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SOLVING THE MULTI-MODAL TRANSPORTATION PROBLEM VIA THE
ROUGH INTERVAL APPROACH

DHARMADAS MARDANYA!®, GURUPADA MAITY!, SANKAR KUMAR Rov!*
AND VINCENT F. YU?

Abstract. This research studies a transportation problem to minimize total transportation cost under
the rough interval approximation by considering the multi-modal transport framework, referred to here
as the rough Multi-Modal Transportation Problem (MMTP). The parameters of MMTP are rough
intervals, because the problem is chosen from a real-life scenario. To solve MMTP under a rough
environment, we employ rough chance-constrained programming and the expected value operator for
the rough interval and then outline the main advantages of our suggested method over those existing
methods. Next, we propose an algorithm to optimally solve the problem and present a numerical
example to examine the proposed technique. Finally, the solution is analyzed by the proposed method
with rough-chance constrained programming and expected value operator.
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1. INTRODUCTION

Transportation Problems (TPs) are widely studied within the operations research literature, with many real-
life problems can be considered and modeled by them. Most studies in the TP literature consider to satisfy the
availabilities of sources and demands for destinations and reduce transportation costs from sources to different
destinations. In reality, a number of additional decision-making challenges appear such as, product benefits,
benefits for purchasers, making decisions on various objective functions in real life, and so on. Multi-Model
Transportation Problem (MMTP) is comparable to a TP involving the use of several modes of transportation
(see Fig. 1). It is also called the combined TP that permits transporting goods under a solitary contract, but
it operates under more than one mode of transportation; the bearer is liable (in the usual sense) for the whole
movement, despite the fact that several/different modes of transportation are considered, such as road, sea, train,
etc. The bearer does not need to utilize all modes for transport, and in normal practice this is not valid. The
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transportation is frequently executed by subcontracted bearers (normally one for each unique transportation
mode).

The fundamental transportation model was first started by Kantorovich [11], who proposed an incomplete
calculation for figuring the arrangement of the TP. Hitchcock [7] examined the issue of limiting the cost of giving
an item from a few distribution centers to various buyers. Since the reality of TP has many facets, each one of
them is usually studied separately. Murphy [25] developed a TP, described its advantages for the dual of TP
and gave its implications for land-use and transport planning. Huang et al. [9] solved a stochastic dairy TP with
considering collection and delivery phases. Maity et al. [17] analyzed an MMTP and its application to artificial
intelligence. Kaur et al. [12] investigated a capacitated TP with two-stage and restricted flow for the aim of time
minimization. Roy et al. [35] described a new approach for solving intuitionistic fuzzy multi-objective TP. James
et al. [10] improved transportation benefit quality in view of a combination of data. Maity et al. [16] proposed a
new approach for solving dual-hesitant fuzzy TP with restrictions. Mardanya and Roy [18] introduced the time-
variant in the multi-objective linear fractional transportation problem. Later, Mardanya et al. [20] introduced
the just-in-time concept in the multi-objective environment. Ebrahimnejad [3] addressed a problem including
interval-valued trapezoidal fuzzy variables and provided a method for linear programming. Myung et al. [206]
developed freight transportation network model with bundling option. Zhang et al. [40] derived a reactive
tabu search algorithm for the multi-depot container truck transportation problem. Other studies related to
transportation security arrangement have been presented by Ergun et al. [4], Luathep et al. [14], Zhi-Chun
et al. [41], Abdel-Aty et al. [1] and Xu et al. [38]. Moreover the multi-objective transportation problem has been
discussed by many authors, such as Dalman [2], Ghosh and Roy [5], Kumar et al. [13], Mahapatra et al. [15],
Mardanya et al. [19], Midya and Roy [21], Midya et al. [22,23], Paraman et al. [28], Roy et al. [33,34,36], and
others.

Vagueness appears in reality within TP. This is due to the lack of increasing awareness within a transportation
policy and different types of unexpected elements such as a lack of evidence, etc. In reality, the main aim of the
problem is to optimize the objective function under certain conditions.

In 1982, Pawlak [29,30] proposed the rough set theory. It is a technique that simultaneously considers vague-
ness and uncertainties. The rough set theory plays an important role in analyzing a vaguely described problem
for finding a different course of actions in real-life decision-making problems [31]. The rough set theory has a
wide scope of application in several fields, such as decision analysis, machine learning, and knowledge discov-
ery from a database, civil engineering problems, and other areas. Recently, rough programming accommodates
real-world vagueness and uncertainty, thus spurring the attention of researchers (cf. [6,27,32,39]).

Many researchers have focused on Rough Interval (RI) concepts in order to apply the various properties of
RI on several optimization problems related to transporting systems.

However, there seems to be a gap in the application of RI concepts on MMTP. Since transportation cost
in the transportation system depends on many factors, they have an inherent inclination for being complex,
inexact, and/or vague. The interval approximation can imagine this inaccuracy or vagueness so that the Deci-
sion Maker (DM) can have an idea of the overall cost of transportation in interval form. Furthermore, in an
multi-modal transportation system, DMs have no exact information about the data related to different trans-
portation parameters in different modes, the parameters in the problem that are an approximate representation
of the demands at the destinations, the capacity of supply at origins, selling price, unit cost, etc. Due to these
unpredictable factors, the feasible region becomes uncertain. Considering the rough inclination approximation
to an uncertain feasible region, DMs acquire better flexibility in the decision-making process. This practical
necessity motivates us to study MMTP with RI approximation under the following objectives.

— To investigate MMTP with RI coefficients.

— To explain how the decision-making system smooth and relaxed with the help of RI in contrast with utilizing
an exact crisp number.

— To derive the simplest form of the solution for the linear optimization problem, i.e., an MMTP is solved by
using existing methods, viz., expected value operator and rough chance-constrained programming (RCCP).
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The remaining paper is arranged as follows. Section 2 formulates the problem studied. Section 3 discusses the
basic definitions and properties of RI. Section 4 proposes a new model for MMTP. Section 5 presents a solution
procedure of the proposed method. To demonstrate the utilization of the proposed model of MMTP, Section 6
gives a numerical illustration. Section 7 shows the results and discussion of the proposed method. Finally, this
paper ends with conclusions and future study in Section 8.

2. PROBLEM BACKGROUND
To define MMTP, we need to know ground origins, final destinations, and transshipment origins.

Definition 2.1 (Ground Origin (GO)). In a TP, ground origins are the nodes with no capacity to gather the
goods, but from where the next nodes receive goods.

Definition 2.2 (Final Destination (FD)). In a TP, final destinations are the nodes that receive goods with no
capability to supply them.

Due to the capacity /multiple routes of transportation, goods cannot supply on-demand from the GO nodes
to the FD nodes. In this case, certain destination nodes with the capacity to simultaneously supply and receive
goods are needed. Such nodes are called transshipment origins.

Definition 2.3 (Transshipment Origin (TO)). In a TP, the destination nodes that can collect the goods and
the capacity to deliver the goods are called transshipment origins.

In Figure 1, G1, Ga,...,Gm1 are the nodes of GD; T11, Tia,...,T1imo are the nodes of TO of level 1; and
Dy, Ds,...,D,; are taken as the nodes of FD.

The TP under the consideration of at least one node of TO is depicted as MMTP. In order to accommodate
the real-life TP, the usage of a single mode of transportation cannot always possibly fulfill customer demand at
the destination points. There are sometimes certain restrictions on transporting the goods, and so the multi-
modes of transportation from different nodes need to be addressed. At that point the transportation is not a
simple TP, but turns into an MMTP.

3. PRELIMIARIES

We now provide some background and properties on rough set theory along with a rough interval TP.

Approximation space. Suppose X # ¢ is a finite set of objects. We define an equivalence relation R on X
that partitions X into a family of pairwise disjoined subsets F1, Fs, ..., E,, each of which is an equivalence class
of R and called elementary sets. The pair (X, R) is called the approximation space and is denoted by Appr(R).

In the approximation space, Appr(R) = (X, R), and given an arbitrary set B C X, one may represent B by
a pair of lower approximation (LA) and upper approximation (UA):

Appr(B) = |J Ei={ye X :lylrnC B},
E,CB

Appr(B)= |J Ei={yeX:[ylxnB# 4}
E;NB#¢

Here, [y|r signifies the equivalence class containing y. The LA and UA of B can be equivalently described as:

Appr(B)={ye X :Vz€ X, yRz = z € B},
Appr(B) ={y € X : 3 z € X such that yRz and z € B}.

The pair (Appr(B), Appr(B)) is called the rough set of B.
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FIGURE 1. Graphical representation of an MMTP.

Rough intervals. The concept of RI [32] was proposed as a unique instance of a rough set that fulfills all of
the rough set properties. In addition, fundamental ideas are defined including definitions of UA and LA. There
are two components of RI: Lower Approximation Interval (LAI) and Upper Approximation Interval (UAI). In
particular, RI may be expressed as a trademark an incentive from a suspicious idea defined on a variable z € R.

