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ON THE SPECTRAL CLOSENESS AND RESIDUAL SPECTRAL
CLOSENESS OF GRAPHS

Lu Zheng and Bo Zhou*

Abstract. The spectral closeness of a graph 𝐺 is defined as the spectral radius of the closeness matrix
of 𝐺, whose (𝑢, 𝑣)-entry for vertex 𝑢 and vertex 𝑣 is 2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣 and 0 otherwise, where 𝑑𝐺(𝑢, 𝑣)
is the distance between 𝑢 and 𝑣 in 𝐺. The residual spectral closeness of a nontrivial graph 𝐺 is defined
as the minimum spectral closeness of the subgraphs of 𝐺 with one vertex deleted. We propose local
grafting operations that decrease or increase the spectral closeness and determine those graphs that
uniquely minimize and/or maximize the spectral closeness in some families of graphs. We also discuss
extremal properties of the residual spectral closeness.
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1. Introduction

A complex network is often modeled as a simple and undirected graph. Let 𝐺 be a graph on 𝑛 vertices with
vertex set 𝑉 (𝐺) and edge set 𝐸(𝐺). For 𝑢, 𝑣 ∈ 𝑉 (𝐺), the distance between 𝑢 and 𝑣 in 𝐺, denoted by 𝑑𝐺(𝑢, 𝑣),
is the length of a shortest path from 𝑢 to 𝑣 in 𝐺. Particularly, 𝑑𝐺(𝑢, 𝑢) = 0 for any 𝑢 and 𝑑𝐺(𝑢, 𝑣) = ∞ if there
is no path from 𝑢 to 𝑣 in 𝐺. For detail on graph distances, we refer to the book [7]. The spectral properties of
some matrices associated with graphs such as the adjacency matrix (for any graph) and the distance matrix
(for any connected graph) have been studied extensively, see [1, 10].

For a graph 𝐺 that is not necessarily connected, the closeness matrix of 𝐺 is defined as 𝐶(𝐺) =
(𝑐𝐺(𝑢, 𝑣))𝑢,𝑣∈𝑉 (𝐺), where

𝑐𝐺(𝑢, 𝑣) =

{︃
2−𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣,

0 otherwise.

It can be readily seen that two 𝑛-vertex graphs 𝐺1 and 𝐺2 are isomorphic if and only if 𝑃𝐶(𝐺1)𝑃⊤ = 𝐶(𝐺2)
for some permutation matrix 𝑃 of order 𝑛. That is, the vertices of 𝐺1 may be relabeled so that its closeness
matrix is just 𝐶(𝐺2). So, a graph can be completely described by giving the closeness matrix.

The closeness matrix may be extended to the 𝑞-closeness matrix (or exponential distance matrix [6], 𝑞-distance
matrix [23]) for any real number 𝑞 ∈ (0, 1) by defining the (𝑢, 𝑣)-entry to be 𝑞𝑑𝐺(𝑢,𝑣) if 𝑢 ̸= 𝑣 and 0 otherwise.
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Dangalchev [11] introduced a novel version of closeness as a measure of centrality [13,14]. For a graph 𝐺 with
𝑣 ∈ 𝑉 (𝐺), the closeness of vertex 𝑣 in 𝐺 is defined as [11]

𝑐𝐺(𝑣) =
∑︁

𝑤∈𝑉 (𝐺)∖{𝑣}

2−𝑑𝐺(𝑣,𝑤),

and the closeness of a graph 𝐺 is defined as [11]

𝑐(𝐺) =
∑︁

𝑣∈𝑉 (𝐺)

𝑐𝐺(𝑣).

It is evident that 𝑐(𝐺) is equal to the sum of all entries of the matrix 𝐶(𝐺). Moreover, this concept of closeness
is then used in [11] to define the (vertex) residual closeness of a nontrivial graph 𝐺 by

𝑅(𝐺) = min{𝑐(𝐺− 𝑢) : 𝑢 ∈ 𝑉 (𝐺)},

which is used to measure the network resistance in the face of possible node destruction, see also [2–4,12,18].
For a graph 𝐺, 𝐶(𝐺) is a symmetric nonnegative matrix. Moreover, 𝐶(𝐺) is irreducible if and only if 𝐺 is

connected.
The spectral radius (or principal eigenvalue) of a square nonnegative matrix 𝑀 is defined as

𝜇(𝑀) = max{|𝜆| : 𝜆 is an eigenvalue of 𝑀}.

The spectral closeness of a graph 𝐺 is defined as the spectral radius of its closeness matrix, denoted by 𝜚(𝐺).
That is, 𝜚(𝐺) = 𝜇(𝐶(𝐺)). As 𝐶(𝐺) is symmetric, its eigenvalues are all real, so 𝜌(𝐺) is equal to the greatest
eigenvalue of 𝐶(𝐺). A routine connection between the spectral closeness and the closeness of an 𝑛-vertex graph
𝐺 is

𝑐(𝐺)
𝑛

≤ 𝜚(𝐺) ≤ max{𝑐𝐺(𝑣) : 𝑣 ∈ 𝑉 (𝐺)}

with either equality when 𝐺 is connected if and only if 𝑐𝐺(𝑣) is a constant for any 𝑣 ∈ 𝑉 (𝐺). The left part follows
from Rayleigh’s principle and Perron-Frobenius theorem, while the right part follows from a classical result that
the spectral radius of a nonnegative matrix is bounded from above by the maximum row sum (see Lem. 2.3
below). So, 𝜚(𝐺) is indeed a graph invariant that is closely related the closeness of the graph 𝐺. Similarly, we
propose the residual spectral closeness of a nontrivial graph 𝐺 to be defined as

𝜚𝑅(𝐺) = min{𝜚(𝐺− 𝑣) : 𝑣 ∈ 𝑉 (𝐺)}.

with convention that 𝜚𝑅(𝐾1) = 0. As above, for an 𝑛-vertex graph 𝐺 with 𝑛 ≥ 2, one has

𝑅(𝐺)
𝑛− 1

= min
𝑣∈𝑉 (𝐺)

𝑐(𝐺− 𝑣)
𝑛− 1

≤ 𝜚𝑅(𝐺) ≤ min
𝑣∈𝑉 (𝐺)

max
𝑤∈𝑉 (𝐺)∖{𝑣}

𝑐𝐺−𝑣(𝑤).

Spectral measures have long been used to quantify the robustness of networks. For example, spectral radius
of the adjacency matrix of a graph is related to the effective spreading rates of dynamic processes (e.g., rumor,
disease, information propagation) on networks [9,20], and the spectral radius of distance matrix of a connected
graph is used as a molecular descriptor [5, 15,21].

For an 𝑛-vertex graph 𝐺 with 𝑛 ≥ 2, we may view 𝑅(𝐺)
𝑛−1 as a normalized version of the residual closeness

of 𝐺. In this sense, the residual spectral closeness is the spectral version of this ‘normalized version of residual
closeness’. Like the residual closeness, it may also serve as a network vulnerability parameter in the model where
links are reliable and the nodes fail independently of each other, or it may also be viewed as a measure of graph
or network structures.
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Figure 1. Graphs 𝑊 and 𝐻.

As demonstrated by the example below, spectral closeness and residual spectral closeness may be used to
distinguish graphs with equal closeness.

In [12], Dangalchev gave a pair of graphs 𝑊 and 𝐻 on 7 vertices (in Figs. 3 and 4 in [12]) with the same
closeness. See Figure 1 for 𝑊 and 𝐻.

Note that 𝑊 has no cut vertex and 𝐻 has a cut vertex, so the two graphs are quite different. By an easy
calculation, we find that they have different spectral closeness as 𝜚(𝑊 ) = 7+

√
145

8 ≈ 2.3802 < 𝜚(𝐻) = 2.5. Let 𝑢
be the vertex of degree 7 in 𝑊 (6 in 𝐻, respectively) and 𝑣 be any other vertex in 𝑊 (𝐻, respectively). Then
𝜚(𝑊 − 𝑢) = 13

8 < 𝜚(𝑊 − 𝑣) ≈ 2.0240 and 𝜚(𝐻 − 𝑢) = 1 < 𝜚(𝐻 − 𝑣) ≈ 2.0251, so 𝑊 and 𝐻 have also different
residual spectral closeness as 𝜚𝑅(𝑊 ) = 13

8 > 1 = 𝜚𝑅(𝐻) = 1.
Denote by G a class of graph and 𝑓(𝐺) a graph invariant. Often, it is of interest to study the extremal

problem to determine
min{𝑓(𝐺) : 𝐺 ∈ G}

and
max{𝑓(𝐺) : 𝐺 ∈ G}.

Moreover, we want to identify those graphs in G for which the above minimum and maximum are achieved,
respectively.

The rest of this article is organized as follows. Section 2 introduces preliminaries including concepts and
lemmas that are needed in subsequent proofs. In Section 3, we propose some local grafting operations that
decrease or increase the spectral closeness. In Section 4, we study the above extremal problem to identify
the graphs that minimize and/or maximize the spectral closeness in some well known classes of graphs by
exploiting the results established in Section 3. In particular, we identify the unique trees, unicyclic graphs,
graphs with given number of pendant vertices and graphs with given connectivity that maximize the spectral
closeness, respectively. In Section 5, we give some preliminary results for the residual spectral closeness and
discuss further study in the future.

