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ON THE SPECTRAL CLOSENESS AND RESIDUAL SPECTRAL
CLOSENESS OF GRAPHS

Lu ZHENG® AND BoO ZHOU*

Abstract. The spectral closeness of a graph G is defined as the spectral radius of the closeness matrix
of G, whose (u,v)-entry for vertex u and vertex v is 2~ da(wv) if 4 # v and 0 otherwise, where d¢(u, v)
is the distance between v and v in G. The residual spectral closeness of a nontrivial graph G is defined
as the minimum spectral closeness of the subgraphs of G with one vertex deleted. We propose local
grafting operations that decrease or increase the spectral closeness and determine those graphs that
uniquely minimize and/or maximize the spectral closeness in some families of graphs. We also discuss
extremal properties of the residual spectral closeness.
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1. INTRODUCTION

A complex network is often modeled as a simple and undirected graph. Let G be a graph on n vertices with
vertex set V(G) and edge set E(G). For u,v € V(G), the distance between u and v in G, denoted by dg(u,v),
is the length of a shortest path from « to v in G. Particularly, dg(u,w) = 0 for any u and dg(u,v) = oo if there
is no path from w to v in G. For detail on graph distances, we refer to the book [7]. The spectral properties of
some matrices associated with graphs such as the adjacency matrix (for any graph) and the distance matrix
(for any connected graph) have been studied extensively, see [1,10].

For a graph G that is not necessarily connected, the closeness matriz of G is defined as C(G) =

(ca(u;v))uwev(a), Where
2—dc(u,v) if
CG(U7’U):{ if u#w,

0 otherwise.

It can be readily seen that two n-vertex graphs G and G are isomorphic if and only if PC(G)PT = C(Gs)
for some permutation matrix P of order n. That is, the vertices of G; may be relabeled so that its closeness
matrix is just C(Gz2). So, a graph can be completely described by giving the closeness matrix.

The closeness matrix may be extended to the g-closeness matrix (or exponential distance matrix [6], g-distance
matrix [23]) for any real number ¢ € (0,1) by defining the (u,v)-entry to be ¢%¢(*v) if 4 # v and 0 otherwise.
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Dangalchev [11] introduced a novel version of closeness as a measure of centrality [13,14]. For a graph G with
v € V(G), the closeness of vertex v in G is defined as [11]

)= Y e

weV(G)\{v}

and the closeness of a graph G is defined as [11]

It is evident that ¢(G) is equal to the sum of all entries of the matrix C(G). Moreover, this concept of closeness
is then used in [11] to define the (vertex) residual closeness of a nontrivial graph G by

R(G) = min{c¢(G —u) : u € V(G)},

which is used to measure the network resistance in the face of possible node destruction, see also [2—4,12,18].
For a graph G, C(G) is a symmetric nonnegative matrix. Moreover, C(G) is irreducible if and only if G is
connected.
The spectral radius (or principal eigenvalue) of a square nonnegative matrix M is defined as

w(M) = max{|A| : A is an eigenvalue of M }.

The spectral closeness of a graph G is defined as the spectral radius of its closeness matrix, denoted by o(G).
That is, o(G) = u(C(G)). As C(G) is symmetric, its eigenvalues are all real, so p(G) is equal to the greatest
eigenvalue of C'(G). A routine connection between the spectral closeness and the closeness of an n-vertex graph
G is

«(G)

n

< o(G) < max{cg(v) : v € V(GQ)}

with either equality when G is connected if and only if ¢ (v) is a constant for any v € V(G). The left part follows
from Rayleigh’s principle and Perron-Frobenius theorem, while the right part follows from a classical result that
the spectral radius of a nonnegative matrix is bounded from above by the maximum row sum (see Lem. 2.3
below). So, o(G) is indeed a graph invariant that is closely related the closeness of the graph G. Similarly, we
propose the residual spectral closeness of a nontrivial graph G to be defined as

o(G) = min{o(G —v) : v € V(G)}.

with convention that o®(K;) = 0. As above, for an n-vertex graph G with n > 2, one has

R(G) . c(G—=v) R .
= ——= < 07(G) < _p(w).
n—1 oSy hor ¢ @< min (R, ce ()

Spectral measures have long been used to quantify the robustness of networks. For example, spectral radius
of the adjacency matrix of a graph is related to the effective spreading rates of dynamic processes (e.g., rumor,
disease, information propagation) on networks [9,20], and the spectral radius of distance matrix of a connected
graph is used as a molecular descriptor [5,15,21].

For an n-vertex graph G with n > 2, we may view % as a normalized version of the residual closeness
of G. In this sense, the residual spectral closeness is the spectral version of this ‘normalized version of residual
closeness’. Like the residual closeness, it may also serve as a network vulnerability parameter in the model where
links are reliable and the nodes fail independently of each other, or it may also be viewed as a measure of graph

or network structures.
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FiGURE 1. Graphs W and H.

As demonstrated by the example below, spectral closeness and residual spectral closeness may be used to
distinguish graphs with equal closeness.

In [12], Dangalchev gave a pair of graphs W and H on 7 vertices (in Figs. 3 and 4 in [12]) with the same
closeness. See Figure 1 for W and H.