The concept of RIs was introduced by Rebolledo [32] as a special case of a rough set. The distinctive point of
RIs is that they can be used to treat parameters and variables that are partially unknown. Rls are applied in
the literature to overcome the inherent limitations of the rough set property, as rough sets were originally used
only to treat discrete object, and could not define continuous variables. However, RIs can use the concepts of
the rough set as continuous variables in a model by applying them. This is a special case of a rough set that
satisfies all the rough set properties and basic concepts including the UA and LA definitions. Some explanations
are presented on RI as follows.

(i) If y € Appr(B) = y € B then y is surely taken by B.
(ii) If y € Appr(B), then y is possibly taken by B.
(ii) If y ¢ Appr(B) = y ¢ B then y surely does not belong to B.

Remark. Let S = ([s,s*], [,5"]) be a RI. Presently, if s' =" and s* = 3", then there are no extraordinary
cases in that RI, and at that point this RI degenerates into simply an interval. Along these lines, the RI is a
sensible era of the widely known crisp interval.

Rough interval arithmetic. The RI arithmetic operations are similar to Moore’s interval arithmetic [24]. In
this consequence, some arithmetic operations of RIs are presented minutely. A detailed discussion of Rough
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Interval Arithmetic (RIA) is in [32]. Presently, as indicated by Hamzehee et al. [6], S = ([s',s*], [§',5"]) and
T = (@17 ], {fl,qu are two RIs. At that point, the RIA on these two Rls is given by the following.

(31) Addition: S+ T = ([s + 5" + ¢, [s' + 5 + 7)),

(3.2) Subtraction: S —T = [gl — %, 5% — ﬂ], [sl — 7,5 — #D.

(3.3) Negation: —S = ([-s*, —s'], [, —5']).

(3.4) Intersection: SNT = ([max{gl,ﬂ},min{gu,ﬂ‘}], [max{El,fl},min{E",EM}D.
(3.5) Union: SUT = ([min{gl,ﬂ},max{gu,zu}], [min{?l,fl}, max{E",fu}D.

The set and logic operations with Rls are basically analyzed by similar operations with a fuzzy set. Fuzzy
sets must deal with continuous membership functions and cannot utilize Moore’s interval calculus.

Order relation of a rough interval. Suppose S and T are any two Rls, and then the order relations “<”
and “<” between S and T are characterized as S < T & §l‘;§u < il‘giu, glggu < #Jgfu; and S<T& ST
with S # T, respectively.

The order relation either “<” or “<” demonstrates the inclination of DMs for the distinctive decisions in view
of the uppermost extreme midpoint in the ordinary case and in the exceptional case, by regarding a maximization
problem. Expected value maximization and vulnerability minimization are the choices of reasoning. We note
that the order relations “<” and “<” so-characterized are partially ordered relations.

Definition 3.1. Abdel-Aty et al. [1] presented the concept of a measure on the approximation space. If X =
(Appr(X), Appr(X)) is a rough value on the approximation space, then the lower and upper trust measures of
the rough event {X < r} are respectively defined by:

Card(p € Appr(X)lp <r)
Card(@(X))

Card(p € Appr(X)|p <)
Card(Appr(X))

Tr{X <r}= , Tr{X <r}=

Here, Card() denotes the cardinality of a given set.
The trust measure of the rough event is given by:

1 _
Tr{X <r}= B [Q{X <r}+Tr{X < 7‘}]
The trust measure may be defined as any convex combination of the lower and upper trusts.

Definition 3.2. Suppose v = ([Ql,gu], [c‘zl,&“]), where @' < g, < a, < @, is RI; then according to Defini-
tion 3.1, the trust measures of rough events {v < r} and {y > r} are denoted by Tr{y < r}, Tr{y > r} and
defined as follows:

0, if r < al; 0, if r > a';

l(“L_T) ifal <r <d l(&u—r) ifa* <r<a“

2\ al—agv )» — —_ = 2\ gquv—agl /) =z = — )
1 L_ . . u_ u__ .

Trly <rh=q3(F5+ 455), ifd <r<an Tly2eh={i(&=n+ S50, ifd <r<ay

l

%(;} =0 +1), if ¢* <7 < a% %(au:;l +1), if o' <al;

1, if r > a*. 1, ifr <a®
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The a-optimistic value and the a-pessimistic value of the rough interval are given by equations (3.1) and
(3.2) as:

(1 —2a)a* + 2ad, if o < 2@%_{1)

Yeup (@) = ¢ 2(1 — a)a* + (2o — 1)@, if @ > 23(1;]79_[;?[; (3.1)
a'(e" g HQ(;ELQ_Z ﬂ‘;‘i‘% —a)@"~a)) otherwise.
(1 - 2a)a’ + 2aa", if a < 2(%lu_f;l);

Tar(e) = 4 2(1 — a)a' + (20— Da", if 0 > Lte e (3.2)
a(a"~g) +g(;(ug j;zg)ll(i;ua,(%r)fgl )(@*—a') , otherwise.

Expected value of a rough interval. The expected value operator is used to reduce a RI to a crisp interval.
As our discussion is confined into a TP in rough intervals, we have to define some important concepts on the
expected value operator.

Definition 3.3. Suppose X = {2z € X : y(z) € B}, where v : X — R is a real function, B C R; and X
is approximated by (X, X) according to the equivalence relation R. The lower expected, upper expected, and
expected values of X are then defined as follows:

+oo 0
E[X] = / Appr{y > z}dz — / Appr{y < z}dz,
0 —o0
_ too 0
B[X] = / Appr{y > z}dz — / Appr{y < z}dz,
0 —oc0

+oo 0
E[X] = ; Appr{y > z}dx —/ Appr{y < z}dz.

The correlation among the expected value E(X), the lower expected value E(X), and the upper expected
value E(X) is placed into the following proposition.

Proposition. Let X = {z € X :v(2) € B}, wherey: X — R is a real function, B C R; and X is approximated
by (57 X) according to the similarity relation R, and n is a given parameter predetermined by using the DM

preference. The expected value of X is denoted by E(X) and is defined as E(X) =nE(X) + (1 — n)E(X).
Proof. For proof, one can see [37]. O

Theorem 3.4 ([37]). Suppose B = ([a1,b1],[c1,d1]) is a RI, where ¢; < ay < by < dy. The expected value of B
is then E(B) = 1[n- (a1 +b1) + (1 =) - (c1 + dv)].

Proof. For proof, one can see [37]. O

Remark. For = 0.5 the expected value of B is %(al +b1+c1+dy).
The mathematical model of the proposed MMTP is depicted in points of interest in the following section.

Theorem 3.5. Ify = ([Ql,gu], [&l, EL“]), where @' < a;, < a,, < a* is a rough variable, then for a predetermined
a, 0<a<l, Tr{y <r} >« is equivalent to

(i) (1-20)a" +20a' <r, if o < 572

(i) 2(1 - a)a* + (2a - D)a' <r, if o > 2o
oy @ (e —a)+a"(a"—a!)—2a(a" —a')(a" —a")
(111) (a®—al)+(av—al)

<r, otherwise.
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Proof. Given a value r and v = ([q;,a,], [@',a"]), given by equation (3.1), consider the following cases.

Case I. Fora! <r < g, and a predetermined « from equation (3.1) we have

r—a®
T < > — JERE—
r{y<r}>a«a 5@ —a) >«

— (1 —2a)a" +2aa’ <.

However, in this case, the maximum possible value of Tr{y < r} > « can be ‘(1 = o7 and the minimum

u

possible value is 0 so the value of o must be less than or equal to m

Case II. For g, <r < a" and a predetermined «,

1/ r—a"
TI'{’YST}ZCY E 2((al—au)+1> >«

— 2(1 —a)a" + (2a — )a’ <.
In this case, the maximum possible value of Tr{y < r} > « can be 1 and the minimum possible value

(a'—av)

is ;( r—a* _ 1) so the value of o must be greater than or equal to é(d aa o + 1), which implies

2a%—a'—a'

\%

Case III. For q; < r < g, and a predetermined «,

1/r—a“ r—a"
Tr < > - — >
trsrpza 2(&“dl+aal> “

du(gu—gl)—‘rg (Q —Ql)—Qa(gu—gl)(&”—dl

- (@ —d)+ (@ =) -

a"—a"

s@—al) and maximum

In this case (i.e., a; < r < a,), minimum possible value of Tr{y < r} > « can be

possible value is = (1 + 2&;‘21)) = 2321—;%;?

and hence the proof is completed.

