On the spectral closeness and residual spectral closeness of graphs
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2651-2668

The spectral closeness of a graph G is defined as the spectral radius of the closeness matrix of G, whose (uv)-entry for vertex u and vertex v is 2 -d G (u,v) if u ≠ v and 0 otherwise, where d$$(uv) is the distance between u and v in G. The residual spectral closeness of a nontrivial graph G is defined as the minimum spectral closeness of the subgraphs of G with one vertex deleted. We propose local grafting operations that decrease or increase the spectral closeness and determine those graphs that uniquely minimize and/or maximize the spectral closeness in some families of graphs. We also discuss extremal properties of the residual spectral closeness.

DOI : 10.1051/ro/2022125
Classification : 05C50, 15A18, 15A42
Keywords: Spectral closeness, residual spectral closeness, local grafting operation, extremal graph
@article{RO_2022__56_4_2651_0,
     author = {Zheng, Lu and Zhou, Bo},
     title = {On the spectral closeness and residual spectral closeness of graphs},
     journal = {RAIRO. Operations Research},
     pages = {2651--2668},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022125},
     mrnumber = {4469509},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022125/}
}
TY  - JOUR
AU  - Zheng, Lu
AU  - Zhou, Bo
TI  - On the spectral closeness and residual spectral closeness of graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2651
EP  - 2668
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022125/
DO  - 10.1051/ro/2022125
LA  - en
ID  - RO_2022__56_4_2651_0
ER  - 
%0 Journal Article
%A Zheng, Lu
%A Zhou, Bo
%T On the spectral closeness and residual spectral closeness of graphs
%J RAIRO. Operations Research
%D 2022
%P 2651-2668
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022125/
%R 10.1051/ro/2022125
%G en
%F RO_2022__56_4_2651_0
Zheng, Lu; Zhou, Bo. On the spectral closeness and residual spectral closeness of graphs. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2651-2668. doi: 10.1051/ro/2022125

[1] M. Aouchiche and P. Hansen, Distance spectra of graphs: a survey. Linear Algebra Appl. 458 (2014) 301–386. | MR | DOI

[2] A. Aytaç and Z. N. Odabaş, Residual closeness of wheels and related networks. Internat. J. Found. Comput. Sci. 22 (2011) 1229–1240. | MR | DOI

[3] A. Aytaç and Z. N. O. Berberler, Robustness of regular caterpillars. Internat. J. Found. Comput. Sci. 28 (2017) 835–841. | MR | DOI

[4] A. Aytaç and Z. N. Odabaş Berberler, Network robustness and residual closeness. RAIRO-Oper. Res. 52 (2018) 839–847. | MR | Zbl | Numdam | DOI

[5] A. T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors. J. Chem. Inf. Comput. Sci. 31 (1991) 517–523. | DOI

[6] R. B. Bapat, A. K. Lal and S. Pati, A q -analogue of the distance matrix of a tree. Linear Algebra Appl. 416 (2006) 799–814. | MR | DOI

[7] F. Buckley and F. Harary, Distance in Graphs. Addison-Wesley Publishing Company, Redwood City, CA (1990). | MR

[8] M. Cheng and B. Zhou, Residual closeness of graphs with given parameters. J. Oper. Res. Soc. China (2022). DOI: . | DOI | MR

[9] L. D. F. Costa, F. A. Rodrigues, G. Travieso and P. R. Villas Boas, Characterization of complex networks: a survey of measurements. Adv. Phys. 56 (2007) 167–242. | DOI

[10] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2010).

[11] C. Dangalchev and Residual closeness in networks. Phys. A 365 (2006) 556–564. | DOI

[12] C. Dangalchev, Residual closeness and generalized closeness. Internat. J. Found. Comput. Sci. 22 (2011) 1939–1948. | MR | DOI

[13] L. C. Freeman, Centrality in social networks conceptual clarification. Social Networks 1 (1979) 215–239. | DOI

[14] J. Golbeck, Analyzing the Social Web. Morgan Kaufmann, Burlington, MA (2013).

[15] I. Gutman and M. Medeleanu, On the structure–dependence of the largest eigenvalue of the distance matrix of an alkane. Indian J. Chem. A 37 (1998) 569–573.

[16] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press, New York (1990). | MR

[17] H. Minc, Nonnegative Matrices. John Wiley & Sons, New York (1988). | MR

[18] Z. N. Odabaş and A. Aytaç, Residual closeness in cycles and related networks. Fund. Inform. 124 (2013) 297–307. | MR

[19] D. Rupnik Poklukar and J. Žerovnik, Networks with extremal closeness. Fund. Inform. 167 (2019) 219–234. | MR

[20] D. Stevanović, Spectral Radius of Graphs. Academic Press, London (2015).

[21] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000). | DOI

[22] Y. Wang and B. Zhou, Residual closeness, matching number and chromatic number. Comput. J. (2022). DOI: . | DOI | MR

[23] W. Yan and Y.-N. Yeh, The determinants of q -distance matrices of trees and two quantiles relating to permutations. Adv. Appl. Math. 39 (2007) 311–321. | MR | DOI

[24] B. Zhou, Z. Li and H. Guo, Extremal results on vertex and link residual closeness. Internat. J. Found. Comput. Sci. 32 (2021) 921–941. | MR | DOI

Cité par Sources :