2. Preliminaries

For vertex disjoint graphs 𝐺1 and 𝐺2, let 𝐺1 ∪𝐺2 be the (vertex disjoint) union of 𝐺1 and 𝐺2, and 𝐺1 ∨𝐺2

the join of 𝐺1 and 𝐺2, obtained from 𝐺1 ∪𝐺2 by adding all possible edges between vertices in 𝐺1 and vertices
in 𝐺2. For 𝑆 ⊂ 𝑉 (𝐺), let 𝐺 − 𝑆 denote the graph obtained by removing each vertex of 𝑆 (and all associated
incident edges), and we write 𝐺−𝑣 for 𝐺−{𝑣} for 𝑣 ∈ 𝑉 (𝐺). For 𝐸 ⊆ 𝐸(𝐺), 𝐺−𝐸 denotes the graph obtained
from 𝐺 by removing all edges of 𝐸, and we write 𝐺− 𝑒 for 𝐺− {𝑒} for 𝑒 ∈ 𝐸(𝐺). Let 𝐺 be the complement of
a graph 𝐺. For a set 𝐸′ ⊆ 𝐸(𝐺), 𝐺 + 𝐸′ denotes the graph obtained from 𝐺 by adding all edges of 𝐸′, and we
write 𝐺 + 𝑢𝑣 for 𝐺 + {𝑢𝑣} for 𝑢𝑣 ∈ 𝐸(𝐺). For a graph 𝐺 with 𝑣 ∈ 𝑉 (𝐺), denote by 𝑁𝐺(𝑣) the set of vertices
that are adjacent to 𝑣 in 𝐺.

Let 𝐾𝑛, 𝑃𝑛 and 𝑆𝑛 be the 𝑛-vertex complete graph, path and star, respectively. Let 𝐾𝑎,𝑏 be the complete
bipartite graph with 𝑎 and 𝑏 vertices in the two partite sets, respectively. Let 𝑆+

𝑛 be the graph obtained from
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𝑆𝑛 by adding an edge. Let 𝐷𝑛,ℓ be the 𝑛-vertex tree of diameter 3 such that its two center vertices have degrees
ℓ + 1 and 𝑛− ℓ− 1, respectively.

Let 𝑣 be a vertex of a graph 𝐺. The degree of 𝑣 in 𝐺 is the number of edges that are incident to 𝑣 in 𝐺. The
vertex 𝑣 is called a pendant vertex if its degree in 𝐺 is one. An edge in a graph 𝐺 is called a pendant edge if it
is incident to a pendant vertex in 𝐺.

Let 𝐺 be a graph with 𝑉 (𝐺) = {𝑣1, . . . , 𝑣𝑛}. Let x = (𝑥𝑣1 , . . . , 𝑥𝑣𝑛)⊤ be a real vector. Then

x⊤𝐶(𝐺)x =
∑︁

𝑢,𝑣∈𝑉 (𝐺)

2−𝑑𝐺(𝑢,𝑣)𝑥𝑢𝑥𝑣.

If 𝐺 is connected, then 𝐶(𝐺) is irreducible, so, by Perron-Frobenius theorem, 𝜚(𝐺) is a simple eigenvalue of
𝐶(𝐺), and associated with 𝜚(𝐺), there is a unique positive unit eigenvector, which we call the closeness Perron
vector of 𝐺.

If 𝐺 is connected and x is the closeness Perron vector of 𝐺, then, for any vertex 𝑣 ∈ 𝑉 (𝐺), from 𝜚(𝐺)x =
𝐶(𝐺)x, we have

𝜚(𝐺)𝑥𝑢 =
∑︁

𝑣∈𝑉 (𝐺)∖{𝑢}

2−𝑑𝐺(𝑢,𝑣)𝑥𝑣. (2.1)

We call (2.1) the closeness equation of 𝐺 at 𝑢.
Let 𝐺 be a graph of order 𝑛. By Rayleigh’s principle, for any 𝑛-dimensional unit (column) vector x, we have

𝜚(𝐺) ≥ x⊤𝐶(𝐺)x with equality if and only if x is an eigenvector associated with 𝜚(𝐺).

Lemma 2.1. Let 𝐺 be a connected graph and x the closeness Perron vector of 𝐺. Let 𝜙 be an automorphism
of 𝐺. If 𝜙(𝑢) = 𝑣, then 𝑥𝑢 = 𝑥𝑣.

Proof. Denote by 𝑃 = (𝑃𝑢𝑣)𝑢,𝑣∈𝑉 (𝐺) the permutation matrix such that 𝑃𝑢𝑣 = 1 if 𝜙(𝑢) = 𝑣 and 0 otherwise.
Then 𝐶(𝐺) = 𝑃𝐶(𝐺)𝑃⊤. So 𝜚(𝐺) = x⊤𝐶(𝐺)x = x⊤𝑃𝐶(𝐺)𝑃⊤x = (𝑃⊤x)⊤𝐶(𝐺)(𝑃⊤x). By Rayleigh’s princi-
ple and Perron-Frobenius theorem, 𝑃⊤x = x. This implies that 𝑥𝑢 = 𝑥𝑣 provided that 𝑃𝑢𝑣 = 1, or equivalently,
𝜙(𝑢) = 𝑣. �

Recall that, for a square nonnegative matrix 𝑀 , 𝜇(𝑀) is the spectral radius of 𝑀 . Combining Corollaries
2.1 and 2.2 in Page 38 of [17], we have the following lemma.

Lemma 2.2. [17] Let 𝐵1 and 𝐵2 be 𝑛 × 𝑛 nonnegative matrices such that 𝐵1 − 𝐵2 is nonnegative. Then
𝜇(𝐵1) ≥ 𝜇(𝐵2). Furthermore, if 𝐵1 is irreducible and 𝐵1 ̸= 𝐵2, then 𝜇(𝐵1) > 𝜇(𝐵2).

For a principal matrix 𝑀 of 𝐶(𝐺) for a graph 𝐺, we have 𝜚(𝐺) ≥ 𝜇(𝑀). This follows from Lemma 2.2 (by
noting that 𝜇(𝑀) = 𝜇(𝑀 ′) with 𝑀 ′ being the matrix obtained from 𝐶(𝐺) by replacing any entry not in 𝑀 by
0), and it is part of the well known Interlacing Theorem (see, e.g., Theorem 4.3.28 in Page 246 of [16]). For any
graph 𝐺 with two nonadjacent vertices 𝑢 and 𝑣, by Lemma 2.2, we have 𝜚(𝐺 + 𝑢𝑣) ≥ 𝜚(𝐺), and it is strict if
𝐺 + 𝑢𝑣 is connected.

The following lemma is well known, see, e.g., Theorem 1.1 in Page 24 of [17].

Lemma 2.3. [17] Let 𝐵 be a nonnegative matrix of order 𝑛 with the 𝑖-th row sum 𝑟𝑖(𝐵) for 𝑖 = 1, . . . , 𝑛. Then

min{𝑟𝑖(𝐵) : 𝑖 = 1, . . . , 𝑛} ≤ 𝜇(𝐵) ≤ max{𝑟𝑖(𝐵) : 𝑖 = 1, . . . , 𝑛}

with either equality when 𝐵 is irreducible if and only if 𝑟1(𝐵) = · · · = 𝑟𝑛(𝐵).
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Figure 2. Graph 𝐺𝑢(𝑘, 𝑟).

3. Effect of local grafting operations on the spectral closeness

In this section, we propose some local grafting operations that decrease or increase the spectral closeness. By
a local grafting operation, we mean to remove and add some edge(s) to form a new graph with certain desired
structure.

A path 𝑃 := 𝑢0 . . . 𝑢𝑘 in a graph 𝐺 is called a pendant path of length 𝑘 at 𝑢0 if the degree of 𝑢𝑘 is one,
the degree of 𝑢0 is at least two, and if 𝑘 > 1, the degree of 𝑢𝑖 is two for all 𝑖 = 1, . . . , 𝑘 − 1. In particular, a
pendant path of length one is a pendant edge. If 𝑃 := 𝑢0 . . . 𝑢𝑘 is a pendant path of 𝐺 at 𝑢0, we also say 𝐺 is
obtained from 𝐻 − {𝑢1, . . . , 𝑢𝑘} by attaching a pendant path of length 𝑘 at 𝑢0. For positive integers 𝑘 and 𝑟,
let 𝐺𝑢(𝑘, 𝑟) be the graph obtained from 𝐺 by attaching two pendant paths of length 𝑘 and 𝑟 respectively at
𝑢, and let 𝐺𝑢(𝑘, 0) be the graph obtained from 𝐺 by attaching a pendant path of length 𝑘 at 𝑢, see Figure 2,
where the pendant paths are 𝑢𝑢1 . . . 𝑢𝑘 and 𝑢𝑣1 . . . 𝑣𝑟.

Theorem 3.1. Let 𝐺 be a connected nontrivial graph with 𝑢0 ∈ 𝑉 (𝐺). Let 𝑘 and 𝑟 be positive integers. Then
𝜚(𝐺𝑢0(𝑘 + 𝑟, 0)) < 𝜚(𝐺𝑢0(𝑘, 𝑟)).