O

Theorem 3.6. If v = ([a,a,], [@',a"]), where @' < a; < a, < @" is a rough variable, then for a predetermined
a, 0<a<l, Tr{y >r} > « is equivalent to

1

(i) (1 —-2a)a' +2aa* >r, ifa < o' —a

(i) 2(1 — @)@’ + (2a — D)a* > r, if a > Sti =2 .
2(&“70}) 1)

(iii) a'(a" —al)+cza(3_;r; Jz(a%ale)—a )@ =8 5 o otherwise.

Proof. Using the expression of Tr{y > r} > « as given in equation (3.2), the proof is similar to the proof of
Theorem 3.4. (]

4. MATHEMATICAL MODEL

We use the following notations to design the mathematical formulation of the classical TP.
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Notations

P Origin

q Destination

S Total origin nodes

t Total destination nodes

Cpq Unit commodity transportation cost from pth node of origin to ¢th node of destination
ap Goods available at pth node of origin

by Demand at gth node of destination

Zpg  The transported amount of goods from pth node of origin to gth node of destination

The mathematical model of a classical TP is defined as follows:

Model 1

s t
minimize z = E g CpgTpq
p=1g¢=1
t

subject to prq <a, (p=12,...,9),
q=1

le)q Zbf] (q:172a"'7t)a

p=1
ZTpg > 0V pand g.

(4.3)

(4.4)

The constraint (4.2) signifies that the amount of transported goods at the destinations should be less or equal
to the availability at the origins. The constraints (4.3) represents that the amount of transported goods from
the origins should be greater or equal to the demand at the destinations. The constraint (4.4) indicates that
the amount of transported goods cannot be negative. The feasible condition for the optimal solution of Model

iy t
Lis Y0 jap >3 by

A TP with transshipment origins is referred to as MMTP [8]. We employ the following notations throughout

the discussion to formulate the mathematical formulation of MMTP.

Notations

S1 Total GO nodes

t1 Total FD nodes

S$m  Total TO nodes at (m — 1)th level, m =2,3,...,r

r Total levels for origins

11, Goods availability at pth node of GO

a,’ Goods availability at pth node of mth level TO, m =2,3,...,r
by Demand at ¢th node of FD

ai A single vehicle carrying capacity from GO nodes to FD nodes

(v—1)thlevel, v =r,r—1,...,2
Cpq1  Unit commodity transportation cost from pth node of GO to gth node of FD

. A single vehicle carrying capacity from TO nodes of (m — 1)th level, v = 2,3,...,7, to TO nodes of

Cpg1 Unit commodity transportation cost for transportation from pth node of TO of (m — 1)th level to gth

node of FD where m =2,3,...,r

(v —1)th level, v =2,3,...,r,

Cpqv  Unit commodity transportation cost for transportation from pth node of GO to gth node of TO of
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Unit commodity transportation cost for transportation from pth node of TO of (m — 1)th level to gth
node of TO of (v —1)th level, m =2,3,...,r—1;v=2,3,...,r with m <w

Total vehicles required for transportation from pth node of FD to gth node of GO,

Total vehicles for transportation from pth node of TO of (m — 1)th level to gth node of FD where
m=2,3,...,r

Total vehicles for transportation from pth node of GO to gth node of TO of (v—1)th level, v =2,3,...,r
Total vehicles for transportation from pth node of TO of (m — 1)th level to gth node of TO of (v — 1)th
leve, m=2,3,...;r—1; v=23,...,r withm <w

Objective function to minimize transportation cost from GO and all TO nodes to FD nodes

Objective function to minimize transportation cost from GO to nodes of 1st level TO,

Objective function to minimize transportation cost from GO and all TO nodes of (r — i)th level, i =
2,3,...,7r—1to (r —i+ 1)th level nodes.

To formulate the mathematical model of MMTP, we consider the following ways.

First, we take the objective function (2!) for the transportation of goods from GO to FD and TO to FD in
all levels.

We design the transportation network for the objective function z', which is shown in Figure 2, and the
routes of transportation are summarized in Table 1.

s1 t1 sz t1
2t = Z Z a1 ([epars Spat] - [Epars Epgn] ) Tpq1 + Z Z o ([coqr: i) [Cogrs Cogt] ) T
p=1qg=1 p=1q=1
Sr  t1
ST D D (TEARTEA N (A CATY D Ee
p=1g¢g=1

It is essential to satisfy the demands at the nodes of FD corresponding to the objective function 2* (cf. Fig. 2).
Therefore the following constraints must be satisfied.

S1 82 Sr
Za%x;ql + Z a%xiql +...+ Za{x;ql > ([bfpbﬂ’ [bé,b;]) (¢g=1,2,...,t1).
p=1 p=1 p=1
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TABLE 1. Routes of transportation corresponding to objective function z

1

Route of transportation

Objective function

t

GO to FD

@
fhrs
=

ai ([epars cpnls [Eif1y Cogt] ) Tpan

ot ([Gars Gl [Ears G ]) wars

S|
I
-
[~}
I
-

TO of level 1 to FD

o«
%)
o

=

3
I
—
2
Il
—

@«
5
o~

[

TO of level r — 1 to FD

o1 ([epr» i [Gars G ]) 7ha

S
Il
-
=~}
Il
=

Roy of
<= Ground
origins

<= TO Level 1

<3 TO Level r-2

<aTO Level r-1

O O  O-=

Destinations

FIGURE 3. Graphical representation of transportation for z2.

the network corresponding to the objective function 22, which is shown in Figure 3, and routes of transportation
are summarized in Table 2.
S1 Sy

2= > arllegem gl |

To construct the objective function (2?) for transportation to TO of levels r — 1 and r — 2 from GO we design

S2 S
1l =lu 1 2120 2u 2l 2u 2
Cpqr’cpqr})qur + E : § :O‘r([gpqr’gpqr]v [Cpqr’cpqr])qur

p=1g=1 p=1g=1

Sr—1 Sp

r (r—=11 (r—1)u ~(r—1)l s(r—1u r—1

+..t § : § :O‘r—l({gpqr ) Epgr » |Cpar " Cpgr Lpgr -

p:l q:l

In the transportation corresponding to the objective function z? (cf. Fig. 3), the stored items in TO nodes
of level r — 1 must be larger than the amount of goods transported from TO nodes of level » — 1 to FD nodes.
Therefore, the following constraints need to be satisfied.

t1 s1 EP) Sr—1
E r_r E 1.1 E 2 .2 E r—1_r—1 .
O[1337>7,ql S Oérxpmr + ar‘rpmr +...+ ar z (m
q=1 p=1 p=1 p=1

=1,2,...,8.).

pmr
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TABLE 2. Routes of transportation corresponding to objective function z2.

Route of transportation Objective function
57‘
GO to TO of level r — 1 ([ Cpgrs p;‘,] [Céér, E})q,«])xéw
p 1 q= 1
TO of level 1 to TO of level » — 1 Z i ar([qur, ﬁgr] [Ef,fm quT])xf,qT
p=1q=

Sr—1 Sp
TO of level 7 —2 to TO of level 7 —1 > > a:_l([ (r—1)1 c(rfl)“]7 [ et e 1>“]):UT71

qu‘ ?=pqr pqr

Again the goods stored at TO nodes of level » — 1 must be less than its storing capacity.

Sr—1

Zar pmr+zar pmr +ZO{T ! ;m%,ga (m:1,2,...,sr).

In level 1, for transporting the goods from GO to TO we construct z? (p = 2,3,...,r — 1) in the same way as
mentioned above.

In level 1, the construction of the objective function (2") for transportation from GO to TO is described in
the following way.

In Figure 4, the transportation network is shown corresponding to the objective function z". In level 1 the
objective function for the transportation from GO to TO is:

S1 52

*ZZ% pq2’ pq2} [;512’ 11>q2])x:}>q2'

p=1g¢=1

In the transportation corresponding to the objective function 2" (cf. Fig. 4), the stored items in TO nodes of
level 1 must be larger than the amount of transported goods to TO nodes of levels ¢, t =2,3,...,(r — 1) and
FD node from there. Therefore, we consider the following constraints as:

ZO‘ mq1+zar Trngr + +Zo¢ mq3<2a Tpmo (M =1,2,...,52).

Again, the stored capacity at TOs of level 1 must be less than the storing capacity.
Zoz Tpmo < ap, (m=1,2,... 55).

The complete MMTP model (see Fig. 2) is the network aggregated by using the objective functions z¢, i =
1,2,...,r together with the constraints needed to construct the objective functions 2¢, i = 1,2,...,r. We
explain the mathematical model on MMTP as follows:

Model 2

minimize z=z'4+22+... 4+ 2",

s1 t1 szt

ZZ% ql’ pql] [ 1105117 pql ql + ZZ% ql’ piqﬂ [ iél’ézzl])xqu

p=1g¢=1 p=1g¢=1
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Row of

<o Ground
origins

<= TO Level 1

O O I O <ATO Level r-1
O O e O @ Fal
Destinations

FIGURE 4. Graphical representation of transportation for z3.