Note that W has no cut vertex and H has a cut vertex, so the two graphs are quite different. By an easy
calculation, we find that they have different spectral closeness as o(W) = H—T\/ﬁ ~~ 2.3802 < p(H) = 2.5. Let u
be the vertex of degree 7 in W (6 in H, respectively) and v be any other vertex in W (H, respectively). Then
o(W —u) =1 < o(W — v) ~ 2.0240 and o(H —u) = 1 < o(H — v) ~ 2.0251, so W and H have also different
residual spectral closeness as o™(W) = 13 > 1 = of(H) = 1.

Denote by G a class of graph and f(G) a graph invariant. Often, it is of interest to study the extremal
problem to determine

min{f(G) : G € G}

and

max{f(G) : G € G}.

Moreover, we want to identify those graphs in G for which the above minimum and maximum are achieved,
respectively.

The rest of this article is organized as follows. Section 2 introduces preliminaries including concepts and
lemmas that are needed in subsequent proofs. In Section 3, we propose some local grafting operations that
decrease or increase the spectral closeness. In Section 4, we study the above extremal problem to identify
the graphs that minimize and/or maximize the spectral closeness in some well known classes of graphs by
exploiting the results established in Section 3. In particular, we identify the unique trees, unicyclic graphs,
graphs with given number of pendant vertices and graphs with given connectivity that maximize the spectral
closeness, respectively. In Section 5, we give some preliminary results for the residual spectral closeness and
discuss further study in the future.

2. PRELIMINARIES

For vertex disjoint graphs G and Gs, let G; U G be the (vertex disjoint) union of G; and Go, and Gy V Gs
the join of G; and G, obtained from G; U G2 by adding all possible edges between vertices in G; and vertices
in Go. For S C V(G), let G — S denote the graph obtained by removing each vertex of S (and all associated
incident edges), and we write G —v for G —{v} for v € V(G). For E C E(G), G — E denotes the graph obtained
from G by removing all edges of E, and we write G — e for G — {e} for e € E(G). Let G be the complement of

a graph G. For a set E' C E(G), G+ E’ denotes the graph obtained from G by adding all edges of E’, and we
write G + uv for G + {uv} for uv € E(G). For a graph G with v € V(G), denote by Ng(v) the set of vertices
that are adjacent to v in G.

Let K,, P, and S, be the n-vertex complete graph, path and star, respectively. Let K, ; be the complete

bipartite graph with a and b vertices in the two partite sets, respectively. Let S;” be the graph obtained from
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Sy, by adding an edge. Let D,, ;, be the n-vertex tree of diameter 3 such that its two center vertices have degrees
£+ 1 and n — ¢ — 1, respectively.

Let v be a vertex of a graph G. The degree of v in G is the number of edges that are incident to v in G. The
vertex v is called a pendant vertez if its degree in G is one. An edge in a graph G is called a pendant edge if it
is incident to a pendant vertex in G.

Let G be a graph with V(G) = {vq,...,v,}. Let x = (%,,,...,2,,) " be a real vector. Then

x'C@Gx= Y 27960y,
u,veV(G)

If G is connected, then C(G) is irreducible, so, by Perron-Frobenius theorem, o(G) is a simple eigenvalue of
C(G), and associated with o(G), there is a unique positive unit eigenvector, which we call the closeness Perron
vector of GG.

If G is connected and x is the closeness Perron vector of G, then, for any vertex v € V(G), from o(G)x =
C(G)x, we have

oGz, = Y 27delulg, (2.1)
veV(G)\{u}

We call (2.1) the closeness equation of G at u.
Let G be a graph of order n. By Rayleigh’s principle, for any n-dimensional unit (column) vector x, we have
0(G) > xTC(G)x with equality if and only if x is an eigenvector associated with o(G).

Lemma 2.1. Let G be a connected graph and x the closeness Perron vector of G. Let ¢ be an automorphism
of G. If p(u) = v, then x, = x,.

Proof. Denote by P = (Pyy)u,vev(g) the permutation matrix such that P,, = 1 if p(u) = v and 0 otherwise.
Then C(G) = PC(G)PT. So o(G) =x"C(G)x =x"PC(G)P"x = (PTx)"C(G)(P"x). By Rayleigh’s princi-
ple and Perron-Frobenius theorem, P x = x. This implies that x, = z, provided that P,, = 1, or equivalently,
p(u) =v. O

Recall that, for a square nonnegative matrix M, p(M) is the spectral radius of M. Combining Corollaries
2.1 and 2.2 in Page 38 of [17], we have the following lemma.

Lemma 2.2. [17] Let By and B be n X n nonnegative matrices such that By — By is nonnegative. Then
w(B1) > u(Bs). Furthermore, if By is irreducible and By # Ba, then u(B1) > u(Bs2).

For a principal matrix M of C(G) for a graph G, we have o(G) > p(M). This follows from Lemma 2.2 (by
noting that pu(M) = pu(M’) with M’ being the matrix obtained from C(G) by replacing any entry not in M by
0), and it is part of the well known Interlacing Theorem (see, e.g., Theorem 4.3.28 in Page 246 of [16]). For any
graph G with two nonadjacent vertices v and v, by Lemma 2.2, we have o(G + uv) > o(G), and it is strict if
G + uv is connected.

