Nordhaus–Gaddum type inequalities on the total Italian domination number in graphs
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2235-2243

Let G be a graph with vertex set V(G). A total Italian dominating function (TIDF) on a graph G is a function f : V(G) → {0, 1, 2} such that (i) every vertex v with f(v) = 0 is adjacent to a vertex u with f(u) = 2 or to two vertices w and z with f(w) = f(z) = 1, and (ii) every vertex v with f(v) ≥ 1 is adjacent to a vertex u with f(u) ≥ 1. The total Italian domination number γ$$(G) on a graph G is the minimum weight of a total Italian dominating function. In this paper, we present Nordhaus–Gaddum type inequalities for the total Italian domination number.

DOI : 10.1051/ro/2022108
Keywords: Total domination, total Italian domination number, total Roman domination, 05C69
@article{RO_2022__56_4_2235_0,
     author = {Sheikholeslami, Seyed Mahmoud and Volkmann, Lutz},
     title = {Nordhaus{\textendash}Gaddum type inequalities on the total {Italian} domination number in graphs},
     journal = {RAIRO. Operations Research},
     pages = {2235--2243},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022108},
     mrnumber = {4456297},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022108/}
}
TY  - JOUR
AU  - Sheikholeslami, Seyed Mahmoud
AU  - Volkmann, Lutz
TI  - Nordhaus–Gaddum type inequalities on the total Italian domination number in graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2235
EP  - 2243
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022108/
DO  - 10.1051/ro/2022108
LA  - en
ID  - RO_2022__56_4_2235_0
ER  - 
%0 Journal Article
%A Sheikholeslami, Seyed Mahmoud
%A Volkmann, Lutz
%T Nordhaus–Gaddum type inequalities on the total Italian domination number in graphs
%J RAIRO. Operations Research
%D 2022
%P 2235-2243
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022108/
%R 10.1051/ro/2022108
%G en
%F RO_2022__56_4_2235_0
Sheikholeslami, Seyed Mahmoud; Volkmann, Lutz. Nordhaus–Gaddum type inequalities on the total Italian domination number in graphs. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2235-2243. doi: 10.1051/ro/2022108

[1] H. Abdollahzadeh Ahangar, M. A. Henning, V. Samodivkin and I. G. Yero, Total Roman domination in graphs. Appl. Anal. Discrete Math. 10 (2016) 501–517. | MR | DOI

[2] H. Abdollahzadeh Ahangar, M. Chellali, M. Hajjari and S. M. Sheikholeslami, Further progress on the total Roman { 2 } -domination number of graphs. Bull. Iran. Math. Soc. 48 (2022) 1111–1119. | MR | DOI

[3] H. Abdollahzadeh Ahangar, M. Chellali, S. M. Sheikholeslami and J. C. Valenzuela-Tripodoro, Total Roman { 2 } -dominating functions in graphs. Discuss. Math. Graph Theory 42 (2022) 937–958. | MR | DOI

[4] J. Amjadi, Total Roman domination subdivision number in graphs. Commun. Comb. Optim. 5 (2020) 157–168. | MR

[5] J. Amjadi, S. M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination. J. Comb. Optim. 35 (2018) 126–138. | MR | DOI

[6] J. Amjadi, S. M. Sheikholeslami and M. Soroudi, On the total Roman domination in trees. Discuss. Math. Graph Theory 39 (2019) 519–532. | MR | DOI

[7] P. Chakradhar and P. Venkata Subba Reddy, Algorithmic aspects of total Roman { 2 } -domination in graphs. Commun. Comb. Optim. 7 (2022) 183–192. | MR

[8] M. Chellali, T. Haynes, S. T. Hedetniemi and A. Mcrae, Roman { 2 } -domination. Discrete Appl. Math. 204 (2016) 22–28. | MR | DOI

[9] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami and L. Volkmann, Roman domination in graphs. In: Topics in Domination in Graphs, edited by T. W. Haynes, S. T. Hedetniemi and, M. A. Henning, Springer (2020) 365–409. | MR | DOI

[10] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami and L. Volkmann, Varieties of Roman domination II. AKCE J Graphs Comb. 17 (2020) 966–984. | MR

[11] M. Chellali, N. Jafari Rad, S. M. Sheikholeslami and L. Volkmann, Varieties of Roman domination. In: Structures of Domination in Graphs, edited by T. W. Haynes, S. T. Hedetniemi and M. A. Henning, Springer (2021) 273–307. | MR | DOI

[12] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi and S. T. Hedetniemi, Roman domination in graphs. Discrete Math. 278 (2004) 11–22. | MR | DOI

[13] M. Dorfling and M. A. Henning, Transversals in 5-uniform hypergraphs and total domination in graphs with minimum degree five. Quaestiones Math. 38 (2015) 155–180. | MR | DOI

[14] S. C. García, A. C. Martínez, F. A. Hernandez Mira and I. G. Yero, Total Roman {2}-domination in graphs. Quaestiones Math. 44 (2021) 411–434. | MR | DOI

[15] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker Inc., New York (1998). | MR

[16] M. Kheibari, H. Abdollahzadeh Ahangar, R. Khoeilar and S. M. Sheikholeslami, Total Roman { 2 } -reinforcement of graphs, J. Math. 2021 (2021) 7. | MR | DOI

[17] C.-H. Liu and G. J. Chang, Roman domination on strongly chordal graphs. J. Comb. Optim. 26 (2013) 608–619. | MR | DOI

[18] A. C. Martínez, A. M. Arias and M. M. Castillo, A characterization relating domination, semitotal domination and total Roman domination in trees. Commun. Comb. Optim. 6 (2021) 197–209. | MR

[19] B. Samadi, M. Alishahi, I. Masoumi and D. A. Mojdeh, Restrained Italian domination in graphs. RAIRO: Oper. Res. 55 (2021) 319–332. | MR | Zbl | Numdam | DOI

[20] S. Thomassé and A. Yeo, Total domination of graphs and small transversals of hypergraphs. Combinatorica 27 (2007) 473–487. | MR | DOI

[21] L. Volkmann, Remarks on the restrained Italian domination number in graphs. Commun. Comb. Optim. (2021). DOI: . | DOI | MR

Cité par Sources :