Proof. Let 𝐻 = 𝐺𝑢0(𝑘, 𝑟). Let 𝑃 := 𝑢0𝑢1 . . . 𝑢𝑘 and 𝑄 := 𝑢0𝑣1 . . . 𝑣𝑟 be the two pendant paths at 𝑢0 in 𝐻. Let
𝐻 ′ = 𝐺− {𝑢0𝑤 : 𝑤 ∈ 𝑁𝐺(𝑢0)}+ {𝑢𝑘𝑤 : 𝑤 ∈ 𝑁𝐺(𝑢0)}. It is evident that 𝐻 ′ ∼= 𝐺𝑢0(𝑘 + 𝑟, 0).

Let x be the closeness Perron vector of 𝐻 ′. Let Λ =
∑︀𝑘

𝑖=0(2−𝑖−2−(𝑘−𝑖))𝑥𝑢𝑖
. Let 𝑑 = 𝑑𝐺(𝑢0, 𝑤) for 𝑤 ∈ 𝑉 (𝐺).

It is easy to see that as we pass from 𝐻 to 𝐻 ′, the distance between any two vertices in 𝑉 (𝐺) ∖ {𝑢0} and in
𝑉 (𝑃 ) ∪ 𝑉 (𝑄) remains unchanged. By considering the changes of the entries of the closeness matrix as 𝐻 is
changed into 𝐻 ′ and using Rayleigh’s principle, we have

1
2

(𝜚(𝐻 ′)− 𝜚(𝐻))

≤ 1
2
x⊤(𝐶(𝐻 ′)− 𝐶(𝐻))x

=
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

𝑥𝑤

[︃
𝑘∑︁

𝑖=0

(︁
2−(𝑑+𝑘−𝑖) − 2−(𝑑+𝑖)

)︁
𝑥𝑢𝑖 +

𝑟∑︁
𝑖=1

(︁
2−(𝑑+𝑘+𝑖) − 2−(𝑑+𝑖)

)︁
𝑥𝑣𝑖

]︃

=
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

2−𝑑𝑥𝑤

[︃
𝑘∑︁

𝑖=0

(2−(𝑘−𝑖) − 2−𝑖)𝑥𝑢𝑖
+

𝑟∑︁
𝑖=1

(2−(𝑘+𝑖) − 2−𝑖)𝑥𝑣𝑖

]︃
,

so

1
2

(𝜚(𝐻 ′)− 𝜚(𝐻))

≤
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

2−𝑑𝑥𝑤(−Λ) +
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

2−𝑑𝑥𝑤

𝑟∑︁
𝑖=1

(2−(𝑘+𝑖) − 2−𝑖)𝑥𝑣𝑖
.

(3.1)
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Figure 3. Graphs 𝐺 and 𝐺𝑢𝑣 in proof of Theorem 3.2.

Now define a new vector y by setting 𝑦𝑢𝑖 = 𝑥𝑢𝑘−𝑖
if 0 ≤ 𝑖 ≤ 𝑘, and 𝑦𝑤 = 𝑥𝑤 if 𝑤 ∈ 𝑉 (𝐻 ′) ∖ {𝑢0, . . . , 𝑢𝑘}.

It is evident that ‖y‖ = ‖x‖ = 1. Then, we have

1
2

(𝜚(𝐻 ′)− 𝜚(𝐻))

≤ 1
2

(x⊤𝐶(𝐻 ′)x− y⊤𝐶(𝐻)y)

=
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

𝑥𝑤

(︃
𝑘∑︁

𝑖=0

2−(𝑑+𝑘−𝑖)𝑥𝑢𝑖 +
𝑟∑︁

𝑖=1

2−(𝑑+𝑘+𝑖)𝑥𝑣𝑖

)︃
+

𝑟∑︁
𝑖=1

𝑥𝑣𝑖

𝑘∑︁
𝑗=0

2−(𝑖+𝑗)𝑥𝑢𝑗

−
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

𝑦𝑤

(︃
𝑘∑︁

𝑖=0

2−(𝑑+𝑖)𝑦𝑢𝑖
+

𝑟∑︁
𝑖=1

2−(𝑑+𝑖)𝑦𝑣𝑖

)︃
−

𝑟∑︁
𝑖=1

𝑥𝑣𝑖

𝑘∑︁
𝑗=0

2−(𝑖+𝑗)𝑦𝑢𝑗

=
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

2−𝑑𝑥𝑤

(︃
𝑘∑︁

𝑖=0

2−(𝑘−𝑖)𝑥𝑢𝑖
+

𝑟∑︁
𝑖=1

2−(𝑘+𝑖)𝑥𝑣𝑖

−
𝑘∑︁

𝑖=0

2−𝑖𝑥𝑢𝑘−𝑖
−

𝑟∑︁
𝑖=1

2−𝑖𝑥𝑣𝑖

⎞⎠+
𝑟∑︁

𝑖=1

2−𝑖𝑥𝑣𝑖

𝑘∑︁
𝑗=0

2−𝑗(𝑥𝑢𝑗 − 𝑥𝑢𝑘−𝑗
)

=
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

2−𝑑𝑥𝑤

𝑟∑︁
𝑖=1

(︁
2−(𝑘+𝑖) − 2−𝑖

)︁
𝑥𝑣𝑖 +

𝑟∑︁
𝑖=1

2−𝑖𝑥𝑣𝑖

𝑘∑︁
𝑗=0

(︁
2−𝑗 − 2−(𝑘−𝑗)

)︁
𝑥𝑢𝑗 ,

so
1
2

(𝜚(𝐻 ′)− 𝜚(𝐻)) ≤
∑︁

𝑤∈𝑉 (𝐺)∖{𝑢0}

2−𝑑𝑥𝑤

𝑟∑︁
𝑖=1

(2−(𝑘+𝑖) − 2−𝑖)𝑥𝑣𝑖
+

𝑟∑︁
𝑖=1

2−𝑖𝑥𝑣𝑖
Λ. (3.2)

If Λ ≥ 0, then, as (2−(𝑘+𝑖) − 2−𝑖)𝑥𝑣𝑖 < 0 for 1 ≤ 𝑖 ≤ 𝑟, we have 𝜚(𝐻 ′) < 𝜚(𝐻) from (3.1). Otherwise, as
(2−(𝑘+𝑖) − 2−𝑖)𝑥𝑣𝑖

< 0 for 1 ≤ 𝑖 ≤ 𝑟, we have 𝜚(𝐻 ′) < 𝜚(𝐻) from (3.2). �

Theorem 3.2. Let 𝐺 be a connected graph with a cut edge 𝑢𝑣 that is not a pendant edge. Let

𝐺𝑢𝑣 = 𝐺− {𝑣𝑤 : 𝑤 ∈ 𝑁𝐺(𝑣) ∖ {𝑢}}+ {𝑢𝑤 : 𝑤 ∈ 𝑁𝐺(𝑣) ∖ {𝑢}}.

Then 𝜚(𝐺𝑢𝑣) > 𝜚(𝐺).

Proof. Let x be the closeness Perron vector of 𝐺.
Let 𝐺1 and 𝐺2 be the components of 𝐺− 𝑢𝑣 containing 𝑢 and 𝑣, respectively, see Figure 3. As we pass from

𝐺 to 𝐺𝑢𝑣, the distance between any vertex in 𝑉 (𝐺2) ∖ {𝑣} and any vertex in 𝑉 (𝐺1) is decreased by 1, the
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distance between any vertex in 𝑉 (𝐺2) ∖ {𝑣} and 𝑣 is increased by 1, and the distance between any other vertex
pair remains unchanged. So, by Rayleigh’s principle, we have

1
2

(𝜚(𝐺𝑢𝑣)− 𝜚(𝐺))

≥ 1
2
x⊤(𝐶(𝐺𝑢𝑣)− 𝐶(𝐺))x

=
∑︁

𝑤∈𝑉 (𝐺2)∖{𝑣}

𝑥𝑤

⎡⎣ ∑︁
𝑧∈𝑉 (𝐺1)

(︁
2−(𝑑𝐺(𝑤,𝑧)−1) − 2𝑑𝐺(𝑤,𝑧)

)︁
𝑥𝑧

+
(︁

2−(𝑑𝐺(𝑤,𝑣)+1) − 2−𝑑𝐺(𝑤,𝑣)
)︁

𝑥𝑣

⎤⎦
=

∑︁
𝑤∈𝑉 (𝐺2)∖{𝑣}

𝑥𝑤

⎛⎝ ∑︁
𝑧∈𝑉 (𝐺1)∖{𝑢}

2−𝑑𝐺(𝑤,𝑧)𝑥𝑧 + 2−𝑑𝐺(𝑤,𝑢)𝑥𝑢 − 2−(𝑑𝐺(𝑤,𝑣)+1)𝑥𝑣

⎞⎠
=

∑︁
𝑤∈𝑉 (𝐺2)∖{𝑣}

𝑥𝑤

⎡⎣ ∑︁
𝑧∈𝑉 (𝐺1)∖{𝑢}

2−𝑑𝐺(𝑤,𝑧)𝑥𝑧 + 2−𝑑𝐺(𝑤,𝑢)(𝑥𝑢 − 𝑥𝑣)

⎤⎦ .