The following lemma is well known, see, e.g., Theorem 1.1 in Page 24 of [17].

Lemma 2.3. [17] Let B be a nonnegative matriz of order n with the i-th row sum r;(B) fori=1,...,n. Then
min{r;(B):i=1,...,n} < pu(B) <max{r;(B) :i=1,...,n}

with either equality when B is irreducible if and only if r1(B) = --- = r,(B).
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FIGURE 2. Graph G, (k,r).

3. EFFECT OF LOCAL GRAFTING OPERATIONS ON THE SPECTRAL CLOSENESS

In this section, we propose some local grafting operations that decrease or increase the spectral closeness. By
a local grafting operation, we mean to remove and add some edge(s) to form a new graph with certain desired
structure.

A path P := ug...ug in a graph G is called a pendant path of length k at ug if the degree of uy is one,
the degree of ug is at least two, and if k > 1, the degree of u; is two for all ¢ = 1,...,k — 1. In particular, a
pendant path of length one is a pendant edge. If P := ug...u is a pendant path of G at ug, we also say G is
obtained from H — {uy,...,u;} by attaching a pendant path of length k at wg. For positive integers k and r,
let G, (k,r) be the graph obtained from G by attaching two pendant paths of length k and r respectively at
u, and let G, (k,0) be the graph obtained from G by attaching a pendant path of length & at u, see Figure 2,
where the pendant paths are uuy ... ux and uvy ... v,.

Theorem 3.1. Let G be a connected nontrivial graph with ug € V(G). Let k and r be positive integers. Then
Q(Guo(k + T7 0)) < Q(Guo (k7 ’l"))

Proof. Let H = Gy, (k,r). Let P := uguy ...u; and Q := ugvy ... v, be the two pendant paths at ug in H. Let
H' =G —{uww: w € Ng(ug)} + {urw : w € Ng(ug)}. It is evident that H' = Gy, (k + r,0).

Let x be the closeness Perron vector of H'. Let A = EfZO(Q_i —27k=)g . Let d = dg(ug, w) for w € V(G).
It is easy to see that as we pass from H to H’, the distance between any two vertices in V(G) \ {uo} and in
V(P) UV (Q) remains unchanged. By considering the changes of the entries of the closeness matrix as H is
changed into H’ and using Rayleigh’s principle, we have

5 (") — o))

%XT(C(H’) — C(H))x

k r
Z 2o Z (2—(d+k—i) _ 2—(d+i)) s + Z (2—(d+k+i) _ 2—(d+i)> myi]

IN

weV (G)\{uo} =0 i=1
k r
= > 2%, l (27*0 — 27z, + ) (27D 2—1')%] :
weV (G)\{uo} =0 i=1

5 (") — o))

.
< Z 2_dl‘w(—A) + Z_dl‘w 2(2—(k+i) _ 2_i)xv,i-
weV(G)\{uo} weV (G)\{uo} i=1

(3.1)
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v

G Gll\'

FIGURE 3. Graphs G and G, in proof of Theorem 3.2.

Now define a new vector y by setting vy, = @y, _, if 0 < i < k, and y, = zy if w € V(H')\ {uo,...,ur}
It is evident that |ly|| = |x|| = 1. Then, we have

5 (e(H") — o(H)

< SO~y CH)y)

k T T k
— Z Tw (Z 2—(d+k—i)xw + Z 2—(d+k+z’)xvi> + Z I, Z 2—(i+j)xuj
weV (G)\{uo} i=0 i=1 i=1 =0
k I r k
- Y W (Z 2y, + Zzwmym) =Y wn Y2y,
weV (G)\{uo} =0 i=1 i=1 j=0
k r
_ Z 2=z, (Z 2*(k—i)xui + Z 2*(k+i)xvi
weV (G)\{uo} i=0 i=1
k r r k
- Z 27wy, — Z 27z, | + Z 27, Z 27 (T — Tuy_,)
i=0 i=1 i=1 §=0
r r k
SIS (2‘“@“’) - 2—1') 2o+ 272, (2—3' - 2—<’H’>) Tu,,
weV (G)\{uo} i=1 i=1 j=0
S0 . .
%(Q(H’) —oH)< > 2%, Z(z*’m) — 27z, + Z 27z, A. (3.2)
weV (G)\{uo} i=1 i=1
If A > 0, then, as (2=+) — 279z, < 0 for 1 <4 < r, we have o(H') < o(H) from (3.1). Otherwise, as
(2=t — 279z, < 0 for 1 <i <r, we have o(H') < o(H) from (3.2). O

Theorem 3.2. Let G be a connected graph with a cut edge uv that is not a pendant edge. Let
Guo =G — {vw : w € Ng(v) \ {u}} + {uw : w € Ng(v) \ {u}}.
Then o(Guw) > 0(G).