Sr
+ZZO‘1 pqlbpqli iégql’é;iili)x;ql’
p=1qg=1

S1  Sr 82 Sp

E E 1lu =11 —lu § § 2u 21 2u
a q"" PqTi [cqu’ qu pq’l“+ Oé qr7 PqTi I:Cpqr’cpqr

pq(r—1)’

p=1g¢=1 p=1g=1
Sr—1 Sp
r—1 r—1 r—1 r—1 r—1 r—1
-+ZZO‘T (icéqr ! gz(iqr " ]’ icz(nzr )7Cz(>qr ) Dxmr’
p=1 g=1
S1 Sr—1
1 clu ~11 —lu 1
Qr— 1([1)(1(? 1)2 Epq(r— 1)i icpq(r—l)’Cpq(r—l)i)xptI(r—l)
p=1 g=1
S Sr—1
2u 21 2
+ @ (i Cpq(r—1)> Cpa(r— 1)] ipq(r 1> Coqtr— 1)})%(1(,,,1)
p=1 g=1
—2 Sr—1
r—1 (r—2)1 (7—2)u (r=2)  _(r—2)u r—2
-t Q. 2<i Cpq(r—1)’ Cpa(r— 1)i ipq(r 1) Cpa(r— 1>i)“7
p=1 g=1
S1 S2
r 1 11 lu =11 ~lu 1
Z = zza2(i9pq2’9pq2i’ icpq%cpq?i)qu?’
p=1q=1

subject to  the constraints regarding availability at GO and TO of all levels
ty
Za% 1+ZO‘T Tpgr + +Za Zpg2
q=1
< ([ay's05"], [d” a,"]) (p=1,2,...,51),

ty
Zo‘l qlJrZO‘T Tpgr + +ZO‘ Zpg3
p=1

)z

2
pgr
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< ([a}',a2"], [ail,‘f,“]) (p=1,2,...,59), (4.6)
my
Zalqul + Zar pqr e+ Zaiximl
qg=1
S ([@f’;”@}‘i“], [ail,‘f;“]) (p=12,...,s3), (4.7)
1
> atan < (g ap]. [a}, ;). (4.8)

the constraints regarding least demands at the FD
S1 Sr
Z N Tpqr + Z OTp -+ Z A 2pq1
p=1 p=1 p=1
1 3 lu 710 71u
> ([od' 03] 2112 ]), (4.9)

the constraints regarding storing and distributing

of goods at nodes of TO of all levels

t1 S3 S1
§ : 2 § : § : 2,2 § : 1.1
T ql + a'r mqr oot a3xmq3 S a2xpm27 (410)
— q=1 p=1
54
+ + fa
alxmql ar mqr ce a4xmq4
q=1

S1 P
< Z aéfﬂims +) 0322, (4.11)
p=1 p=1
t1 S1 S2 Sr—1
Z alxmql S Oﬂlﬂx}lﬂmr + Z O‘%x?)mr + + Z O‘; 1x;m}"
q=1 p=1 p=1 p=1
< ([al”l,al"“], [a, @), 4.12)
qu >0V p, q, vand k. (4.13)

Model 2 has a feasible solution only when ', ([a}, ay], [al, ay]) > Z ([bl b“} (b b"])

q>2q 9> 7q
In Model 2, the maximum number of decision variables is (s1 X s3 X - -+ X 8, X t1). The feasible region of the
proposed model is composed of considering the accompanying discussions.

— There is s; number of availability constraints that are present in equation (4.5) for GO nodes.

— For FD nodes, the number of demand constraints considered in equation (4.6) is ¢;.

Since there are storage capacity constraints in the TO nodes, we assume (s + s3 + ... + s,) number of
inequalities from equations (4.7) and (4.8).

Again, the conveyed measure of merchandise from the TOs does not exceed the supplied amount of merchan-
dise to the separate TOs. To do this, we present (s + s3 + ...+ s,) number of in-equations from equations

(4.9) to (4.13).
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In this manner, the detailed mathematical model comprises (s1 X sg X ---

2(s2+s3+...

4.1. Equivalent deterministic model

Due to the presence of RI in MMTP, we cannot directly solve MMTP. Thus, we convert MMTP into the

D. MARDANYA ET AL.

deterministic model by accompanying the following properties.

— lepgrscpan] S [Chors Cpin] = Cpql < Cpql < Gt < Gpip

— [chear Chaa] C [Cpozs Cpi] = € pql < Cpnp S Cpip < Cpip (v =1,2,..
~ [cprs par] S [Cpars Cpir] = Cpir < Cpir < Cpir < Cpir-

~ la},ay] C [al,ak] = al, < al <a¥ <ay

q’7q

- [ohbr] < BBy = B < by < by < B

Concerning Model 2, we develop the methodology and theoretical background by defining some sets that lead

us to solve MMTP with RI approximation.

ty
2g-
ty
2=

t1 =7l
Eq 1 alwpql < a’p

U'=zeR": EZI L QR + 20 A
t r
Zl 10‘?93mq1+25 1 &

<am
2

Tpak

1 1
1 aliqul + Z -1 & T qr
2
Ep 1 O‘lqul + Zp 1050
3
T

3 Sr
10‘1~qu1+z e :Eqr

Zp 1 O&l’pql + 252_1 Oé%

t
Z : 1 T < ZSl 1041 "

Lpmr

mqr

3.3
‘qur

>0V p, q, vand k.

(k =

2
qul—i—...

+ ...

< Zp 1 anpmS + Zq 1 a3‘rpm3

82 2
+ Z =1 O[T‘Tpmr

1,2,...,7).
,r—1).

s2 1.1 a1l

ct Dl Qg < G,
=2l

-+ Zp L3z s < ar

Sq 3 =3l
-+ Zq:1 a4mpq4 <a,

Sp T 11l
+ Z =1 alqul 2 b
-+ Zq 1 O5311"771113 < Zp 1 a2xpm2

my 3.3
+ Zq:l a4‘rmq4

Sr—1 r—1 rfl
+Zp 1 % pmr

X 8y X t1) number of factors and
+ 8) + s1 + t1] limitations along with the non-negative conditions.
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¢
pDp QT +Zq 10T

1

r

t1 2
Zp 1 alqul + Zp 1 ar

t1 rl
Zq 1 alqul < a’

S1 1 S2 2,.2
Z =1 O[l'rpql—i_z: =1 alqu1+"
+...
+ ...

Z? L OF T g1 D0 ar

T

qT‘

q

2
mqr

t1 3 Sr 3,3
Z =1 alxmql + Z =1 % mqr

< Zp 1 a3xpm3 + Zp 1 anpmS

t1
Zq 1 alxmql < Ep 1 arxpmr + Zp 1 arxpmr

< aml

S;)k>0Vp, q, v and k.

t
Zl 1ozla:pq1+2 LTy,

1
T

t1 Sr 2
2 | iz, i D D =ty
3

T

t1 ru
Zq 1 alqul < Q

Zp*l Oél‘/I"pql + Zp 1 alqul + ..

1
pqr
2
pqr
t1 3
Z =1 alqul + Z =1 @ qur

t1
Zq 1 alxmql + Zq 1 arxnlqr

t1
Zq 1 CYlmmql + Zq 1 arxmqr

1
< Zp 1 a3xpm3 + Zp 1 a3xpm3

t1 s1 S2
Zq 1 CYl‘ccrnql < Z =1 CM pm'r + Z =1 a’rmpmr

< amu

Z(f;)k>0Vp, q, v and k.

+...

+...
t

qu 1a13:pq1+zq e mpq,—k...

11
+ Zq 1 a2qu2 < ap
21
+ Zp 1 anpqS < Qp

3
+ Zq 1 0‘4qu4 < g,

+20,0

11
=1 O‘prql z bq

S4 3,3
+ Zq:l a4xmq4

s 1.1 1
+ . .—i—zqil Q300 < a"
+...
+.

S4 3,3 3u
-t Zq:l YTpaa < Gy

53 2,.2 2u
+ Zp:l a3mpq3 < Qp

lu
-+ Zp Loqxy . > b,

83 2 S1
+ Zq:l anmQB S Zp:l o

_|_ Z;r—ll a

1,.1
prm2

rlrl
pmr

-+ Zq 1 a3xmq3 < Zp L OB

-+ Zq 1 a4xmq4

s 227 711 al

rlrl
Lpmr
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@
—_
S

t1 1,.1 =
Zq 1 Cyl‘rpql + Zq 1 OZT.’qu +...+ Zq 1 0[2qu2 < D
t1 Sy 2 2 83 =2u
Z lalqu1+2 -1 0T pqr —1_"'_|_Z:—1053qu3S )
3
T

t1 =3u
Zq 1a1qu1+2q 1C¥.’Eq ++Zq 1a4qu4<ap

Q

Ztl 1 alqul < a

Zp 1 Clepql + Zp 1 alqul +.ot Zp 1 alqul blu

Uu =z €eR": Zzt; 1 alxmql + Zq 1 Ot wmqr -+ Zq 1 a?)xmq?) < Zp 1 a2mpm2
Ztl 1 ail))‘rmql + ZST 1 a?’x?nqr +.ot 224:1 aixgnqél

2
< Zp 1 adxpm?: + Zp 1 adxpmS

t1 Sr—1 _r—1 rfl
Zq 1O‘1xmq1 <Zp 1ar pmr+2p 104 m1“+ +Zp 1 Qp pmr

;q)k >0V p, q, vand k.