Let 𝐺𝑣𝑢 = 𝐺− {𝑢𝑤 : 𝑤 ∈ 𝑁𝐺(𝑢) ∖ {𝑣}}+ {𝑣𝑤 : 𝑤 ∈ 𝑁𝐺(𝑢) ∖ {𝑣}}. Similarly, we have

1
2

(𝜚(𝐺𝑣𝑢)− 𝜚(𝐺))

≥ 1
2
x⊤(𝐶(𝐺𝑣𝑢)− 𝐶(𝐺))x

𝑠 =
∑︁

𝑤∈𝑉 (𝐺1)∖{𝑢}

𝑥𝑤

⎡⎣ ∑︁
𝑧∈𝑉 (𝐺2)∖{𝑣}

2−𝑑𝐺(𝑤,𝑧)𝑥𝑧 + 2−𝑑𝐺(𝑤,𝑣)(𝑥𝑣 − 𝑥𝑢)

⎤⎦ .

So, if 𝑥𝑢 ≥ 𝑥𝑣, then 𝜚(𝐺𝑢𝑣) > 𝜚(𝐺), and otherwise, 𝜚(𝐺𝑣𝑢) > 𝜚(𝐺). Note that 𝐺𝑢𝑣
∼= 𝐺𝑣𝑢. So 𝜚(𝐺𝑢𝑣) >

𝜚(𝐺). �

Theorem 3.3. Let 𝐺 be a connected graph. Let 𝐻 be an induced subgraph of 𝐺 of order 𝑝 and 𝐻 ∼= 𝐾𝑝. Suppose
that 𝐺−𝐸(𝐻) consists of 𝑝 components. Suppose that 𝐺𝑢 and 𝐺𝑣 are two nontrivial components of 𝐺−𝐸(𝐻)
containing 𝑢, 𝑣 ∈ 𝑉 (𝐻), respectively. Let

𝐻1 = 𝐺− {𝑢𝑤 : 𝑤 ∈ 𝑁𝐺𝑢
(𝑢)}+ {𝑣𝑤 : 𝑤 ∈ 𝑁𝐺𝑢

(𝑢)}

and

𝐻2 = 𝐺− {𝑣𝑤 : 𝑤 ∈ 𝑁𝐺𝑣
(𝑣)}+ {𝑢𝑤 : 𝑤 ∈ 𝑁𝐺𝑣

(𝑣)},

see Figure 4. Then 𝜚(𝐻1) > 𝜚(𝐺) or 𝜚(𝐻2) > 𝜚(𝐺).

Proof. Let x be the closeness Perron vector of 𝐺.
Note that as we pass from 𝐺 to 𝐻1, the distance between a vertex 𝑤 ∈ 𝑉 (𝐺𝑢) ∖ {𝑢} and 𝑢 is increased by 1,

the distance between a vertex 𝑤 ∈ 𝑉 (𝐺𝑢) ∖ {𝑢} and any vertex in 𝑉 (𝐺𝑣) is decreased by 1, and the distance
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between any other vertex pair remains unchanged. So we have by Rayleigh’s principle that

1
2

(𝜚(𝐻1)− 𝜚(𝐺))

≥1
2

(x⊤(𝐶(𝐻1)− 𝐶(𝐺))x)

=
∑︁

𝑤∈𝑉 (𝐺𝑢)∖{𝑢}

𝑥𝑤

⎡⎣(︁2−(𝑑𝐺(𝑤,𝑢)+1) − 2−𝑑𝐺(𝑤,𝑢)
)︁

𝑥𝑢

+
(︁

2−𝑑𝐺(𝑤,𝑢) − 2−(𝑑𝐺(𝑤,𝑢)+1)
)︁

𝑥𝑣

+
∑︁

𝑧∈𝑉 (𝐺𝑣)∖{𝑣}

(︁
2−(𝑑𝐺(𝑤,𝑢)+𝑑𝐺(𝑣,𝑧)) − 2−(𝑑𝐺(𝑤,𝑢)+1+𝑑𝐺(𝑣,𝑧))

)︁
𝑥𝑧

⎤⎦
=

∑︁
𝑤∈𝑉 (𝐺𝑢)∖{𝑢}

2−(𝑑𝐺(𝑤,𝑢)+1)𝑥𝑤

⎛⎝𝑥𝑣 − 𝑥𝑢 +
∑︁

𝑧∈𝑉 (𝐺𝑣)∖{𝑣}

2−𝑑𝐺(𝑣,𝑧)𝑥𝑧

⎞⎠ .

If 𝑥𝑣 ≥ 𝑥𝑢, then, as
∑︀

𝑧∈𝑉 (𝐺𝑣)∖{𝑣} 2−𝑑𝐺(𝑣,𝑧)𝑥𝑧 > 0, we have 1
2 (𝜚(𝐻1) − 𝜚(𝐺)) > 0, so 𝜚(𝐻1) > 𝜚(𝐺). Suppose

that 𝑥𝑣 < 𝑥𝑢. Similarly as above, we have

1
2

(𝜚(𝐻2)− 𝜚(𝐺))

≥ 1
2

(x⊤(𝐶(𝐻2)− 𝐶(𝐺))x)

=
∑︁

𝑤∈𝑉 (𝐺𝑣)∖{𝑣}

𝑥𝑤

⎡⎣(︁2−𝑑𝐺(𝑤,𝑣) − 2−(𝑑𝐺(𝑤,𝑣)+1)
)︁

𝑥𝑢

+
(︁

2−(𝑑𝐺(𝑤,𝑣)+1) − 2−𝑑𝐺(𝑤,𝑣)
)︁

𝑥𝑣

+
∑︁

𝑧∈𝑉 (𝐺𝑢)∖{𝑢}

(︁
2−(𝑑𝐺(𝑤,𝑣)+𝑑𝐺(𝑢,𝑧)) − 2−(𝑑𝐺(𝑤,𝑣)+1+𝑑𝐺(𝑢,𝑧))

)︁
𝑥𝑧

⎤⎦
=

∑︁
𝑤∈𝑉 (𝐺𝑣)∖{𝑣}

2−(𝑑𝐺(𝑤,𝑣)+1)𝑥𝑤

⎛⎝𝑥𝑢 − 𝑥𝑣 +
∑︁

𝑧∈𝑉 (𝐺𝑢)∖{𝑢}

2−𝑑𝐺(𝑢,𝑧)𝑥𝑧

⎞⎠
> 0,

so 𝜚(𝐻2) > 𝜚(𝐺). �

Theorem 3.4. Let 𝐺 be a connected graph with a cycle 𝐶𝑔 := 𝑣1 . . . 𝑣𝑔𝑣1 such that 𝐺 − 𝐸(𝐶𝑔) consists of 𝑔
components 𝐺1, . . . , 𝐺𝑔, where 𝑣𝑖 ∈ 𝑉 (𝐺𝑖) for 𝑖 = 1, . . . , 𝑔 and 𝑔 ≥ 4. Let x be the closeness Perron vector of
𝐺. Let 𝑥𝑣1 = max{𝑥𝑣𝑖 : 𝑖 = 1, . . . , 𝑔}. Let

𝐻1 = 𝐺− 𝑣2𝑣3 − 𝑣𝑔−1𝑣𝑔 + 𝑣1𝑣3 + 𝑣1𝑣𝑔−1 − {𝑣2𝑤 : 𝑤 ∈ 𝑁𝐺2(𝑣2)}
− {𝑣𝑔𝑤 : 𝑤 ∈ 𝑁𝐺𝑔

(𝑣𝑔) + {𝑣1𝑤 : 𝑤 ∈ 𝑁𝐺2(𝑣2) ∪𝑁𝐺𝑔
(𝑣𝑔)}

if 𝑔 is odd, and
𝐻2 = 𝐺− 𝑣2𝑣3 + 𝑣1𝑣3 − {𝑣2𝑤 : 𝑤 ∈ 𝑁𝐺2(𝑣2)}+ {𝑣1𝑤 : 𝑤 ∈ 𝑁𝐺2(𝑣2)}

if 𝑔 is even, see Figure 5. Then 𝜚(𝐻1) > 𝜚(𝐺) if 𝑔 is odd, 𝜚(𝐻2) > 𝜚(𝐺) if 𝑔 is even.
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Figure 4. Graphs 𝐺, 𝐻1 and 𝐻2 in Theorem 3.3.

Figure 5. Graphs 𝐺, 𝐻1 and 𝐻2 in Theorem 3.4.

Proof. Let 𝑉𝑖 = 𝑉 (𝐺𝑖) for 3, . . . , 𝑔 − 1, 𝑉𝑖 = 𝑉 (𝐺𝑖) ∖ {𝑣𝑖} for 𝑖 = 2, 𝑔. Suppose first that 𝑔 is odd. As we pass
from 𝐺 to 𝐻1, the distance between 𝑣2 and any vertex in ∪(𝑔+1)/2

𝑖=2 𝑉𝑖 is increased by 1, the distance between 𝑣𝑔

and any vertex in ∪𝑔
𝑖=(𝑔+3)/2𝑉𝑖 is increased by 1, the distance between 𝑣1 and any vertex in ∪𝑔

𝑖=2𝑉𝑖 is decreased
by 1, and the distance between each other pair of vertices remains unchanged or is decreased. Thus

1
2

(𝜚(𝐻1)− 𝜚(𝐺)) ≥ 1
2

(x⊤(𝐶(𝐻1)− 𝐶(𝐺))x)

≥ 𝑥𝑣2

(𝑔+1)/2∑︁
𝑖=2

∑︁
𝑤∈𝑉𝑖

(︁
2−(𝑑𝐺(𝑣2,𝑤)+1) − 2−𝑑𝐺(𝑣2,𝑤)