Proof. Let x be the closeness Perron vector of G.
Let G and G be the components of G — uv containing u and v, respectively, see Figure 3. As we pass from
G to Gy, the distance between any vertex in V(Gz) \ {v} and any vertex in V(Gy) is decreased by 1, the
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distance between any vertex in V(G2) \ {v} and v is increased by 1, and the distance between any other vertex
pair remains unchanged. So, by Rayleigh’s principle, we have

Y%

| =
"

iy
Q
Q
I3

N
Q
)
®

weV (G2)\{v} 2€V(G1)

4 (2—(dc(wﬂ))+1) _ Q—dcmv)) o

— Z T Z 2—dc(w72)xz + Q—dc(w»u)xu _ 2—(dc(w7v)+1)xv
weV (G2)\{v} 2eV(G1)\{u}

— Z Tw Z 2—dc(w,z)xz + 2—dc(w,u) (mu _ xv)
weV (G2)\{v} 2€V(G1)\{u}

Let Gy = G — {uw : w € Ng(u) \ {v}} + {vw : w € Ng(u) \ {v}}. Similarly, we have

1

5(0(Guu) = 0(G))

weV (G1)\{u} z€V(G2)\{v}

So, if x, > x,, then o(Gyy) > 0(G), and otherwise, o(G,yn) > 0(G). Note that Guy = Guy. So 0(Guy) >
o(G). O

Theorem 3.3. Let G be a connected graph. Let H be an induced subgraph of G of order p and H = K,,. Suppose
that G — E(H) consists of p components. Suppose that G, and G, are two nontrivial components of G — E(H)
containing u,v € V(H), respectively. Let

H =G —{uw:w e Ng,(u)} +{vw: w € Ng, (u)}
and

Hy;=G—{vw:w e Ng,(v)} +{uw : w € Ng, (v)},
see Figure 4. Then o(Hy) > o(G) or o(Hz) > o(G).

Proof. Let x be the closeness Perron vector of G.

Note that as we pass from G to Hy, the distance between a vertex w € V(G,,) \ {u} and w is increased by 1,
the distance between a vertex w € V(G,) \ {u} and any vertex in V(G,) is decreased by 1, and the distance
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between any other vertex pair remains unchanged. So we have by Rayleigh’s principle that

* (olH:) ~ 0()
Z%(XT (C(Hy) - C(G))x)

= Y a (2—<dc<w,u>+1>_Q—dcw,u))mu
weV (Gu)\{u}

+ (2fd(;(w,u) _ 27(dc;(w,u)+1)) Ty

+ Z (2—(dg(w,u)+dc(v,z)) _ 2—(dc(w,u)+1+dc(v,z))> "
ZGV(Gv)\{U}

z

2—(dc(w,u)+l)xw Ty — Ty + Z 2—dc(v,z)$z
weV(Gu)\{“} ZEV(G,,)\{U}
If z, > x,, then, as ZZGV(GU)\{E} 2-dc(v:2)g: > (), we have %(Q(Hl) — 0(G)) > 0, so o(Hy) > o(G). Suppose
that x, < x,. Similarly as above, we have
1

5 (0(Hz) = 0(G))

S (T (C(H) — C(@))

v

= Z T (Q—dc(w,v) _ 2—(dc(w,u)+1)) Ty
weV(Gy)\{v}

i (27<dc<w7v>+1> _ Qfdf;(w,v)) Ty

n Z 9—(da(w,w)+da(u,2)) _ 27(dc;(w,v)+1+dg(u,z))) .

zEV(Gu)\{u}
— Z 27(dc(w,’v)+1)xw xu _ 331; + Z 27dg(u,z)xz
weV (Gy)\{v} zeV(Gu)\{u}
>0,
so o(Hz) > o(G). O

Theorem 3.4. Let G be a connected graph with a cycle Cy := vy ...v4v1 such that G — E(Cy) consists of g
components G1,...,Ggy, where v; € V(G;) fori=1,...,9 and g > 4. Let x be the closeness Perron vector of
G. Let x, = max{z,, :i=1,...,g}. Let
Hy = G — vouz — vg_1v4 + 0103 + 01041 — {vow : w € Ng, (v2)}

—{vyw : w € Ng, (vg) + {v1w : w € Ng,(v2) U Ng, (vg)}

if g is odd, and
Hy =G —vouz + v103 — {vow : w € Ng,(v2)} + {viw : w € Ng, (v2)}

if g is even, see Figure 5. Then o(Hy) > o(G) if g is odd, o(Hz2) > o(G) if g is even.
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Qo _ | QA2

Q& QO éw @

G 1 H:

FIGURE 4. Graphs G, H; and Hy in Theorem 3.3.

FIGURE 5. Graphs GG, H; and Hy in Theorem 3.4.