To proof the equivalence between the deterministic model and the MMTP i.e., Model 2, we derive the following
proposition.

Proposition 4.1. The relation between the sets U', U', UY, and U* is U' < U' < U" < U™,
Proof. From the properties of rough interval we have,
[al,al] C [al,al] = a <al <dl* <al, i=1,2,...,rn
1 3lu 1l 71w 11l 11 1lu 71lu
[bp’bp } < [bp’bp } = by <b, <4 < b,

[aml amu] C [dml dmu} — d:‘nl < Q:nnl < g;nu < d;nu'

=r B r o Yr

From the above relations, we have for any « € U', z € U!, z € U* and z € U". a

Next, we formulate two problems from Model 2 using interval costs, and these are referred to as TP-1 and
TP-2. Furthermore, TP-1 and TP-2 are reduced to two crisp valued TPs, referred to as TP-1.1 and TP-1.2 from
TP-1 and TP-2.1 and TP-2.2 from TP-2.

TP-1

minimize z = 2"+ 22 + ... 42",

s1  t1 S22ty

= ZZ pql’ pql pq1+zzal pql’ pql] pq1+

p=1qg=1 p=1gqg=1

Sr
+ Z Z al pql’ pql] Tpg1s

p=1g¢=1



Replacing cpql by ¢t

Cpgr (v

by a;"

TP-1.1
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51 Sr S22 Sr
=2 > e 2.2 of[Gum Gurl;
= pqrbpqr pqr pqrvqur par
p=1q=1 p=1q=1
Sr—1 Sp
“Dl r=1)u
-t Z ZO‘T 1[ Cpar 2 Cpar | Tpgrs
p=1 g=1
S1 S92
rl_ 1 du .l
£ = Z Z @3 [ g0 Coie] Tpq2:
p=1g=1
t1
: 1 U lu
subject to E oy pql—f— E alz pqr +... 4+ E o pq2§ [gp,gp ]7
q=1

t1
2 2l 2u
E ajw 1—|—E ajad,, + —|—§ aza.s < [a,a],
p=1
3l 3u
E:Oélm q1+§ :ar Lpgr ...+§:a4qu(4 < [ap’ ap ]7

rl _ru
Za Tpg1 < [Qp’gp ]v
S92 Sy
2.2 T 1 3lu
Zalqul + Z X Tpgr .- F Zalqul > [bq ’bq }7
p=1 p=1

Sr—1

E § E E r—1 = 1
Clemql < arxpmr + ar pmr -+ Q. pmr

< [QI“Z, am],

the constraints (4.10)—(4.13).

e (k_12 ) pq1 by ety (k= 1,2,...,7), i, by & pqr (v=1,2,. 1"—1)
r—1), cho bycqu, chiy by Chta, abl by akl (k=1,2,...,r), k" by af* (k_12

L a™ by a™*, we consider TP-1 as TP-2.

minimize Z=2ZY+2%"+.. . +2",

S1 t1 s2  t
U _ 110 1 220 2
Z = g E Q1Cp1 Tpg1 + E E QACh1Tpgr + -+

p=1g=1 p=1g=1

sp  t1

rrl r

Z Z @1€pq1Tpq1>

p=1g=1

S1 t1 82 ty

111 220 .2
E E Q9Cpea T, q2+g E Q5CH0Tpgo T oo+

p=1qg=1 p=1q=1
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(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

qu by

.7, at



D. MARDANYA ET AL.

’V
(r—1)1 2"
Z Z a20pq2 Tpg2>

p=1g¢=1

S1 82

1 .11 1
=D g,

p=1qg=1
Sr S2
; !
subject to Z o pql + Z a%le,(ﬂ +...+ Z aix;qr < a,, (4.20)
q=1 q=1
Sr—1
!
Za Tpgr + Z ozla:pql +...+ Z ATy > by, (4.21)
p=1 p=1
31 Sr
Z a%xiql + Z agaﬁz,ﬂ +...+ Z o’ 1mpq(r ) < a (4.22)
g=1 g=1 g=1
t1
!
Z N Tpq + Z 03Tpg + -+ Z 07 _aTpq(r—2) < @, (4.23)
q=1 qg=1 q=1
S afuly <al (p=1,2,...,5,), (4.24)
=1

the constraints (4.10)—(4.13).

Replacing cpq1 by cpq1 (k=1,2,...,1),c" pqr by =1,2,...,7r—1),c! qu by cpqg,il;l byg’;“ (k=1,2,...,7),

a™ by a™*, we choose TP- 1 1 as TP 1.2.

Cpqr (V

Slmllarly, substituting cpq1 by el k=1,2,...,r), it by eil, (v=1,2,...,r 1), clly by c}ly, @ J“l by ak
(k=1,2,...,7), a™ by a™, we take TP-1.1 as TP 2.1, and replacing cpq1 by cpq1 (k: 1,2,...,1), ¢ pqr by ¢pyy
(v=1,2,...,r=1), ¢}y by Cpy, abl by al* (k=1,2,...,7), a/ by a™, we denote TP-2.1 as TP-2.2.

5. SOLUTION PROCEDURE

Model 2 (MMTP) contains the transportation parameters in the form of rough intervals. Thus, an algorithm
is adopted for producing four crisp MMTP models as follows:

Algorithm
The procedure to extract the solution of Model 2 is prescribed in the following steps.

Step 1. From Model 2, we develop two TPs involving interval cost, given by TP-1 and TP-2 in Section 4.

Step 2. We find the surely optimal range [z°!, 2°“] by solving TP-1 by breaking it into two classical TPs that
are given by TP-1.1 and TP-1.2 in Section 4.

Step 3. In a similar way as described in Step 2, we extract the possible optimal range [Zkl
TP-2.

Step 4. We have three possible outcomes according to the set of decision variables as follows.
Step 4.1. The main problem, i.e., transportation problem rough interval cost (TPRIC), has a rough range

when TP-1 and TP-2 have their optimal ranges. The rough range of TPRIC is ([z%, 2%], [2*!, 2F¥]).

Step 4.2. TPRIC has an unbounded range when TP-1 and TP-2 have unbounded range.
Step 4.3. TPRIC has no feasible solution once TP-1 and TP-2 have no feasible solution.
The corresponding flowchart of the algorithm is presented in Figure 5.

ku] by solving



SOLVING THE MMTP VIA THE RI APPROACH

I MMTP IN ROUGH INTERVAL I

}

I DECOMPOSE INTO TWO TPS WITH I

INTERVAL COEFFICIENT

DECOMPO!

SE

TP-2.1 I

ITP-2.2 I

I LINGO OPTIMIZER I

I OPTIMAL SOLUTION l

FI1GURE 5. Flowchart for solving MMTP under RI.

5.1. Rough chance constrained programming

3173

Before utilizing rough chance constrained programming (RCCP) in the proposed model, we first construct
the following objective functions and use these in the RCCP model.