)︁
𝑥𝑤

+ 𝑥𝑣𝑔

𝑔∑︁
𝑖=(𝑔+3)/2

∑︁
𝑤∈𝑉𝑖

(︁
2−(𝑑𝐺(𝑣𝑔,𝑤)+1) − 2−𝑑𝐺(𝑣𝑔,𝑤)

)︁
𝑥𝑤

+ 𝑥𝑣1

𝑔∑︁
𝑖=2

∑︁
𝑤∈𝑉𝑖

(︁
2−(𝑑𝐺(𝑣1,𝑤)−1) − 2−𝑑𝐺(𝑣1,𝑤)

)︁
𝑥𝑤

= −𝑥𝑣2

(𝑔+1)/2∑︁
𝑖=2

∑︁
𝑤∈𝑉𝑖

2−𝑑𝐺(𝑣2,𝑤)−1𝑥𝑤

− 𝑥𝑣𝑔

𝑔∑︁
𝑖=(𝑔+3)/2

∑︁
𝑤∈𝑉𝑖

2−𝑑𝐺(𝑣𝑔,𝑤)−1𝑥𝑤
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+ 𝑥𝑣1

𝑔∑︁
𝑖=2

∑︁
𝑤∈𝑉𝑖

2−𝑑𝐺(𝑣1,𝑤)𝑥𝑤

=
(𝑔+1)/2∑︁

𝑖=2

∑︁
𝑤∈𝑉𝑖

2−𝑑𝐺(𝑣1,𝑤)𝑥𝑤 (𝑥𝑣1 − 𝑥𝑣2)

+
𝑔∑︁

𝑖=(𝑔+3)/2

∑︁
𝑤∈𝑉𝑖

2−𝑑𝐺(𝑣1,𝑤)𝑥𝑤

(︀
𝑥𝑣1 − 𝑥𝑣𝑔

)︀
≥ 0,

which implies that 𝜚(𝐻1) ≥ 𝜚(𝐺) as 𝑥𝑣1 = max{𝑥𝑣𝑖
: 𝑖 = 1, . . . , 𝑔}.

Suppose that 𝜚(𝐻1) = 𝜚(𝐺). Then, all the above inequalities are equalities. In particular, x is the closeness
Perron vector of 𝐻1, and 𝑥𝑣1 = 𝑥𝑣2 . By the closeness equations of 𝐻1 at 𝑣1, 𝑣2, we have

𝜚(𝐻1)𝑥𝑣1 =
∑︁

𝑤∈𝑉 (𝐻1)∖{𝑣1,𝑣2}

2−𝑑𝐻1 (𝑤,𝑣1)𝑥𝑤 + 2−𝑑𝐻1 (𝑣2,𝑣1)𝑥𝑣2

and
𝜚(𝐻1)𝑥𝑣2 =

∑︁
𝑤∈𝑉 (𝐻1)∖{𝑣1,𝑣2}

2−𝑑𝐻1 (𝑤,𝑣2)𝑥𝑤 + 2−𝑑𝐻1 (𝑣1,𝑣2)𝑥𝑣1 .

So (︁
𝜚(𝐻1) + 2−𝑑𝐻1 (𝑣1,𝑣2)

)︁
(𝑥𝑣1 − 𝑥𝑣2) =

∑︁
𝑤∈𝑉 (𝐻1)∖{𝑣1,𝑣2}

(︁
2−𝑑𝐻1 (𝑤,𝑣1) − 2−𝑑𝐻1 (𝑤,𝑣2)

)︁
𝑥𝑤.

As 𝑑𝐻1(𝑣1, 𝑤) < 𝑑𝐻1(𝑣2, 𝑤) for 𝑤 ∈ 𝑉 (𝐻1) ∖ {𝑣1, 𝑣2}, we have∑︁
𝑤∈𝑉 (𝐻1)∖{𝑣1,𝑣2}

(︁
2−𝑑𝐻1 (𝑤,𝑣1) − 2−𝑑𝐻1 (𝑤,𝑣2)

)︁
𝑥𝑤 > 0,

so 𝑥𝑣1 > 𝑥𝑣2 , which is a contradiction. It thus follows that 𝜚(𝐻1) > 𝜚(𝐺).
Suppose next that 𝑔 is even. As we pass from 𝐺 to 𝐻2, the distance between 𝑣2 and any vertex in ∪𝑔/2+1

𝑖=2 𝑉𝑖 is
increased by 1, the distance between 𝑣1 and any vertex in ∪𝑔/2+1

𝑖=2 𝑉𝑖 is decreased by 1, and the distance between
each other pair of vertices remains unchanged or is decreased. Thus

1
2

(𝜚(𝐻2)− 𝜚(𝐺)) ≥ 1
2

(x⊤(𝐶(𝐻2)− 𝐶(𝐺))x)

≥ 𝑥𝑣2

𝑔/2+1∑︁
𝑖=2

∑︁
𝑤∈𝑉𝑖

(︁
2−𝑑𝐺(𝑣2,𝑤)−1 − 2−𝑑𝐺(𝑣2,𝑤)

)︁
𝑥𝑤

+ 𝑥𝑣1

𝑔/2+1∑︁
𝑖=2

∑︁
𝑤∈𝑉𝑖

(︁
2−𝑑𝐺(𝑣1,𝑤)+1 − 2−𝑑𝐺(𝑣1,𝑤)

)︁
𝑥𝑤

=
𝑔/2+1∑︁

𝑖=2

∑︁
𝑤∈𝑉𝑖

2−𝑑𝐺(𝑣1,𝑤)𝑥𝑤(𝑥𝑣1 − 𝑥𝑣2)

≥ 0,

(3.3)

implying that 𝜚(𝐻2) ≥ 𝜚(𝐺).
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Suppose that 𝜚(𝐻2) = 𝜚(𝐺). Then all inequalities in (3.3) are equalities, and thus x is the closeness Perron
vector of 𝐻2 and 𝑥𝑣1 = 𝑥𝑣2 . By the closeness equations of 𝐻2 at 𝑣1, 𝑣2, we have

𝜚(𝐻2)𝑥𝑣1 =
∑︁

𝑤∈𝑉 (𝐻2)∖{𝑣1,𝑣2}

2−𝑑𝐻2 (𝑤,𝑣1)𝑥𝑤 + 2−𝑑𝐻2 (𝑣2,𝑣1)𝑥𝑣2

and
𝜚(𝐻2)𝑥𝑣2 =

∑︁
𝑤∈𝑉 (𝐻2)∖{𝑣1,𝑣2}

2−𝑑𝐻2 (𝑤,𝑣2)𝑥𝑤 + 2−𝑑𝐻2 (𝑣1,𝑣2)𝑥𝑣1 .

Note that 𝑑𝐻2(𝑣1, 𝑤) < 𝑑𝐻2(𝑣2, 𝑤) for 𝑤 ∈ 𝑉 (𝐻2) ∖ {𝑣1, 𝑣2}. By similar argument as above, we have 𝑥𝑣1 > 𝑥𝑣2 ,
a contradiction. Hence, 𝜚(𝐻2) > 𝜚(𝐺). �

4. Graphs minimizing or maximizing the spectral closeness

Rupnik Poklukar and Žerovnik [19] determined the graphs that minimize and maximize the closeness among
several classes of graphs including trees and cacti. In this section, we find those graphs that uniquely minimize
or maximize the spectral closeness in some classes of graphs.

Theorem 4.1. Let 𝐺 be a graph on 𝑛 vertices. Then

0 ≤ 𝜚(𝐺) ≤ 𝑛− 1
2

with left equality if and only if 𝐺 is the empty graph and with right equality if and only if 𝐺 is the complete
graph.

Proof. If there is an edge 𝑢𝑣 in 𝐺, then 𝐶(𝐺) has a principal submatrix(︂
0 1

2
1
2 0

)︂
whose spectral radius is 1

2 , so by Interlacing Theorem, we have 𝜚(𝐺) ≥ 1
2 > 0. Therefore, 𝜚(𝐺) ≥ 0 with equality

if and only if 𝐺 is the empty graph.
On the other hand, we have 𝐶(𝐾𝑛)−𝐶(𝐺) is nonnegative and 𝐶(𝐾𝑛) is irreducible. Note that 𝜚(𝐾𝑛) = 𝑛−1

2
by Lemma 2.3. So, by Lemma 2.2, 𝜚(𝐺) ≤ 𝑛−1

2 with equality and only if 𝐺 is the complete graph 𝐾𝑛. �

Theorem 4.2. Let 𝐺 be a bipartite graph on 𝑛 ≥ 2 vertices. Then

𝜚(𝐺) ≤

⎧⎨⎩
3𝑛−2

8 if 𝑛 is even

𝑛−2+
√

4𝑛2−3
8 if 𝑛 is odd

with equality if and only if 𝐺 ∼= 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉.