Proof. Let V; = V(G;) for 3,...,9 — 1, V; = V(G;) \ {v;} for i = 2, g. Suppose first that g is odd. As we pass
from G to Hy, the distance between vy and any vertex in Ugi ;1)/ 2Vi is increased by 1, the distance between v,
and any vertex in Uf:(g +3) /QVi is increased by 1, the distance between v; and any vertex in UY_,V; is decreased
by 1, and the distance between each other pair of vertices remains unchanged or is decreased. Thus

1 1
5 (e(H) = o(G)) > 5 (x"(C(H) = C(G)x)
(g+1)/2
> Ty, Z (2—(dc(v2,w)+l) _ 2—dc(v2,w)> Lo
i=2  weV;

g
ta,, > (2—<dc(vg,w)+1) _ Q—dcwg,w)) T
i=(g+3)/2 weV;

g9
tan >N (2—<dc<v1,w>—1> _ Q—dcm,w)) T

i=2 wev;
(9+1)/2

= —1,, Z Z 2—dc(v2,w)—lxw

=2 weV;

— 2y, zg: Z Q—dc(vng)—ll.w

i=(g+3)/2 weV;
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g
g, Y Y 27l

i=2 wev;
(9+1)/2

= 2 D ey @y —a)

i=2 weV;

g
D DD SE ST I,
i=(g+3)/2 weV;
Z 0’
which implies that o(H1) > o(G) as z,, = max{z,, :i=1,...,g}.
Suppose that o(H;) = o(G). Then, all the above inequalities are equalities. In particular, x is the closeness
Perron vector of Hy, and z,, = x,,. By the closeness equations of H; at v, v2, we have

o(Hy)xy, = Z 9~y (wvn) g 4 9—du (”2’”1)%2
weV (Hy)\{v1,v2}
and
o(Hy)x,, = > gmdm (wva)y y 9=dm (viva)y
weV (Hi)\{vi,v2}
So

(Q(Hl) + 27dH1 (01,1)2)) (xvl _ :17712) — Z (Qdel (wyv1) _ Qdel (w,vg)) Ty
weV (Hy)\{v1,v2}

As dy, (v1,w) < dp, (v2,w) for w € V(Hyp) \ {v1,v2}, we have

S (2t —pmiman) g, s,
weV (H1)\{v1,v2}

SO Xy, > Ty,, which is a contradiction. It thus follows that o(H;y) > o(G).

Suppose next that g is even. As we pass from G to Hs, the distance between vy and any vertex in Uff;lvi is
increased by 1, the distance between v; and any vertex in UfszVi is decreased by 1, and the distance between
each other pair of vertices remains unchanged or is decreased. Thus

(x"(C(Hz) - C(G))x)

N | =

S (0l1) — 0(G) 2
g/2+1

> Lo, Z Z (27(1@(1}2,’[1})71 _ 27d(;(v27w)> T
=2 weV;
g/2+1
b SY (st petetn g, @9
=2 weV;
g/2+1
LSS e, )
=2 weV;
>0

)

implying that o(Hs) > o(G).
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Suppose that o(Hz) = o(G). Then all inequalities in (3.3) are equalities, and thus x is the closeness Perron
vector of Hy and x,, = x,,. By the closeness equations of Hy at vy, vy, we have

o(Ha),, = > 2= dms (W), 4 9= dma (V2 )y
weV (Hz)\{v1,v2}

and
i, = Y e, o,
weV (Ha)\{v1,v2}
Note that dg, (v1,w) < dp,(ve,w) for w € V(Hs) \ {v1,v2}. By similar argument as above, we have z,, > x,,,
a contradiction. Hence, o(Hsz) > o(G). O

4. (GRAPHS MINIMIZING OR MAXIMIZING THE SPECTRAL CLOSENESS

Rupnik Poklukar and Zerovnik [19] determined the graphs that minimize and maximize the closeness among
several classes of graphs including trees and cacti. In this section, we find those graphs that uniquely minimize
or maximize the spectral closeness in some classes of graphs.

Theorem 4.1. Let G be a graph on n vertices. Then

n—1
2

0<o(G) <

with left equality if and only if G is the empty graph and with right equality if and only if G is the complete
graph.

Proof. If there is an edge uv in G, then C(G) has a principal submatrix

whose spectral radius is 1, so by Interlacing Theorem, we have o(G) > 1 > 0. Therefore, o(G) > 0 with equality
if and only if G is the empty graph.

On the other hand, we have C(K,) — C(G) is nonnegative and C(K,,) is irreducible. Note that o(K,) = 25t
by Lemma 2.3. So, by Lemma 2.2, o(G) < ”T_l with equality and only if G is the complete graph K. O

Theorem 4.2. Let G be a bipartite graph on n > 2 vertices. Then

3n—2

5 if n is even

0(G) < ,
n—2+vin®—3 W if n is odd

with equality if and only if G = K|, 2] [n/2]-

Proof. By Lemma 2.2, o(G) < o(K, ) for some r and s with 1 <r < s and r + s = n. Let x be the closeness
Perron vector of o = o(K, ). By Lemma 2.1, we denote by z (y, respectively) the entry of x at a vertex of
degree s and (r, respectively). Then

r—1 +s
T = T+ =
o 1 22!
and
r s—1
oy = zx + Y.

2 4
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So .
0— r—1 _5
det < T4 j_1> =0,
—2 0777
i.e., 0> — ”T_2Q — % =0, ie., p = n=2kVni+lors V;LQJFIQM, which is maximized if and only if r = [%] and
s=[%]. O

Theorem 4.3. Let G be a connected graph of order n. Then o(G) > o(P,,) with equality if and only if G = P,.