Consider Z1 =211+ 221+ ...+ Zrl,

where

Zy = z12 + 222 + ... + 22,
Z3 =213+ 223 + ... + 2r3,
Zy =214 + 2o+ ...+ 24

s1 1 s2 h

_ 1 11 1 2 21 2
11 = ZZ 1 Cpq1Tpq1 T Z Zalgpqlxml -

p=1g=1 p=1g=1

s1  t1 szt
_ 110 1 292l .2
721 = Z Z X3Cpgalpg2 T Z Z A3Cpq2%pg2 T -+

p=1g=1 p=1g=1
S1 S92
_ 1.1 1
Arl = Z ZO‘T CpqrLpgrs
p=1q=1
51 t1 S2 t1

212:5 g alc qlfqu1+g g ozlc qlx qlJr...

p=1q=1 p=1qg=1

Sr
+ ZZW 1% pq1

plql

7
(r— 1)l
+ Z Z a26pq2 pq27

p=1g=1

Sr
+ E E alc qlqula

p=1g=1
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S

ty s2
_ 111 1 221
722 = Z Z 3Cpg2Tpg2 T Z Z Q3Cpga
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+ Z Z bl s

22t
p=1g¢g=1 p=1g=1 p=1¢g=1
S1  So
_ 151 1
Ar2 = Z Zar CparTpgr:
p=1gqg=1
s1 sz 1 S
_ 1 1u 4 2 2u 4 4 roru
213 = alcpqlqul alcpqlmpql . alcpqlqul,
p=1g=1 p=1q=1 plql
s1 t1 s2 1 S
_ 1 1u 1 2 2u 2 r(rl)ur
723 = Z Z X3CpgaTpge + Z Z A3Cpq2Tpg2 T -+ F Z Z @2Lpg2  Tpq2s
p=1g=1 p=1g=1 p=1g=1
S1 S2
1 1u
#r3 = Z Z ®rLpqr pqr7
p=1g¢=1
S1 t1 s2  t Sr
_ 1-1u 22u _
Fla = Z Z O‘1Cpqlqul + Z Z alcpqlqul tot Z Z al pql’ pql] Tpql>
p=1g=1 p=1g=1 p1q1
51 t1 s2 11 Sr
_ 1-1u .1 2-2u 2 7(7‘ 1)u r
724 = Z Z ¥3CpgaTpge T Z Z A2Cpq2Tpg2 T -+ F Z Z W5Cpaa " Tpg2s
p=1gq=1 p=1g¢=1 p=1gq=1
S1 S2

_ 1 1u
Fra = ZZ% CparTpqr-

p=1¢=1

We need to minimize the least objective function z, because the main problem is a minimization problem and
all of its parameters are RIs that satisfy Tr{z > z} > «, and « € (0,1] is the degree of trust or confidence
level, which implies maximizing the a-optimistic value zj,¢(o) of 2, which explicitly means that the optimum
objective value will be less than Z with the trust level ae. We also consider the a-pessimistic value of the source
and conveyance constraints with confidence level a and a-optimistic value of demand constraints. Thus, RCCP

is:

min(min z) =

subject to

S1
1
2o
p=1
t1 Sy
2,2 2.2
g Ty + E QT pgo + - -
q=1 q=1

Zl+Zz+Z3+Z4,

Za 1—|—Za Tpg2 +

< aplnf( )

t1

3
D afe
q=1

q1—|—2a1x gt

q1+2a2w @t

S+ Zar Tl < aping(a), (5.1)
+ 3" afa > bysup(e), (5.2)
p=1
+ Z Q@ pq r—1)
(5.3)

sS4
3 3
+ Z Qr—2Tpq(r—2)

q=1
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< a3 (), (5.4)
t1

Z aIx;ql < a;inf(a)? (55)
q=1

the constraints (4.10)—(4.13).
Here, apint (), bysup(@0), @ i¢(@), a2,(), and af (@) are to be evaluated using the definitions of a-optimistic
and a-pessimistic, for all p, g. Using the definition of the a-optimistic value, we have the objective function as
well as the RCCP model equivalent to the following model.

Model 3
minimize 2’ = Z; + Zo + Z3 + Zu,
subject to the constraints (5.1)—(5.5)
the constraints (4.10)—(4.13).
where
(1 —2a)Z4 + 274, if a < %;
2 ={2(1—a)Zs+ (2a — 1)Z4, if @ > Zgrfa2, (5.6)

Z3(Zs—21)+Z1(Zs—Z1)—20(Z3s—Z1)(Za—Z2)
)

Zs— 7)1 (Za=22) otherwise.

We now formulate another RCCP for the proposed model to minimize the maximum objective function Z,
satisfying Tr{z < Z} > «a, where a € (0,1] is the specified trust or confidence level, which implies that we
maximize the a-optimistic value z4,;,(q) of 2z, which directly indicates that the optimum objective value will be
less than Z with the trust level «. In addition, we find the a-pessimistic value of the source and conveyance
constraints with confidence level o and a-optimistic value of demand constraints. Thus, RCCP becomes:

min(maxz) = 2 + 22 + ... 4 2",
subject to  the constraints (5.1)—(5.5)
the constraints (4.10)—(4.13).

Using the definition of a-pessimistic to the objective function, we have an equivalent form of the above RCCP
model as follows.

Model 4
minimize 2" = Zy + Zy + Z3 + Z4,
subject to the constraints (5.1)—(5.5)
the constraints (4.10)—(4.13).
where
(1 —2a)Z; + 202y, if a < Q(ZZ;_ZZS)
2" =201 —a)Zy + (20— 1) Zy, if a > 2572722, (5.7)

Zy(Z3—Z1)+Z3(Z3—Z1)—2a(Z3—Z1)(Za—Z>)
7

(Z3—21)+(Zs—22) otherwise.
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FIGURE 6. Network corresponding to numerical example.

6. NUMERICAL EXAMPLE

In this section, we introduce a numerical example for the proposed model to clarify the utility of MMTP.
Consider two factories of daily used goods for a company are located in cities S; and S3. The company has three
warehouses (571, S1.2, and S1.1.1) in which goods are stored and then sold into markets Dy and D (see Fig. 6).
It is considered that any number of goods can be transported from S; and Sy to Si.1 and Si.2, respectively;
S1.1 and S19 to S11.1; S1.1.1 to D1 and Ds. In any other routes, items are transported in multiple forms due
to vehicle restrictions. The limit of the vehicle to transport products is 500 items from S; and Sy to D; and
D5. Thus, there is an issue to deliver the products when the requests at the destinations D; and Dy are not a
multiple of 500. Once more, the vehicles are carrying the products from TOs S;; and S to destinations Dy
and D, with the limit of 50 items. With this consideration, again there is an issue to transfer products when
the measures of goods are not in a multiple of 50. In addition to that, there is a destination S7 1.1 that takes the
products from S7, Sz, S1.1, and S7 5 and supplies these to the destinations Dy and Ds. The transportation from
the inside S7.1.1 to the destinations Dy and Dy has no such vehicle limit; i.e., any measure of products can be
transported between the nodes. The customary approach of the TP cannot provide any such numerical model
to tackle the proposed problem. To take care of the problem, we design a numerical model known as MMTP,
based on the above issues.

The accompanying documentations and presumptions are considered to define the numerical model of MMTP.

— The choice factors for transporting the items are taken into account as follows:
Moving from S; and Sy to Dy and Dy is as xj;;, by utilizing the shipping path with vehicle limit aj = 500.
Moving from S7; and S12 to D; and D, is taken as m%ﬂ? by choosing the rail-route with vehicle limit
a? = 50. Moving from S7 11 to D; and D, is assumed as x}jg, by using the street path with no vehicle
limitation; i.e., af = 1.
Moving from S; and S to S7.1.1 is taken as x?jl with vehicle limitation o = 250.
Moving from S;; and Sy to S1.11 is assumed as :1:22]-2 with no vehicle confinement.
Moving from S; and S; to S7.1 and S; .o is considered as x%l and there is not any vehicle limitation.

— The possibility of the numerical illustration comprises the accompanying number of constraints.
The supply limits at the factories S; and S are presented by two imperatives. The demands at the last
destinations D and D are considered by two limitations. Keeping the limits at the warehouses S7.1, S1.2,
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TABLE 3. Transportation cost from S; and Ss to Dy and Dy (in $).

D1 D2

S1 ([14,17],[13,18])  ([12,16],[10,17])
Sa ([147 16]7 [137 18]) ([177 21]7 [167 22})

TABLE 4. Transportation cost from S7 1 and Sy.2 to D1 and Ds (in $).

D1 D2

Sia ([7,10],[6,11])  ([9,12],[8,14])
Si2  ([8,11],16,12])  ([6,9], [4,11])

TABLE 5. Transportation cost from S7.1.1 to Dy and Ds (in §).

D1 D2
S11.a ([578]7[379]) ([4»8}7[3791)

TABLE 6. Transportation cost from S; and S3 to S71.1 (in $).

St1.1.1

Sy ([10,13], ]9, 14])
S, ([11,13],[10,16))

TABLE 7. Transportation cost from S; 1 and Sy.2 to S11.1 (in §).

Sl.l.l

S1 o ([7,10],[6,12])
Sa ([8,10],[7,14])

TABLE 8. Transportation cost from S; and Sy to S1.1 and Sy (in $).

Sia S1.2
S1 ([47 7}7[378]) ([37 5]7[278})
Sa  (15,7],[8,9]) ([4,6],[3,9])

and Sy.1.1, give three limitations. The amounts of products circulating from the warehouses S7.1, S1.2, and

S1.1.1 do not surpass the measure of putting away things that produce three requirements. Thus, the quantity
of limitations in MMTP of the numerical problem is 10.

The transportation costs in the various routes are presented in Tables 3-8.

The accessibility of products at each factory S; and S, is ([1500, 1700], [1400, 1800]) units in the RI shape. The
most extreme limits of putting away at the warehouses S; 1, S .2, and Sy.1.1 are ([1100, 1400], [1000, 1500]) units,
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([1200, 1500], [1100, 1600]) units, and ([900, 1200], [800, 1300]) units separately in the RI shape. The mathematical
model is planned for relating to the accessible information portrayed in Tables 3-8.

