operator.

Value of 𝜂 Optimal value Optimal solution

0.5 33 385 𝑥1
121 = 1, 𝑥2

111 = 25, 𝑥2
211 = 5, 𝑥2

221 = 20, 𝑥3
111 = 5,

𝑥3
121 = 25, 𝑥2

213 = 30, 𝑥1
112 = 35, 𝑥1

122 = 1065, 𝑥1
212 = 1215,

𝑥1
222 = 215, and other variables are zero.

1 46 500 𝑥1
211 = 3, 𝑥2

121 = 3, 𝑥2
221 = 27, 𝑥3

111 = 5, 𝑥3
121 = 25,

𝑥2
113 = 30, 𝑥1

112 = 180, 𝑥1
122 = 1350,

and other variables are zero.

1.5 26 180 𝑥1
121 = 1, 𝑥2

111 = 23, 𝑥2
211 = 7, 𝑥2

221 = 20, 𝑥3
111 = 5,

𝑥3
121 = 25, 𝑥2

113 = 30, 𝑥1
112 = 1100, 𝑥1

212 = 80, 𝑥1
222 = 1350,

and other variables are zero.

2 53 370 𝑥1
121 = 3, 𝑥1

211 = 3, 𝑥3
111 = 5, 𝑥3

121 = 25, 𝑥2
113 = 30, 𝑥1

112 = 30,
and other variables are zero.

Solution by RCCP. We reduce Model 5 into the form of Models 3 and 4, and the solutions after solving
Models 3 and 4 are presented in Table 14.

On account of RCCP, we solve the problem using similar data by developing two RCCP models with a
trust level 𝛼 = 0.99. Utilizing the 𝛼-optimistic and 𝛼-pessimistic definitions, we determine the numerical
calculations associated with the source, demand, and conveyance capacities, individually and subsequently.
Thus, we derive two RCCP results given in Table 14. Here, observing the outcome in Table 14, we conclude
that the objective value lies in the interval [17 071.20, 527 09] for a trust level of 𝛼 = 0.99; additionally for
0.93 < 𝛼 ≤ 1, 𝑧sup(𝛼) ≤ 𝑧inf(𝛼). We also observe that through the outcome, 𝑧′ ≤ 𝑧′′ justifies the truth val-
ues of the outcome. In addition, we have the optimum expected objective value as 41 636.25 derived from
𝐸(least transportation cost) = 1

4 (𝑧TP1 + 𝑧TP2 + 𝑧TP3 + 𝑧TP4), which is inside the interval. It definitely validates
the result.

Solution by using expected value operator. We solve the proposed model using the expected value operator
by taking four different values of 𝜂. The solution by using the expected value operator is shown in Table 15.
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Table 16. Optimal solutions by the proposed method.

Problem Optimal value Optimal solution

TP-1.1 35 470 𝑥1
111 = 0.25, 𝑥1

121 = 2.75, 𝑥1
211 = 2.46, 𝑥1

221 = 0
TP-1.2 53 280 𝑥1

111 = 0, 𝑥1
121 = 3.35, 𝑥1

211 = 3.31, 𝑥1
221 = 0

TP-2.1 29 065 𝑥1
111 = 0.25, 𝑥1

121 = 2.55, 𝑥1
211 = 2.26, 𝑥1

221 = 0
TP-2.2 61 765 𝑥1

111 = 0.05, 𝑥1
121 = 3.55, 𝑥1

211 = 3.46, 𝑥1
221 = 0

Table 17. The quantities of goods transported to final destinations 𝐷1 and 𝐷2.

TP Variable 𝑥1
111 𝑥1

121 𝑥1
211 𝑥1

221

TP-1.1 (𝑧TP1) Value 125 1375 1230 0
TP-1.2 (𝑧TP2) Value 0 1675 1655 0
TP-2.1 (𝑧TP3) Value 125 1275 1130 0
TP-2.2 (𝑧TP4) Value 25 1775 1730 0

Special case of the numerical example

To establish the efficiency of MMTP, let us remove the TOs from the transportation system. Then the problem
presented in the numerical example becomes a simple TP with origins 𝑆1, 𝑆2 and destinations 𝐷1, 𝐷2. The
mathematical model is formulated as follows:

Model 6

We solve Model 6 using proposed method and the solution is listed in Tables 16 and 17 shows the quantities
of goods that transported to final destinations 𝐷1 and 𝐷2.