Proof. Let G be a connected graph of order n that minimizes the spectral closeness. By Lemma 2.2, G is a tree.

We show that G & P,. Otherwise, there is a vertex u in GG of degree at least 3. If u is not the only vertex of
degree at least three in G, then we may choose a vertex v of degree at least three such that dg(u,v) is as large
as possible. In this case, there are at least two pendant paths, say P and @, at v in G. Then G = H,(p,q),
where H is the graph obtained from G by deleting the vertices of P and @ except v, p is the length of P and ¢
is the length of Q. By Theorem 3.1, o(H,(p + ¢,0)) < o(H,(p,q)) = o(G), a contradiction. Thus, u is the only
vertex of degree at least three. Let L and S be two pendant paths at v in G with lengths ¢ and s, respectively.
Then G = H](¢,s), where H' is the graph obtained from G by deleting the vertices of L and S except u.
By Theorem 3.1 again, o(H,,(¢ + 5,0)) < o(H,,(¢,s)) = o(G), also a contradiction. O

Theorem 4.4. Let G be an n-vertex tree. Then

<n—2+\/n2+12n—12
- 8

0(G)

with equality if and only if G =2 S,,.

Proof. If G is not the star, then there is an edge uv that is not a pendant edge, and as wv is a cut edge,
we have by Theorem 3.2 that o(Guw) > o(G). So the star S, is the unique n-vertex tree that maximizes
the spectral closeness. By direct calculation, we have det(tl, — C(S,)) = (¢t + 1)" 2(t* — 272t — 271). Then
Q(Sn) — n—2+\/n28+12ﬁ. 0

Lemma 4.5. For integers £ and n with 2 < £ < L"T_zj, we have o(Dy,¢) < 0(Dy o—1).

Proof. Denote by v and v be the centers of D, , with degree £ + 1 and n — £ — 1 respectively. Let x be the
closeness Perron vector of G. By Lemma 2.1, the entries of x at all pendant neighbors of u (v, respectively)
have the same value, which we denote by « (3, respectively). Let ¢ = o(D,, ).

By the closeness equations of D,, ; at u and v, we have

1 1 1
0Ty = 5T + §€a+ 1(n—€—2)ﬂ
and 1 1 1
0Ty = STy + Zﬁa + i(n —(—2)p.
Then
+1 ( )= Ly +1( (—2)p (4.1)
et 5 ) (@ —au) =—lat o(n . .
By the closeness equations of D, ; at pendant vertices that are adjacent to u and v, we have
1 1 1 1 1
= —Zy+ T, +-(£—1 -(n—¢-3 -
00 = STy + T +4( )a—|—8(n )B—i—sﬁ

and 111 1 1
0B = qu+§xv+§(€_ 1)a+1(n—€—3)ﬁ+§a,
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Then
1 1 1 1
(g—i— 8) B—a)= Z(a:v —Ty) — g(f— Da+ g(n—ﬂ—?))ﬁ.

From (4.1) and (4.2), we have
(do+1)(B— ) =2(0+ 1)(xy — z0).

Note that n — ¢ — 2 > £. From (4.1) and (4.3), we have

1 14 ¢ 2(0+1)
- — > (48— - . _
(e43) @o-m) 2 {6-0) = 1 2D, - ),
i.e.,
1 2(0+1)
—__ . 2e vty _ > 0.
<9+2 4 4Q+1>(m“ ) 20
By Lemma 2.3 and the fact that n > 2¢ 4 2, one has
o (n+l+2 n4+l 2n—¥F 2n—4—2 n+l+2 ¢
szln ) ) ’ = > =
8 4 8 4 8 4
So
1 ¢ 2
,77.M>0'
2 4 4p+1

Now (4.4) implies that 8 — a > 0. So, by Rayleigh’s principle and (4.1), we have

5 (D) ~ (D) 2 5(xTC(Dye 1) =% C(Dy %)
=« E(n—f— 2)5 — é(ﬂ— Do+ ixv - ixu]

1 1 1 1
n—f—28— = T =
> o [S(n {—2)p 850( + 2% 41;4

= ale+ 1), — )

> 0.

HGI’ICG, Q(Dn,l) < Q(Dn,ffl)
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O

Theorem 4.6. If G is an n-vertex tree that is not isomorphic to Sy, then o(G) < o(Dy,,1) with equality if and

only if G = D, 1.

Proof. Suppose that G is an n-vertex tree not isomorphic to S,, that maximizes the spectral closeness. Let d
be the diameter of G. As G is not isomorphic to S,,, we have d > 3. Suppose that d > 4. Then, for any edge
uv that is not a pendant edge, G, is an n-vertex tree that is not isomorphic to S, as its diameter is at least
d —1 > 3. However, we have by Theorem 3.2 that o(Gy,) > 0(G), a contradiction. Therefore d = 3. That is,

G = D,, ¢ for some ¢ with 1 < ¢ < L”?*zj By Lemma 4.5, we have G = D,, 1.

Recall that a graph G is unicyclic if it is connected and |E(G)| = |V(G)|.