Proof. By Lemma 2.2, 𝜚(𝐺) ≤ 𝜚(𝐾𝑟,𝑠) for some 𝑟 and 𝑠 with 1 ≤ 𝑟 ≤ 𝑠 and 𝑟 + 𝑠 = 𝑛. Let x be the closeness
Perron vector of 𝜚 = 𝜚(𝐾𝑟,𝑠). By Lemma 2.1, we denote by 𝑥 (𝑦, respectively) the entry of x at a vertex of
degree 𝑠 and (𝑟, respectively). Then

𝜚𝑥 =
𝑟 − 1

4
𝑥 +

𝑠

2
𝑦

and
𝜚𝑦 =

𝑟

2
𝑥 +

𝑠− 1
4

𝑦.
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So

det

(︃
𝜚− 𝑟−1

4 − 𝑠
2

− 𝑟
2 𝜚− 𝑠−1

4

)︃
= 0,

i.e., 𝜚2 − 𝑛−2
4 𝜚 − 3𝑟𝑠+𝑛−1

16 = 0, i,e., 𝜚 = 𝑛−2+
√

𝑛2+12𝑟𝑠
8 , which is maximized if and only if 𝑟 = ⌊𝑛

2 ⌋ and
𝑠 = ⌈𝑛

2 ⌉. �

Theorem 4.3. Let 𝐺 be a connected graph of order 𝑛. Then 𝜚(𝐺) ≥ 𝜚(𝑃𝑛) with equality if and only if 𝐺 ∼= 𝑃𝑛.

Proof. Let 𝐺 be a connected graph of order 𝑛 that minimizes the spectral closeness. By Lemma 2.2, 𝐺 is a tree.
We show that 𝐺 ∼= 𝑃𝑛. Otherwise, there is a vertex 𝑢 in 𝐺 of degree at least 3. If 𝑢 is not the only vertex of

degree at least three in 𝐺, then we may choose a vertex 𝑣 of degree at least three such that 𝑑𝐺(𝑢, 𝑣) is as large
as possible. In this case, there are at least two pendant paths, say 𝑃 and 𝑄, at 𝑣 in 𝐺. Then 𝐺 ∼= 𝐻𝑣(𝑝, 𝑞),
where 𝐻 is the graph obtained from 𝐺 by deleting the vertices of 𝑃 and 𝑄 except 𝑣, 𝑝 is the length of 𝑃 and 𝑞
is the length of 𝑄. By Theorem 3.1, 𝜚(𝐻𝑣(𝑝 + 𝑞, 0)) < 𝜚(𝐻𝑣(𝑝, 𝑞)) = 𝜚(𝐺), a contradiction. Thus, 𝑢 is the only
vertex of degree at least three. Let 𝐿 and 𝑆 be two pendant paths at 𝑢 in 𝐺 with lengths ℓ and 𝑠, respectively.
Then 𝐺 ∼= 𝐻 ′

𝑢(ℓ, 𝑠), where 𝐻 ′ is the graph obtained from 𝐺 by deleting the vertices of 𝐿 and 𝑆 except 𝑢.
By Theorem 3.1 again, 𝜚(𝐻 ′

𝑢(ℓ + 𝑠, 0)) < 𝜚(𝐻 ′
𝑢(ℓ, 𝑠)) = 𝜚(𝐺), also a contradiction. �

Theorem 4.4. Let 𝐺 be an 𝑛-vertex tree. Then

𝜚(𝐺) ≤ 𝑛− 2 +
√

𝑛2 + 12𝑛− 12
8

with equality if and only if 𝐺 ∼= 𝑆𝑛.

Proof. If 𝐺 is not the star, then there is an edge 𝑢𝑣 that is not a pendant edge, and as 𝑢𝑣 is a cut edge,
we have by Theorem 3.2 that 𝜚(𝐺𝑢𝑣) > 𝜚(𝐺). So the star 𝑆𝑛 is the unique 𝑛-vertex tree that maximizes
the spectral closeness. By direct calculation, we have det(𝑡𝐼𝑛 − 𝐶(𝑆𝑛)) = (𝑡 + 1

4 )𝑛−2(𝑡2 − 𝑛−2
4 𝑡 − 𝑛−1

4 ). Then
𝜚(𝑆𝑛) = 𝑛−2+

√
𝑛2+12𝑛−12
8 . �

Lemma 4.5. For integers ℓ and 𝑛 with 2 ≤ ℓ ≤ ⌊𝑛−2
2 ⌋, we have 𝜚(𝐷𝑛,ℓ) < 𝜚(𝐷𝑛,ℓ−1).

Proof. Denote by 𝑢 and 𝑣 be the centers of 𝐷𝑛,ℓ with degree ℓ + 1 and 𝑛 − ℓ − 1 respectively. Let x be the
closeness Perron vector of 𝐺. By Lemma 2.1, the entries of x at all pendant neighbors of 𝑢 (𝑣, respectively)
have the same value, which we denote by 𝛼 (𝛽, respectively). Let 𝜚 = 𝜚(𝐷𝑛,ℓ).

By the closeness equations of 𝐷𝑛,ℓ at 𝑢 and 𝑣, we have

𝜚𝑥𝑢 =
1
2
𝑥𝑣 +

1
2
ℓ𝛼 +

1
4

(𝑛− ℓ− 2)𝛽

and
𝜚𝑥𝑣 =

1
2
𝑥𝑢 +

1
4
ℓ𝛼 +

1
2

(𝑛− ℓ− 2)𝛽.

Then (︂
𝜚 +

1
2

)︂
(𝑥𝑣 − 𝑥𝑢) = −1

4
ℓ𝛼 +

1
4

(𝑛− ℓ− 2)𝛽. (4.1)

By the closeness equations of 𝐷𝑛,ℓ at pendant vertices that are adjacent to 𝑢 and 𝑣, we have

𝜚𝛼 =
1
2
𝑥𝑢 +

1
4
𝑥𝑣 +

1
4

(ℓ− 1)𝛼 +
1
8

(𝑛− ℓ− 3)𝛽 +
1
8
𝛽

and
𝜚𝛽 =

1
4
𝑥𝑢 +

1
2
𝑥𝑣 +

1
8

(ℓ− 1)𝛼 +
1
4

(𝑛− ℓ− 3)𝛽 +
1
8
𝛼,
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Then (︂
𝜚 +

1
8

)︂
(𝛽 − 𝛼) =

1
4

(𝑥𝑣 − 𝑥𝑢)− 1
8

(ℓ− 1)𝛼 +
1
8

(𝑛− ℓ− 3)𝛽. (4.2)

From (4.1) and (4.2), we have
(4𝜚 + 1)(𝛽 − 𝛼) = 2(𝜚 + 1)(𝑥𝑣 − 𝑥𝑢). (4.3)

Note that 𝑛− ℓ− 2 ≥ ℓ. From (4.1) and (4.3), we have(︂
𝜚 +

1
2

)︂
(𝑥𝑣 − 𝑥𝑢) ≥ ℓ

4
(𝛽 − 𝛼) =

ℓ

4
· 2(𝜚 + 1)

4𝜚 + 1
(𝑥𝑣 − 𝑥𝑢),

i.e., (︂
𝜚 +

1
2
− ℓ

4
· 2(𝜚 + 1)

4𝜚 + 1

)︂
(𝑥𝑣 − 𝑥𝑢) ≥ 0. (4.4)

By Lemma 2.3 and the fact that 𝑛 ≥ 2ℓ + 2, one has

𝜚 ≥ min
{︂

𝑛 + ℓ + 2
8

,
𝑛 + ℓ

4
,

2𝑛− ℓ

8
,

2𝑛− ℓ− 2
4

}︂
=

𝑛 + ℓ + 2
8

>
ℓ

4
.

So

𝜚 +
1
2
− ℓ

4
· 2(𝜚 + 1)

4𝜚 + 1
> 0.

Now (4.4) implies that 𝛽 − 𝛼 ≥ 0. So, by Rayleigh’s principle and (4.1), we have

1
2

(𝜚(𝐷𝑛,ℓ−1)− 𝜚(𝐷𝑛,ℓ)) ≥
1
2

(x⊤𝐶(𝐷𝑛,ℓ−1)x− x⊤𝐶(𝐷𝑛,ℓ)x)

= 𝛼

[︂
1
8

(𝑛− ℓ− 2)𝛽 − 1
8

(ℓ− 1)𝛼 +
1
4
𝑥𝑣 −

1
4
𝑥𝑢

]︂
> 𝛼

[︂
1
8

(𝑛− ℓ− 2)𝛽 − 1
8
ℓ𝛼 +

1
4
𝑥𝑣 −

1
4
𝑥𝑢

]︂
=

1
2
𝛼 (𝜚 + 1) (𝑥𝑣 − 𝑥𝑢)

≥ 0.

Hence, 𝜚(𝐷𝑛,ℓ) < 𝜚(𝐷𝑛,ℓ−1). �

Theorem 4.6. If 𝐺 is an 𝑛-vertex tree that is not isomorphic to 𝑆𝑛, then 𝜚(𝐺) ≤ 𝜚(𝐷𝑛,1) with equality if and
only if 𝐺 ∼= 𝐷𝑛,1.

Proof. Suppose that 𝐺 is an 𝑛-vertex tree not isomorphic to 𝑆𝑛 that maximizes the spectral closeness. Let 𝑑
be the diameter of 𝐺. As 𝐺 is not isomorphic to 𝑆𝑛, we have 𝑑 ≥ 3. Suppose that 𝑑 ≥ 4. Then, for any edge
𝑢𝑣 that is not a pendant edge, 𝐺𝑢𝑣 is an 𝑛-vertex tree that is not isomorphic to 𝑆𝑛 as its diameter is at least
𝑑 − 1 ≥ 3. However, we have by Theorem 3.2 that 𝜚(𝐺𝑢𝑣) > 𝜚(𝐺), a contradiction. Therefore 𝑑 = 3. That is,
𝐺 ∼= 𝐷𝑛,ℓ for some ℓ with 1 ≤ ℓ ≤ ⌊𝑛−2

2 ⌋. By Lemma 4.5, we have 𝐺 ∼= 𝐷𝑛,1. �

Recall that a graph 𝐺 is unicyclic if it is connected and |𝐸(𝐺)| = |𝑉 (𝐺)|.