minimize 𝑧1

𝑧1 = 500
(︀
([14, 17], [13, 18])𝑥1

111 + ([12, 16], [10, 17])𝑥1
121 + ([14, 16], [13, 18])𝑥1

211 + ([17, 21], [16, 22])𝑥1
221

)︀
,

500
(︀
𝑥1

111 + 𝑥1
121

)︀
≤ ([1500, 1700], [1400, 1800]),

500
(︀
𝑥1

211 + 𝑥1
221

)︀
≤ ([1500, 1700], [1400, 1800]),

500
(︀
𝑥1

111 + 𝑥1
211

)︀
≥ ([1355, 1655], [1255, 1755]),

500
(︀
𝑥1

121 + 𝑥1
221

)︀
≥ ([1375, 1675], [1275, 1775]),

𝑥𝑘
𝑝𝑞𝑟 ≥ 0, ∀ 𝑝, 𝑞, 𝑟, 𝑘.

On account of RCCP, we solve the problem using similar data by developing two RCCP models with a trust
level 𝛼 = 0.99. Utilizing the 𝛼-optimistic and 𝛼-pessimistic definitions, we determine the numerical calculations
associated with the source, demand, and conveyance capacities, individually and subsequently. Thus, we derive
two RCCP results as given in Table 18. Here, observing the outcome in Table 18, we conclude that the objective
value lies in the interval [13 284.70, 47 075.64] for a trust level of 𝛼 = 0.99; additionally for 0.93 < 𝛼 ≤ 1,
𝑧sup(𝛼) ≤ 𝑧inf(𝛼). We also observe that in our outcome, 𝑧′ ≤ 𝑧′′ justifies the truth values of the outcome. In
addition, we have the optimum expected objective value as $44 895 derived from 𝐸(least transportation cost) =
1
4 (𝑧TP1 + 𝑧TP2 + 𝑧TP3 + 𝑧TP4), which is inside the interval. It definitely validates the result.

In real situations, if there is any empty space in conveyance then the purchaser needs to pay transportation
cost of a full trip. In this situation, the transportation cost to be paid and the number of conveyance can be
obtained by Model 6 (see Tab. 19).
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Table 18. Optimal solutions by RCCP.

Problem Optimal value Optimal solution

min 𝑧′ 13 284.70 𝑥1
111 = 1.53, 𝑥1

121 = 1.57, 𝑥1
211 = 0, 𝑥1

221 = 0
min 𝑧′′ 47 075.64 𝑥1

111 = 1.834, 𝑥1
121 = 2.55, 𝑥1

211 = 0.676, 𝑥1
221 = 0

Table 19. Optimal cost and number of conveyance in optimal routes by RCCP.

Problem Optimal value Optimal solution

min 𝑧′ 17 180 𝑥1
111 = 2, 𝑥1

121 = 2, 𝑥1
211 = 0, 𝑥1

221 = 0
min 𝑧′′ 55 930 𝑥1

111 = 2, 𝑥1
121 = 3, 𝑥1

211 = 1, 𝑥1
221 = 0

Based on the obtained solutions, we conclude that, in the absence of TOs the range of transportation cost
[17 180, 55 930] using simple TP is larger than the range of transportation cost [17 071.20, 52 709] obtained by
MMTP. Consequently, we establish that the absence of TOs increases the total transportation cost.

7. Results and discussion

We now compare the solution of Model 5, obtained by the proposed method, with the solutions obtained by
two different techniques, RCCP and using the expected value operator.

Effectiveness of MMTP. To test the effectiveness of the proposed mathematical model of MMTP, we describe
the diverse possibilities associated with the numerical example as follows.

– Suppose that the routes from the supply points, 𝑆1 and 𝑆2 to destination points 𝐷1 and 𝐷2 are by sea.
Thus, delivering the goods is done by a ship. Clearly, a sufficient amount of goods is transported by the
ship, and the amount is 500 units. In that situation, if there are no other nodes available like 𝑆1.1, 𝑆1.2,
and 𝑆1.1.1, at that point the defined TP is classical TP. In this case, we see that there exists a feasible
solution to the proposed problem that does not minimize the transportation cost as in each destination the
least requirements are ([1355, 1655], [1255, 1755]) units and ([1375, 1675], [1275, 1775]) units of goods that
are not necessarily a multiple of 500 in the optimal solution. Furthermore, if the purchaser would like to
purchased amount of goods which is not a multiple to 500, there will be empty place in conveyance but he
should have to pay for the fully loaded conveyance cost. Due to this reason, 𝐷1 and 𝐷2 will have to pay
transportation cost of a lesser amount of goods by giving transportation cost a larger amount of goods of
fully loaded vehicles. Thus, transportation cost increases as shown in “Special case of the numerical
example”. The traditional TP is hence not sufficient to provide a clear conclusion without considering the
TOs as discussed this study.