]

Theorem 4.7. For an n-vertex unicyclic graph G, we have o(G) < o(S;") with equality if and only if G = S;,

where o(S;}) is the largest root of t3 — 23212 — 221y — L = 0.
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Proof. Let G be an n-vertex unicyclic graph that maximizes the spectral closeness. By Theorems 3.2 and 3.4,
G consists of a triangle and n — 3 pendant edges. Then by Theorem 3.3, G = S;F.

In the following we compute ¢ = o(S,5). Let x be the closeness Perron vector of S;'. By Lemma 2.1, we
denote by xg (x1, x2, respectively) the entry x at the vertex of degree n — 1 (a vertex of degree 1, a vertex of
degree 2, respectively). Then

0To = 1 + T2,
i
1 = —%g + ——x1 + =T
0T B 0 4 1 9 2
and
1 n n—3 n 1
Ty = —Xg + —— X1 + =To.
02 = 50 1 Tt g
As (z0,71,72) " is nonzero, we have
-3
0 _nQ -1
det [ -3 0-2F" —3 | =0,
1 -3 1
-3 —'T -3

i.e., f(p) =0 with

Tt follows that p is the largest root of f(t) = 0. O

Let G be an n-vertex graph with p pendant vertices, where 0 < p < n —1 and n > 3. If p = 0, then
0o(G) < ”Tfl with equality if and only if G &2 K,,. f p=n —1, then G = S,,. If p=n — 2 with n > 4, then G is
a tree, so by Theorem 4.6, o(G) < (D,,,1) with equality if and only G = D,, ;.

Theorem 4.8. For an n-vertex connected graph with p pendant vertices, where 1 < p < n — 3, we have
0(Q) < o(K1V(Kp—p—1UK,)) with equality if and only if G = K1V (K,—p—1UK}), where o(K1V(Kp—p—1UK,))
Lop=2ndb,2  pP—(n-lptbn=8,  p’—(n=2ptn-l _

1 16 16 =Y

is the largest root of t3

Proof. Let G be an n-vertex connected graph with p pendant vertices that maximizes the spectral closeness.
By Lemma 2.2, the graph obtained from G by deleting all pendant vertices is a complete graph. Then, by
Theorem 3.3, G 2 K1 V (Kp_p_1 UK,).

In the following we compute ¢ = o(K1 V (Kp—p—1 U K,)).

Let x be the closeness Perron vector of K1 V (K,,—p—1 UK,) for 1 <p <n — 3. Denote by x( the entry of x
at the vertex of degree n — 1. By Lemma 2.1, x has equal entries for any two vertices with degree larger than
one and less than n — 1 (degree one, respectively), which we denote by x1 (x2, respectively). Then

_Lp_l p
0Ty = 9 5E1+2$2,
L +n_ — +p
Tl = —T T —x
0T 0 9 1 4 25

and
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As (xg,21,72) " is nonzero, we have

_n=p=1 _p
0 2 2
_1,_n=p=2 _p —
det 50 o 1 =0
_1 _n=p-1 _p=1
2 4 4

i.e., f(0) = 0 with

p—2n+5t2_p2—(n—l)p+6n—8t_p2—(n—2)p+n—1
4 16 16 .

It follows that o is the largest root of f(t) = 0. O

f)y =2+

The connectivity of a graph G is the minimum number of vertices whose removal results in a disconnected or
trivial graph. For an n-vertex connected graph G with connectivity s, we have 1 <s<n—1,and s =n — 1 if
and only if G is complete.

Theorem 4.9. Let G be an n-vertex connected graph with connectivity s, where 1 < s < n — 2. Then o(G) <
o(KsV (K1 UK,_s_1)) with equality if and only if G 2 Ky V (K1 U K,,_s_1), where o(KsV (K1 UK, _s_1)) is

2 AVedn—
the largest root of t3 — 53¢ — Sndds=9y 2 (n 342)”" L_p.

Proof. Let G be an n-vertex connected graph with connectivity s that maximizes the spectral closeness. Then
G — S is disconnected for some S C V(G) with |S| = s. By Lemma 2.2, we have G[S] = K, there exist positive
integers ny and ng with s+ny +mn9 = n such that G— S = K,,, UK,,,, and G = K,V (K,, UK,,). Assume that
ny > ni. Let x be the closeness Perron vector of G. By Lemma 2.1, x has the same entry for any corresponding
vertex of G in S (V(K,,), V(K,,), respectively), which we denote by xo (z1, =2, respectively). Suppose that
ny > 1. Foru e V(K,,),let H=G —{uw : w € V(K,,)} +{uz : z € V(K,,)}. By considering the distance
changes as we pass from G to H and using Rayleigh’s principle, we have

3 (e(H) — o(€Y)

> 2, oo -2 Nz + > @' -2 (4.5)
weV (Kpy )\ {u} 2€V(Kp,)

= Zwl(nzxz — iz + 1)

By the closeness equations of G at any vertex in V(K,,) and in V(K,,), we have

1 1

<Q(G) + 2) (x2 —21) = Z(ngmg —nyxy) > %nl(l'g — 1),

i.€.,
1 1
(g(G) + 5~ 4n1> (xa —x1) > 0.