Theorem 4.7. For an 𝑛-vertex unicyclic graph 𝐺, we have 𝜚(𝐺) ≤ 𝜚(𝑆+
𝑛 ) with equality if and only if 𝐺 ∼= 𝑆+

𝑛 ,
where 𝜚(𝑆+

𝑛 ) is the largest root of 𝑡3 − 𝑛−2
4 𝑡2 − 2𝑛−1

8 𝑡− 1
8 = 0.
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Proof. Let 𝐺 be an 𝑛-vertex unicyclic graph that maximizes the spectral closeness. By Theorems 3.2 and 3.4,
𝐺 consists of a triangle and 𝑛− 3 pendant edges. Then by Theorem 3.3, 𝐺 ∼= 𝑆+

𝑛 .
In the following we compute 𝜚 = 𝜚(𝑆+

𝑛 ). Let x be the closeness Perron vector of 𝑆+
𝑛 . By Lemma 2.1, we

denote by 𝑥0 (𝑥1, 𝑥2, respectively) the entry x at the vertex of degree 𝑛 − 1 (a vertex of degree 1, a vertex of
degree 2, respectively). Then

𝜚𝑥0 =
𝑛− 3

2
𝑥1 + 𝑥2,

𝜚𝑥1 =
1
2
𝑥0 +

𝑛− 4
4

𝑥1 +
1
2
𝑥2

and

𝜚𝑥2 =
1
2
𝑥0 +

𝑛− 3
4

𝑥1 +
1
2
𝑥2.

As (𝑥0, 𝑥1, 𝑥2)⊤ is nonzero, we have

det

⎛⎜⎜⎝
𝜚 −𝑛−3

2 −1

− 1
2 𝜚− 𝑛−4

4 − 1
2

− 1
2 −𝑛−3

4 𝜚− 1
2

⎞⎟⎟⎠ = 0,

i.e., 𝑓(𝜌) = 0 with

𝑓(𝑡) = 𝑡3 − 𝑛− 2
4

𝑡2 − 2𝑛− 1
8

𝑡− 1
8

= 0.

It follows that 𝜌 is the largest root of 𝑓(𝑡) = 0. �

Let 𝐺 be an 𝑛-vertex graph with 𝑝 pendant vertices, where 0 ≤ 𝑝 ≤ 𝑛 − 1 and 𝑛 ≥ 3. If 𝑝 = 0, then
𝜚(𝐺) ≤ 𝑛−1

2 with equality if and only if 𝐺 ∼= 𝐾𝑛. If 𝑝 = 𝑛− 1, then 𝐺 ∼= 𝑆𝑛. If 𝑝 = 𝑛− 2 with 𝑛 ≥ 4, then 𝐺 is
a tree, so by Theorem 4.6, 𝜚(𝐺) ≤ (𝐷𝑛,1) with equality if and only 𝐺 ∼= 𝐷𝑛,1.

Theorem 4.8. For an 𝑛-vertex connected graph with 𝑝 pendant vertices, where 1 ≤ 𝑝 ≤ 𝑛 − 3, we have
𝜚(𝐺) ≤ 𝜚(𝐾1∨(𝐾𝑛−𝑝−1∪𝐾𝑝)) with equality if and only if 𝐺 ∼= 𝐾1∨(𝐾𝑛−𝑝−1∪𝐾𝑝), where 𝜚(𝐾1∨(𝐾𝑛−𝑝−1∪𝐾𝑝))
is the largest root of 𝑡3 + 𝑝−2𝑛+5

4 𝑡2 − 𝑝2−(𝑛−1)𝑝+6𝑛−8
16 𝑡− 𝑝2−(𝑛−2)𝑝+𝑛−1

16 = 0.

Proof. Let 𝐺 be an 𝑛-vertex connected graph with 𝑝 pendant vertices that maximizes the spectral closeness.
By Lemma 2.2, the graph obtained from 𝐺 by deleting all pendant vertices is a complete graph. Then, by
Theorem 3.3, 𝐺 ∼= 𝐾1 ∨ (𝐾𝑛−𝑝−1 ∪𝐾𝑝).

In the following we compute 𝜚 = 𝜚(𝐾1 ∨ (𝐾𝑛−𝑝−1 ∪𝐾𝑝)).
Let x be the closeness Perron vector of 𝐾1 ∨ (𝐾𝑛−𝑝−1 ∪𝐾𝑝) for 1 ≤ 𝑝 ≤ 𝑛− 3. Denote by 𝑥0 the entry of x

at the vertex of degree 𝑛 − 1. By Lemma 2.1, x has equal entries for any two vertices with degree larger than
one and less than 𝑛− 1 (degree one, respectively), which we denote by 𝑥1 (𝑥2, respectively). Then

𝜚𝑥0 =
𝑛− 𝑝− 1

2
𝑥1 +

𝑝

2
𝑥2,

𝜚𝑥1 =
1
2
𝑥0 +

𝑛− 𝑝− 2
2

𝑥1 +
𝑝

4
𝑥2,

and

𝜚𝑥2 =
1
2
𝑥0 +

𝑛− 𝑝− 1
4

𝑥1 +
𝑝− 1

4
𝑥2.
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As (𝑥0, 𝑥1, 𝑥2)⊤ is nonzero, we have

det

⎛⎜⎜⎝
𝜚 −𝑛−𝑝−1

2 −𝑝
2

− 1
2 𝜚− 𝑛−𝑝−2

2 −𝑝
4

− 1
2 −𝑛−𝑝−1

4 𝜚− 𝑝−1
4

⎞⎟⎟⎠ = 0.

i.e., 𝑓(𝜚) = 0 with

𝑓(𝑡) = 𝑡3 +
𝑝− 2𝑛 + 5

4
𝑡2 − 𝑝2 − (𝑛− 1)𝑝 + 6𝑛− 8

16
𝑡− 𝑝2 − (𝑛− 2)𝑝 + 𝑛− 1

16
.

It follows that 𝜚 is the largest root of 𝑓(𝑡) = 0. �

The connectivity of a graph 𝐺 is the minimum number of vertices whose removal results in a disconnected or
trivial graph. For an 𝑛-vertex connected graph 𝐺 with connectivity 𝑠, we have 1 ≤ 𝑠 ≤ 𝑛− 1, and 𝑠 = 𝑛− 1 if
and only if 𝐺 is complete.

Theorem 4.9. Let 𝐺 be an 𝑛-vertex connected graph with connectivity 𝑠, where 1 ≤ 𝑠 ≤ 𝑛 − 2. Then 𝜚(𝐺) ≤
𝜚(𝐾𝑠 ∨ (𝐾1 ∪𝐾𝑛−𝑠−1)) with equality if and only if 𝐺 ∼= 𝐾𝑠 ∨ (𝐾1 ∪𝐾𝑛−𝑠−1), where 𝜚(𝐾𝑠 ∨ (𝐾1 ∪𝐾𝑛−𝑠−1)) is
the largest root of 𝑡3 − 𝑛−3

2 𝑡2 − 5𝑛+3𝑠−9
16 𝑡− 𝑠2−(𝑛−4)𝑠+𝑛−1

32 = 0.

Proof. Let 𝐺 be an 𝑛-vertex connected graph with connectivity 𝑠 that maximizes the spectral closeness. Then
𝐺−𝑆 is disconnected for some 𝑆 ⊂ 𝑉 (𝐺) with |𝑆| = 𝑠. By Lemma 2.2, we have 𝐺[𝑆] = 𝐾𝑠, there exist positive
integers 𝑛1 and 𝑛2 with 𝑠+𝑛1 +𝑛2 = 𝑛 such that 𝐺−𝑆 = 𝐾𝑛1 ∪𝐾𝑛2 , and 𝐺 ∼= 𝐾𝑠∨ (𝐾𝑛1 ∪𝐾𝑛2). Assume that
𝑛2 ≥ 𝑛1. Let x be the closeness Perron vector of 𝐺. By Lemma 2.1, x has the same entry for any corresponding
vertex of 𝐺 in 𝑆 (𝑉 (𝐾𝑛1), 𝑉 (𝐾𝑛2), respectively), which we denote by 𝑥0 (𝑥1, 𝑥2, respectively). Suppose that
𝑛1 > 1. For 𝑢 ∈ 𝑉 (𝐾𝑛1), let 𝐻 = 𝐺 − {𝑢𝑤 : 𝑤 ∈ 𝑉 (𝐾𝑛1)} + {𝑢𝑧 : 𝑧 ∈ 𝑉 (𝐾𝑛2)}. By considering the distance
changes as we pass from 𝐺 to 𝐻 and using Rayleigh’s principle, we have

1
2

(𝜚(𝐻)− 𝜚(𝐺))

≥ 𝑥𝑢

⎡⎣ ∑︁
𝑤∈𝑉 (𝐾𝑛1 )∖{𝑢}

(2−2 − 2−1)𝑥𝑤 +
∑︁

𝑧∈𝑉 (𝐾𝑛2 )

(2−1 − 2−2)𝑥𝑧

⎤⎦
=

1
4
𝑥1(𝑛2𝑥2 − 𝑛1𝑥1 + 𝑥1)

(4.5)

By the closeness equations of 𝐺 at any vertex in 𝑉 (𝐾𝑛1) and in 𝑉 (𝐾𝑛2), we have(︂
𝜚(𝐺) +

1
2

)︂
(𝑥2 − 𝑥1) =

1
4

(𝑛2𝑥2 − 𝑛1𝑥1) ≥ 1
4
𝑛1(𝑥2 − 𝑥1),

i.e., (︂
𝜚(𝐺) +

1
2
− 1

4
𝑛1

)︂
(𝑥2 − 𝑥1) ≥ 0.