Model 5
minimize z
2 =21+ 22+ z3,

2 = 500(([14,17], [13,18])21y; + ([12,16], [10,17))z10; + ([14, 16], [13, 18]) 31,
+([17,21], [16, 22])235,) + 50(([7, 10, [6, 11])2%, + ([9,12], 8, 14y,
+([8,11],[6, 12])a3,;, + ([6,9], [4, 11])x351) + ([5, 8], [3,9])x1 1,
+([4,8], [3,9]) 21,

Z2 = ([4 7] [ ])x112 + ([3 5]7 [27 8])55%22 + ([57 7], [87 9])55%12 + ([4,6], [37 9]),@%22,

z5 = 250(([10, 13], [9, 14]) 21,5 + ([11,13], [10, 16])z315) + ([7,10], [6,12])z 75

+([8,10], [7, 14])a3, 5,
500(z1yy + T191) + 25025 + x112 + x122 ([1500, 1700], [1400, 1800]),
500 (2311 + T391) + 2502315 + 515 + x222 ([1500, 1700], [1400, 1800]),
500(z1qy + 2311) +50(23 )y +23,) + xm ([1355, 1655], [1255, 1755]),
50()(ac}21 + 3391) + 50(2fy + a391) + 235, > ([1375,1675], [1275, 1775])
xm + :c212 ([1100, 1400], [1000, 1500]),
Tloy + They < ([1200, 1500] [1100 1600]),
250(93113 + T3y3) + 2313 + 235 < ([900 1200], [800, 1300]),
T11p + Ta1p > 50(2yy + 2%5y) + 25,
T1op + Ty9p > 50(2yy + 2391) + T35,
250 (2115 + T313) + @15 + 55 > 2y + 2P0,

pqr>0 Vo, q k.

)

Model 5 reduces to four deterministic TPs namely: TP-1.1, TP-1.2, TP-2.1, and TP-2.2. We then solve TPs
by using our proposed algorithm. The minimum values of objective functions for TP-1.1, TP-1.2, TP-2.1, and
TP-2.2 are $30 185, $51 280, $21 980, and $63 100, respectively. The optimal solutions of TP-1.1, TP-1.2, TP-2.1,
and TP-2.2 are presented in Table 9. In Table 10, the total amounts of transported goods reaching the final
destinations D; and Dy are calculated. Similarly, in Tables 11 and 12, the total amounts of goods reached to
the TOs are shown. Table 13 lists the amount of transported goods stored at the TOs and final destinations.
We now solve Model 5 by two different techniques such as RCCP and using the expected value operator.
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TABLE 9. Optimal solutions by the proposed method.

Problem  Optimal value  Optimal solution

TP-1.1 30185 Tlor = 1, 23, =20, 2311 =7, 230, = 17, 231, = 5,
33%21 = 25, $%13 =30, 95}22 = 1000, m%lZ = 1030, $%22 = 200,
and other variables are zero.

TP-1.2 51 280 33%11 = 3, .1'%11 = 3, LE%Ql = 3, 33%21 = 30, x?ll = 5,
iy = 25, 23 = 30, x11p = 200, x5y = 1500, 2315 = 130,
and other variables are zero.

TP-2.1 21980 1oy =1, 2311 = 18, 23,; = 7, T391 = 15, 2311 = b,
mle = 25, =7C§13 = 30, 50%12 =900, 37%12 =30, 96%22 = 1100,
and other variables are zero.

TP-2.2 63100 $%21 =3, 30511 =3, 9?%11 =5, 13%21 =5, w?n =5,

33?21 = 25, 1%13 =30, 33{12 = 255, 37%22 = 45, 37%12 =25,
x35 = 205, and other variables are zero.

TABLE 10. The amounts of transported goods to final destinations Dy and Ds.

TP Variable 33%11 I%Ql 33%11 55%21 33%11 I%m x%u 95%21 $?11 33?21
TP-1.1 (2*™F1)  Value 0 500 0 0 1000 0 350 850 5 25
TP-1.2 (277?)  Value 0 0 1500 0 150 150 0 1500 5 25
TP-2.1 (2™73)  Value 0 500 O 0 900 0 350 750 5 25
TP-2.2 (zTF%)  Value 0 1500 1500 O 250 0 0 250 5 25

TABLE 11. The amounts of transported goods to transhipment origins S7.1 and S7 ».

TP Variable whg 2?%22 fE%u $522
TP-1.1 (™) Value 0 1000 1030 200
TP-1.2 (2™72)  Value 200 1500 130 O
TP-2.1 (z™73)  Value 900 0 30 1100
TP-2.2 (z™7%)  Value 255 45 25 205

TABLE 12. The amounts of transported goods to transhipment origin S7.1.1.

TP Variable x%lg 17%13 "L'%lg m%lg
TP-1.1 (™)  Value 0 0 30 0
TP-1.2 (2™72)  Value 0 0 30 0
TP-2.1 (2™73)  Value 0 0 30 0
TP-2.2 (™)  Value 0 0 30 0
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TABLE 13. The amounts of transported goods stored at all TOs and FDs.

TP Node Si11  Si2  Siia D D>

TP-1.1 (2™7')  Value 1030 1200 30 1355 1375
TP-1.2 (2™72)  Value 330 1500 30 1655 1675
TP-2.1 (2™73)  Value 930 1100 30 1255 1275
TP-2.2 (z™F%)  Value 280 250 30 1755 1775

TABLE 14. Optimal solutions by RCCP.

Problem  Optimal value Optimal solution

min Z/ 17071.20 xhl = 2, 1’%11 = 6, 33%21 = 23, .’K%Ql = 3, 33%22 = 2157
x31o = 1490, 355 = 15, and other variables are zero.

min 2" 52709 Tl =2, T111 =5, Ti11 = 5, 111 = b, Taay = 2,

aiy =15, a¥y = 35, zths = 50, x11p = 28, w1z = 100,
%312 = 1422, and other variables are zero.

TABLE 15. Optimal solutions by using the expected value operator.

Value of . Optimal value  Optimal solution

0.5 33385 xloy =1, a3 = 25, 2311 = 5, 1351 = 20, 23, =5,
391 = 25, 2313 = 30, 2112 = 35, 1oy = 1065, x5, = 1215,
Zs9s = 215, and other variables are zero.

1 46 500 11 =3, Togr = 3, Tagy = 27, Tey1 = b, Tigy = 25,
x213 = 30, x115 = 180, z15y = 1350,
and other variables are zero.

1.5 26180 ZTior =1, T34 = 23, Ta11 = 7, Ta91 = 20, 311 = 5,
391 = 25, 2313 = 30, 2115 = 1100, x5 = 80, 395 = 1350,
and other variables are zero.

2 53370 Tior =3, Toyg = 3, 311 = b, X391 = 25, T313 = 30, 2112 = 30,

and other variables are zero.

Solution by RCCP. We reduce Model 5 into the form of Models 3 and 4, and the solutions after solving
Models 3 and 4 are presented in Table 14.

On account of RCCP, we solve the problem using similar data by developing two RCCP models with a
trust level @ = 0.99. Utilizing the a-optimistic and a-pessimistic definitions, we determine the numerical
calculations associated with the source, demand, and conveyance capacities, individually and subsequently.
Thus, we derive two RCCP results given in Table 14. Here, observing the outcome in Table 14, we conclude
that the objective value lies in the interval [17071.20,52709] for a trust level of o = 0.99; additionally for
0.93 < a < 1, Zep(a) < Zinf(a)- We also observe that through the outcome, 2z’ < 2” justifies the truth val-
ues of the outcome. In addition, we have the optimum expected objective value as 41636.25 derived from
E(least transportation cost) = %(ZTP1 + 2TP2 4 »TP3 1 »TP4) "which is inside the interval. It definitely validates
the result.

Solution by using expected value operator. We solve the proposed model using the expected value operator
by taking four different values of 7. The solution by using the expected value operator is shown in Table 15.
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TABLE 16. Optimal solutions by the proposed method.

Problem Optimal value Optimal solution

TP-1.1 35470 i1 = 0.25, 23y = 2.75, 2317 = 2.46, 239, =0
TP-1.2 53280 zi =0, z1o; = 3.35, x31; =3.31, 2201 =0
TP-2.1 29065 111 = 0.25, 2191 = 2.55, 2317 = 2.26, T35 =0
TP-2.2 61765 z111 = 0.05, 2197 = 3.55, €317 = 3.46, T35, =0

TABLE 17. The quantities of goods transported to final destinations D; and Ds.