As K,, is an induced subgraph of G, we have by Lemma 2.3 that o(G) > “L. So x5 > x;. Therefore, (4.5)
implies that o(H) > o(G), a contradiction. It follows that n; = 1. That is, G = K,V (K1 U K, _s_1).

In the following we compute o = o(K, V (K1 U K,,—s_1)). Let x be the closeness Perron vector of K,V (K7 U
K,_s—1). By Lemma 2.1, we denote by xo the entry of x at a vertex of degree n — 1, x1 the entry of x at a
vertex of degree s, and x3 the entry of x at a vertex of degree n — 2. Then

s—1 1 n—s—1

g Totght T

0Ty = T2,
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S Jrnfsfl
T] = =T —=x
0T B 0 1 2
and
s +1 +n—s—2
To = —T -z —_— 9.
0T 2 5T0 Tt 71 5 2
So 11 1
S— n—s—
0~ 3 T3 T2
det -3 0 f"_j_l = 0.
-5 ho-n

It follows that o is the largest root of f(¢) = 0, where

_n—3t2_5n—|—35—9t s2—(n—4)s+n—1

f#6) =¢ 2 16 32

5. RESIDUAL SPECTRAL CLOSENESS

Recall that there have been lots of results on the computational aspect [2-4,11,12,18] and on the extremal
aspect [8,22,24]. The residual spectral closeness may be used as a spectral measure of graph or network
structures. In this section, we give some extremal results on the residual spectral closeness.

If G is a tree of order n > 2, it is easy to see that o'*(G) > 0 with equality if and only if G = S,,.

Theorem 5.1. Let G be a graph on n > 2 vertices. Then

n—2

0<0"(G) < 5

with left equality if and only if G is a spanning subgraph of S, and with right equality if and only if G =2 K,,.
Proof. Tt is trivial if n = 2. Suppose that n > 3. Assume that o%(G) = o(G — v). By Lemma 4.2,

n—2

2 )

0<0o(G-v) <

where left equality holds if and only if G — v is the empty graph, i.e., v is an end vertex of any edge, i.e., G is
a spanning subgraph of .S,,, and right equality holds if and only if G — v is the complete graph, or equivalently,
G =2 K, as, if the degree of v is smaller than n — 1, then for any vertex w that is not a neighbor of v, G —w is

not complete, so o*(G) < (G — w) < %52, which is a contradiction. O

Theorem 5.2. Let G be a bipartite graph on n > 4 vertices. Then

3n—>5 : :
= if n is odd

R
<

0"(G) < n—3++/4(n—1)2-3 . .
—Y5——— ifnis even

with equality if and only if G = K|, 2] [n/2]-
Proof. Assume that o*(G) = o(G — v). By Theorem 4.2,

% if n—11s even

R

0" (G) =0(G —v) < —
PEBVAZDPES ey — 1 s odd
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with equality if and only if G — v = K| (,—1)/2),[(n—1)/2]-

Suppose that the upper for o%(G) is attained. Then G —v = K|(n-1)/2],[(n-1)/2]- Let X and Y be the partite
sets of G. Suppose first that n is odd. Then G = K, _1)/2,(n11)/2. Otherwise, assume that v € X. Then v
is not adjacent to each vertex in Y, so for any vertex w in X, G — w is not a complete bipartite graph and
then by Theorem 4.2, o®(G) < (G — w) < 322 a contradiction. Suppose next that n is even. Then |X| = %
or g+ 1. If [X] =% + 1, then Y[ = § —1 and v € X, so for any w € Y, we have by Lemma 4.2 that

— —1)2—
o (G) < o(G —w) < M, a contradiction. So |X| = . Assume that v € X. Then G = K, /3, /2.
Otherwise, v is not adjacent to each vertex in Y, so for any vertex w in X, G — w is not a complete bipartite

graph and then by Theorem 4.2, o%(G) < o(G — w) < w

, a contradiction. O
Theorem 5.3. Let G be a graph in which two vertices u and v are not adjacent. Then o (G) < o®(G + wv).

Proof. Let H = G+uv. Assume that g (H) o(H —w) with w € V(H) If w # w,v, then H —w = G —w+uv,
so, by Lemma 2.2, we have o%(G) < ( w) < o(H —w) = o®(H). If w = u or v, say w = u, then, as
H —u =G —u, we have o''(G) < o(G — u) = o(H — u) = o®(H). O

Note that, for a connected graph G in which two vertices u and v are not adjacent, we have o(G) < o(G +uv)
by Perron-Frobenius theorem and of(G) < (G + uv) by Theorem 5.3. So, to characterize completely the
graphs in some classes that minimize (maximize, respectively) the residual spectral closeness is generally harder
than to characterize completely the graphs in some classes that minimize (maximize, respectively) the spectral
closeness. So, we leave more extremal problems to determine the graphs that minimize (maximize, respectively)
the residual spectral closeness in some classes of graphs in the future.

Besides extremal problems on the residual spectral closeness, in the following steps, one may study the relation
between the residual spectral closeness, the spectral closeness, closeness and residual closeness.
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