As 𝐾𝑛1 is an induced subgraph of 𝐺, we have by Lemma 2.3 that 𝜚(𝐺) > 𝑛1
4 . So 𝑥2 ≥ 𝑥1. Therefore, (4.5)

implies that 𝜚(𝐻) > 𝜚(𝐺), a contradiction. It follows that 𝑛1 = 1. That is, 𝐺 ∼= 𝐾𝑠 ∨ (𝐾1 ∪𝐾𝑛−𝑠−1).
In the following we compute 𝜚 = 𝜚(𝐾𝑠 ∨ (𝐾1 ∪𝐾𝑛−𝑠−1)). Let x be the closeness Perron vector of 𝐾𝑠 ∨ (𝐾1 ∪

𝐾𝑛−𝑠−1). By Lemma 2.1, we denote by 𝑥0 the entry of x at a vertex of degree 𝑛 − 1, 𝑥1 the entry of x at a
vertex of degree 𝑠, and 𝑥3 the entry of x at a vertex of degree 𝑛− 2. Then

𝜚𝑥0 =
𝑠− 1

2
𝑥0 +

1
2
𝑥1 +

𝑛− 𝑠− 1
2

𝑥2,
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𝜚𝑥1 =
𝑠

2
𝑥0 +

𝑛− 𝑠− 1
4

𝑥2

and
𝜚𝑥2 =

𝑠

2
𝑥0 +

1
4
𝑥1 +

𝑛− 𝑠− 2
2

𝑥2.

So

det

⎛⎜⎜⎝
𝜚− 𝑠−1

2 − 1
2 −𝑛−𝑠−1

2

− 𝑠
2 𝜚 −𝑛−𝑠−1

4

− 𝑠
2 − 1

4 𝜚− 𝑛−𝑠−2
2

⎞⎟⎟⎠ = 0.

It follows that 𝜚 is the largest root of 𝑓(𝑡) = 0, where

𝑓(𝑡) = 𝑡3 − 𝑛− 3
2

𝑡2 − 5𝑛 + 3𝑠− 9
16

𝑡− 𝑠2 − (𝑛− 4)𝑠 + 𝑛− 1
32

. �

�

5. Residual spectral closeness

Recall that there have been lots of results on the computational aspect [2–4, 11, 12, 18] and on the extremal
aspect [8, 22, 24]. The residual spectral closeness may be used as a spectral measure of graph or network
structures. In this section, we give some extremal results on the residual spectral closeness.

If 𝐺 is a tree of order 𝑛 ≥ 2, it is easy to see that 𝜚𝑅(𝐺) ≥ 0 with equality if and only if 𝐺 ∼= 𝑆𝑛.

Theorem 5.1. Let 𝐺 be a graph on 𝑛 ≥ 2 vertices. Then

0 ≤ 𝜚𝑅(𝐺) ≤ 𝑛− 2
2

with left equality if and only if 𝐺 is a spanning subgraph of 𝑆𝑛 and with right equality if and only if 𝐺 ∼= 𝐾𝑛.

Proof. It is trivial if 𝑛 = 2. Suppose that 𝑛 ≥ 3. Assume that 𝜚𝑅(𝐺) = 𝜚(𝐺− 𝑣). By Lemma 4.2,

0 ≤ 𝜚(𝐺− 𝑣) ≤ 𝑛− 2
2

,

where left equality holds if and only if 𝐺− 𝑣 is the empty graph, i.e., 𝑣 is an end vertex of any edge, i.e., 𝐺 is
a spanning subgraph of 𝑆𝑛, and right equality holds if and only if 𝐺− 𝑣 is the complete graph, or equivalently,
𝐺 ∼= 𝐾𝑛, as, if the degree of 𝑣 is smaller than 𝑛− 1, then for any vertex 𝑤 that is not a neighbor of 𝑣, 𝐺−𝑤 is
not complete, so 𝜚𝑅(𝐺) ≤ 𝜚(𝐺− 𝑤) < 𝑛−2

2 , which is a contradiction. �

Theorem 5.2. Let 𝐺 be a bipartite graph on 𝑛 ≥ 4 vertices. Then

𝜚𝑅(𝐺) ≤

⎧⎨⎩
3𝑛−5

8 if 𝑛 is odd

𝑛−3+
√

4(𝑛−1)2−3

8 if 𝑛 is even

with equality if and only if 𝐺 ∼= 𝐾⌊𝑛/2⌋,⌈𝑛/2⌉.

Proof. Assume that 𝜚𝑅(𝐺) = 𝜚(𝐺− 𝑣). By Theorem 4.2,

𝜚𝑅(𝐺) = 𝜚(𝐺− 𝑣) ≤

⎧⎨⎩
3𝑛−5

8 if 𝑛− 1 is even

𝑛−3+
√

4(𝑛−1)2−3

8 if 𝑛− 1 is odd
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with equality if and only if 𝐺− 𝑣 ∼= 𝐾⌊(𝑛−1)/2⌋,⌈(𝑛−1)/2⌉.
Suppose that the upper for 𝜚𝑅(𝐺) is attained. Then 𝐺−𝑣 ∼= 𝐾⌊(𝑛−1)/2⌋,⌈(𝑛−1)/2⌉. Let 𝑋 and 𝑌 be the partite

sets of 𝐺. Suppose first that 𝑛 is odd. Then 𝐺 ∼= 𝐾(𝑛−1)/2,(𝑛+1)/2. Otherwise, assume that 𝑣 ∈ 𝑋. Then 𝑣
is not adjacent to each vertex in 𝑌 , so for any vertex 𝑤 in 𝑋, 𝐺 − 𝑤 is not a complete bipartite graph and
then by Theorem 4.2, 𝜚𝑅(𝐺) ≤ 𝜚(𝐺− 𝑤) < 3𝑛−5

8 , a contradiction. Suppose next that 𝑛 is even. Then |𝑋| = 𝑛
2

or 𝑛
2 + 1. If |𝑋| = 𝑛

2 + 1, then |𝑌 | = 𝑛
2 − 1 and 𝑣 ∈ 𝑋, so for any 𝑤 ∈ 𝑌 , we have by Lemma 4.2 that

𝜚𝑅(𝐺) ≤ 𝜚(𝐺 − 𝑤) <
𝑛−3+

√
4(𝑛−1)2−3

8 , a contradiction. So |𝑋| = 𝑛
2 . Assume that 𝑣 ∈ 𝑋. Then 𝐺 ∼= 𝐾𝑛/2,𝑛/2.

Otherwise, 𝑣 is not adjacent to each vertex in 𝑌 , so for any vertex 𝑤 in 𝑋, 𝐺 − 𝑤 is not a complete bipartite

graph and then by Theorem 4.2, 𝜚𝑅(𝐺) ≤ 𝜚(𝐺− 𝑤) <
𝑛−3+

√
4(𝑛−1)2−3

8 , a contradiction. �

Theorem 5.3. Let 𝐺 be a graph in which two vertices 𝑢 and 𝑣 are not adjacent. Then 𝜚𝑅(𝐺) ≤ 𝜚𝑅(𝐺 + 𝑢𝑣).

Proof. Let 𝐻 = 𝐺+𝑢𝑣. Assume that 𝜚𝑅(𝐻) = 𝜚(𝐻−𝑤) with 𝑤 ∈ 𝑉 (𝐻). If 𝑤 ̸= 𝑢, 𝑣, then 𝐻−𝑤 = 𝐺−𝑤+𝑢𝑣,
so, by Lemma 2.2, we have 𝜚𝑅(𝐺) ≤ 𝜚(𝐺 − 𝑤) ≤ 𝜚(𝐻 − 𝑤) = 𝜚𝑅(𝐻). If 𝑤 = 𝑢 or 𝑣, say 𝑤 = 𝑢, then, as
𝐻 − 𝑢 = 𝐺− 𝑢, we have 𝜚𝑅(𝐺) ≤ 𝜚(𝐺− 𝑢) = 𝜚(𝐻 − 𝑢) = 𝜚𝑅(𝐻). �

Note that, for a connected graph 𝐺 in which two vertices 𝑢 and 𝑣 are not adjacent, we have 𝜚(𝐺) < 𝜚(𝐺+𝑢𝑣)
by Perron-Frobenius theorem and 𝜚𝑅(𝐺) ≤ 𝜚𝑅(𝐺 + 𝑢𝑣) by Theorem 5.3. So, to characterize completely the
graphs in some classes that minimize (maximize, respectively) the residual spectral closeness is generally harder
than to characterize completely the graphs in some classes that minimize (maximize, respectively) the spectral
closeness. So, we leave more extremal problems to determine the graphs that minimize (maximize, respectively)
the residual spectral closeness in some classes of graphs in the future.

Besides extremal problems on the residual spectral closeness, in the following steps, one may study the relation
between the residual spectral closeness, the spectral closeness, closeness and residual closeness.
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