TP Variable mill 1’%21 x%ll 1’%21
TP-1.1 (™) Value 125 1375 1230 O
TP-1.2 (2*F2)  Value 0 1675 1655 0
TP-2.1 (2™7%)  Value 125 1275 1130 O
TP-2.2 (2™7*)  Value 25 1775 1730 0O

Special case of the numerical example

To establish the efficiency of MMTP, let us remove the TOs from the transportation system. Then the problem
presented in the numerical example becomes a simple TP with origins S, So and destinations D, Dy. The
mathematical model is formulated as follows:

Model 6

We solve Model 6 using proposed method and the solution is listed in Tables 16 and 17 shows the quantities
of goods that transported to final destinations Dy and Ds.

minimize 2
z1 = 500(([14, 17],
500(x111 +x121)

( Datyy + ([12,16], [10,17))z 15, + ([14,16], [13,18])xy;, + ([17,21], [16, 22))23: ),

(21 [1500, 1700], [1400, 1800]),
500 (231 + 2391) < ([1500, 1700], [1400, 1800]

(z111 + 2311) > ([1355,1655], [1255, 1755]
500(30121 + T391) > ([1375,1675], [1275, 1775]),
qu >0,Vp, q r k.

9

3,18])
<( )
<( );
> ( )
> ( )

On account of RCCP, we solve the problem using similar data by developing two RCCP models with a trust
level a = 0.99. Utilizing the a-optimistic and a-pessimistic definitions, we determine the numerical calculations
associated with the source, demand, and conveyance capacities, individually and subsequently. Thus, we derive
two RCCP results as given in Table 18. Here, observing the outcome in Table 18, we conclude that the objective
value lies in the interval [13284.70,47075.64] for a trust level of a = 0.99; additionally for 0.93 < a < 1,
Zsup(a) < Zinf(a)- We also observe that in our outcome, 2z’ < 2" justifies the truth values of the outcome. In
addition, we have the optimum expected objective value as $44 895 derived from E(least transportation cost) =
1(2TPL 4 2 TP2 4 ;TPS 4 2TP4) which is inside the interval. It definitely validates the result.

In real situations, if there is any empty space in conveyance then the purchaser needs to pay transportation
cost of a full trip. In this situation, the transportation cost to be paid and the number of conveyance can be
obtained by Model 6 (see Tab. 19).
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TABLE 18. Optimal solutions by RCCP.

Problem  Optimal value Optimal solution

min 2’ 13284.70 iy = 1.53, 23y = 1.57, 231, =0, 2351 =0
min 2z’ 47075.64 xiy = 1.834, 215 = 2.55, x3,; = 0.676, 235, =0

TABLE 19. Optimal cost and number of conveyance in optimal routes by RCCP.

Problem  Optimal value Optimal solution

. / 1 1 1 1

min z 17180 T111 = 2, T121 — 27 To11 = O, To21 — 0
. 1 1 1 1

min Z” 55930 111 — 2, T121 = 3, 211 — 1, Too1 = 0

Based on the obtained solutions, we conclude that, in the absence of TOs the range of transportation cost
[17 180,55 930] using simple TP is larger than the range of transportation cost [17071.20,52 709] obtained by
MMTP. Consequently, we establish that the absence of TOs increases the total transportation cost.

7. RESULTS AND DISCUSSION

We now compare the solution of Model 5, obtained by the proposed method, with the solutions obtained by
two different techniques, RCCP and using the expected value operator.

Effectiveness of MMTP. To test the effectiveness of the proposed mathematical model of MMTP, we describe
the diverse possibilities associated with the numerical example as follows.

— Suppose that the routes from the supply points, S; and S to destination points D; and Dy are by sea.
Thus, delivering the goods is done by a ship. Clearly, a sufficient amount of goods is transported by the
ship, and the amount is 500 units. In that situation, if there are no other nodes available like S; 1, Si.2,
and S7.1.1, at that point the defined TP is classical TP. In this case, we see that there exists a feasible
solution to the proposed problem that does not minimize the transportation cost as in each destination the
least requirements are ([1355,1655], [1255,1755]) units and ([1375,1675],[1275,1775]) units of goods that
are not necessarily a multiple of 500 in the optimal solution. Furthermore, if the purchaser would like to
purchased amount of goods which is not a multiple to 500, there will be empty place in conveyance but he
should have to pay for the fully loaded conveyance cost. Due to this reason, Dy and Dy will have to pay
transportation cost of a lesser amount of goods by giving transportation cost a larger amount of goods of
fully loaded vehicles. Thus, transportation cost increases as shown in “Special case of the numerical
example”. The traditional TP is hence not sufficient to provide a clear conclusion without considering the
TOs as discussed this study.

— We again assume that there is a connection through the railway between S;; and Si2 to D; and Ds.
At that point, the capacity for transports through the railway is high for which we consider that a single
transport needs a 50 units. In that circumstance, the problem is solved without considering the TO 5711
(i.e., utilizing the value of the variables connecting the node S71.1 is “0”.), and the total transportation
cost for TP-1.1, TP-1.2, TP-2.1, and TP-2.2 are separately $30800, $43400, $24300, and $50500. We
note that the transportation cost obtained by the proposed method for TP-1.1 and TP-2.1 is less than
the transportation cost in the case when we have not chosen the TO Sy 1.1. The transportation costs for
TP-1.2 and TP-2.2 obtained by the proposed method are more when we have not taken the TO S;11. In
the case when the node S 1.1 is not used, then the amount of transported goods must be a multiple of 50 at
the final destinations D; and Ds. Therefore, the amount of transported goods is larger than the minimum
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requirement at the final destinations. Due to this reason, the transportation cost increases when the node
S1.1.1 is not considered in the model. Choosing the TO, S7.1.1 decreases the transportation cost, which is
what we discuss herein the study.

— In a similar way, if we formulate the mathematical model without considering the transshipment origins S 1
and S1.1.1 or S1.2 and S7.1.1, then the transportation cost will vary depending on the lower and upper values
of the rough intervals, and the supply will be more or less.

According to the aforementioned discussions, we analyze that the introduction of a multi-modal system in
TP is very much essential to reduce the transportation cost for delivering the goods. However in the classical
TP, this is not so.

The above discussion also allows us to introduce the importance of RI and its usefulness in TP. The utility
of rough programming is mentioned as follows.

Utility of rough programming. In this paper we solve MMTP by considering a numerical example using
different techniques. We make a comparison with the traditional outcome and optimal solution presented by
the proposed approach. In most of the solution procedures of an uncertain TP, the obtained solutions are
defined as crisp values. Here, we present a rough solution for MMTP with RIs. The solutions obtained by the
proposed method for TP-1.1, TP-1.2, TP-2.1, and TP-2.2 are $30 185, $51 280, $21 980 and $63 100, respectively.
Therefore, the rough solution space obtained by the proposed method is ([30 185,51 280], [21 980,63 100]), and
the solution space obtained by RCCP is ([17071.20, 52 709]). The solutions obtained by using the expected value
operator based on different values of n are $33 385, $46 500, $26 180, and $53 370.

By using RI, we make the solution space of the problem more flexible, but here we observe that the solution
space obtained by RCCP does not contain all expected solutions. However, the solution space obtained by
classical TP contains all the expected solutions. Thus, observing the results of the three methods, we derive a
more flexible solution space when we use the proposed method. Government budgets are generally made yearly.
Budget management requires the prediction of government income from several sources for the upcoming year.
In this regard, for most cases the government income is considered by an interval number during the budget.
Thus, the budget is made under uncertainty. Furthermore, the amounts assigned for different purposes also
become uncertain numbers. In this situation if the uncertain parameters are considered as rough data, then
the prediction of income and expenditure in several purposes must be included in a surely occurrence region of
a rough approximated feasible region. In this context, the approach discussed inthis paper is more fruitful in
a prediction-based decision making process. This study is also useful for decision making in several corporate
sectors under uncertainty. Furthermore, existing studies of TP including interval parameters may be solved by
RCCP to produce better optimal solutions.

8. CONCLUSION

It is difficult to formulate a mathematical model and to find the least-cost route of transportation when
multiple modes are involved in a TP. Considering multiple modes of transportation, this paper has established
a new model MMTP, and its solution suggests the selection of a mode of transportation as well as an optimal
solution to the problem. In most real-life cases, the data are not crisp. To accommodate these situations, here
we have considered the rough intervals in transportation parameters. Furthermore, we present an MMTP in
which all parameters are taken as RIs. A new algorithm has been presented to solve MMTP with them. We have
demonstrated a solution procedure to solve MMTP using RCCP. The usefulness of the multi-modal criterion
has been illustrated along with a brief discussion on the utility of RI.

An MMTP brings new insight into organizations, such as systems, stations, data envelopment analysis models,
portfolio selection, financial model, inventory model, and so on. Moreover the proposed study can be performed
under various questionable conditions to accommodate more real-life circumstances for choosing an optimum
mode of transportation.
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