– We again assume that there is a connection through the railway between 𝑆1.1 and 𝑆1.2 to 𝐷1 and 𝐷2.
At that point, the capacity for transports through the railway is high for which we consider that a single
transport needs a 50 units. In that circumstance, the problem is solved without considering the TO 𝑆1.1.1

(i.e., utilizing the value of the variables connecting the node 𝑆1.1.1 is “0”.), and the total transportation
cost for TP-1.1, TP-1.2, TP-2.1, and TP-2.2 are separately $30 800, $43 400, $24 300, and $50 500. We
note that the transportation cost obtained by the proposed method for TP-1.1 and TP-2.1 is less than
the transportation cost in the case when we have not chosen the TO 𝑆1.1.1. The transportation costs for
TP-1.2 and TP-2.2 obtained by the proposed method are more when we have not taken the TO 𝑆1.1.1. In
the case when the node 𝑆1.1.1 is not used, then the amount of transported goods must be a multiple of 50 at
the final destinations 𝐷1 and 𝐷2. Therefore, the amount of transported goods is larger than the minimum
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requirement at the final destinations. Due to this reason, the transportation cost increases when the node
𝑆1.1.1 is not considered in the model. Choosing the TO, 𝑆1.1.1 decreases the transportation cost, which is
what we discuss herein the study.

– In a similar way, if we formulate the mathematical model without considering the transshipment origins 𝑆1.1

and 𝑆1.1.1 or 𝑆1.2 and 𝑆1.1.1, then the transportation cost will vary depending on the lower and upper values
of the rough intervals, and the supply will be more or less.

According to the aforementioned discussions, we analyze that the introduction of a multi-modal system in
TP is very much essential to reduce the transportation cost for delivering the goods. However in the classical
TP, this is not so.

The above discussion also allows us to introduce the importance of RI and its usefulness in TP. The utility
of rough programming is mentioned as follows.

Utility of rough programming. In this paper we solve MMTP by considering a numerical example using
different techniques. We make a comparison with the traditional outcome and optimal solution presented by
the proposed approach. In most of the solution procedures of an uncertain TP, the obtained solutions are
defined as crisp values. Here, we present a rough solution for MMTP with RIs. The solutions obtained by the
proposed method for TP-1.1, TP-1.2, TP-2.1, and TP-2.2 are $30 185, $51 280, $21 980 and $63 100, respectively.
Therefore, the rough solution space obtained by the proposed method is ([30 185, 51 280], [21 980, 63 100]), and
the solution space obtained by RCCP is ([17 071.20, 52 709]). The solutions obtained by using the expected value
operator based on different values of 𝜂 are $33 385, $46 500, $26 180, and $53 370.

By using RI, we make the solution space of the problem more flexible, but here we observe that the solution
space obtained by RCCP does not contain all expected solutions. However, the solution space obtained by
classical TP contains all the expected solutions. Thus, observing the results of the three methods, we derive a
more flexible solution space when we use the proposed method. Government budgets are generally made yearly.
Budget management requires the prediction of government income from several sources for the upcoming year.
In this regard, for most cases the government income is considered by an interval number during the budget.
Thus, the budget is made under uncertainty. Furthermore, the amounts assigned for different purposes also
become uncertain numbers. In this situation if the uncertain parameters are considered as rough data, then
the prediction of income and expenditure in several purposes must be included in a surely occurrence region of
a rough approximated feasible region. In this context, the approach discussed inthis paper is more fruitful in
a prediction-based decision making process. This study is also useful for decision making in several corporate
sectors under uncertainty. Furthermore, existing studies of TP including interval parameters may be solved by
RCCP to produce better optimal solutions.

8. Conclusion

It is difficult to formulate a mathematical model and to find the least-cost route of transportation when
multiple modes are involved in a TP. Considering multiple modes of transportation, this paper has established
a new model MMTP, and its solution suggests the selection of a mode of transportation as well as an optimal
solution to the problem. In most real-life cases, the data are not crisp. To accommodate these situations, here
we have considered the rough intervals in transportation parameters. Furthermore, we present an MMTP in
which all parameters are taken as RIs. A new algorithm has been presented to solve MMTP with them. We have
demonstrated a solution procedure to solve MMTP using RCCP. The usefulness of the multi-modal criterion
has been illustrated along with a brief discussion on the utility of RI.

An MMTP brings new insight into organizations, such as systems, stations, data envelopment analysis models,
portfolio selection, financial model, inventory model, and so on. Moreover the proposed study can be performed
under various questionable conditions to accommodate more real-life circumstances for choosing an optimum
mode of transportation.
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