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NORDHAUS-GADDUM TYPE INEQUALITIES ON THE TOTAL ITALIAN
DOMINATION NUMBER IN GRAPHS

SEYED MAHMOUD SHEIKHOLESLAMI"*® AND LUTZ VOLKMANN?

Abstract. Let G be a graph with vertex set V(G). A total Italian dominating function (TIDF) on
a graph G is a function f : V(G) — {0,1,2} such that (i) every vertex v with f(v) = 0 is adjacent
to a vertex u with f(u) = 2 or to two vertices w and z with f(w) = f(z) = 1, and (ii) every vertex
v with f(v) > 1 is adjacent to a vertex u with f(u) > 1. The total Italian domination number ~;;(G)
on a graph G is the minimum weight of a total Italian dominating function. In this paper, we present
Nordhaus-Gaddum type inequalities for the total Italian domination number.
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1. INTRODUCTION

For definitions and notations not given here we refer to [15]. We consider simple and finite graphs G without
isolated vertices with vertex set V = V(G) and edge set E = E(G). The order of G is n = n(G) = |V|. The
neighborhood of a vertex v is the set N(v) = Ng(v) = {u € V(G) | wv € E}. The degree of vertex v € V
is d(v) = dg(v) = |N(v)|. The mazimum degree and minimum degree of G are denoted by A = A(G) and
§ = 0(G), respectively. The complement of a graph G is denoted by G. For a subset D of vertices in a graph
G, we denote by G[D] the subgraph of G induced by D. The diameter of a connected graph G, denoted by
diam(GQ), is the greatest distance between two vertices of G. We write P, for the path of order n, C,, for the
cycle of length n and K, for the complete graph of order n. The corona G = F o K7 of a graph F is that graph
obtained from F' by adding a pendant edge to each vertex of F.

A subset D C V is a (total) dominating set of G if every vertex in V' — D (V') has a neighbor in D. The
(total) domination number v(G) (1:(G)) is the minimum cardinality of a (total) dominating set of G.

In this paper we continue the study of Roman and Italian dominating functions in graphs (see, e.g., the
survey articles [9-11]). If f : V(G) — {0,1,2} is a function, then let (Vp, V1, V2) be the ordered partition
of V(@) induced by f, where V; = {v € V(G) : f(v) = i} for i € {0,1,2}. There is a 1-1 correspondence
between the function f and the ordered partition (Vp, Vi, Va). So we also write f = (Vp, V1, Va). A Roman
dominating function (RDF) on a graph G is defined in [12] as a function f : V(G) — {0,1,2} such that
every vertex v with f(v) = 0 is adjacent to a vertex u with f(u) = 2. The weight of an RDF f is the value
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w(f) = f(V(G)) = Xev(q) f(v). The Roman domination number vr(G) is the minimum weight of an RDF
on G.

A total Roman dominating function (TRDF) on a graph G without isolated vertices is defined in [17] as a
Roman dominating function f with the property that the subgraph induced by Vi U V5 has no isolated vertex.
The total Roman domination number v g(G) is the minimum weight of a TRDF on G. A TRDF on G with
weight vz(G) is called a y¢z(G)-function. Total Roman domination is studied in [1,4-7,18].

The concept of ITtalian domination has been introduced in 2016 by Chellali et al. [8] as a new variation of
Roman domination but called differently, Roman {2}-domination. An [talian dominating function (IDF, for
short) on a graph G is a function f : V — {0, 1,2} having the property that f(N(u)) > 2 for each vertex u
with f(u) = 0. The weight of an IDF f is the value w(f) = f(V(G)) = X, ev(q) f(w). The Italian domination
number v7(G) is the minimum weight of an IDF on G. A total Italian dominating function (TIDF) on a graph
G without isolated vertices is an Italian dominating function f with the property that every vertex v with
f(v) > 1 has a neighbor u with f(u) > 1. The total Italian domination number ~v:;(G) is the minimum weight
of a TIDF on G. A TIDF on G with weight v:7(G) is called a 7:;(G)-function. The (total) Italian domination
number has been studied by several authors [2,3,7,14,16,19, 21].

If G is a graph without isolated vertices, then the definitions lead to 77 (G) < 1 (G) < 1r(G).

In this paper, we present Nordhaus—Gaddum type inequalities for total Italian domination. In particular, we
prove 7 < 71 (G) + Y11 (é) <n+4and 1(G) s (6) < 6n—38, if G and G are graphs of order n > 4 without
isolated vertices. If G and G are graphs of order n > 12 without isolated vertices, then we even show that
Y1(G) + 71 (G) <n+3.

The following results will be useful in the rest of the paper.

Observation 1.1. Let G be a graph without isolated vertices. If f is a TIDF on G, then f(N[u]) > 2 for each
vertex u € V(G).

Proof. Tt f(u) = 0, then the definition leads to f(Nu]) = f(N(u)) > 2. If f(u) > 1, then u has a neighbor v
with f(v) > 1 and therefore f(Nu]) > 2. O

Observation 1.2. Let G be a nontrivial connected graph of order n. If diam(G) > 3, then ~s (é) <A4.

Proof. Let x,y be two vertices of G at distance diam(G) and define g : V(@) — {0,1,2} by g(z) = g(y) = 2
and f(u) = 0 for the remaining vertices. Obviously, g is a TIDF of G and hence v, (G) < 4. O

Observation 1.3. Let G be a graph of order n with 6 > 2. Then v;(G) <n —4§ + 1.

Proof. Let x1, 23, ...,xs5_1 be arbitrary vertices of G and define g : V(G) —{0,1,2} by g(z;) =0for 1 <i<d-1
and f(u) =1 for the remaining vertices. Obviously, g is a TIDF of G and hence ;s (é) <n-46+1. (]

Theorem 1.4 ([3,14]). Let G be an nontrivial connected graph of order n. Then

(1) %1(G) =2 if and only if G has two vertices of degree n — 1.
(2) 71(G) < n, with equality if and only if G € {Ka, K12} or every vertex of G is either a leaf or a weak
support vertex.

Theorem 1.5. (1) [14] For any graph G of order n and 6(G) > 2, +1(G) < {MJ

2
(2) [14] For any graph G of order n with §(G) > 3, 71 (G) < 3.

(3) For any graph G of order n with §(G) >4, vu(G) < 5.

(4) For any graph G of order n with §(G) > 5, v(G) < G2.

Proof. It is enough to prove (3) and (4). It is proved that v.(G) < 3n/7 for any graph G of order n with 6(G) > 4
(see [20]) and that v:(G) < 17n/44 for any graph G of order n with §(G) > 5 (see [13]). Applying Item (1), we

obtain 7,7 (G) < 22 if §(G) > 4 and 1 (G) < B2 if 6(G) > 5. O
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2. NORDHAUS—GADDUM BOUNDS FOR TOTAL ITALIAN DOMINATION

In this section, we present Nordhaus-Gaddum type results for the total Italian domination number. We first
provide upper bounds on the total Italian domination number.

A set S C V(G) is a packing of a graph G if N[u] N N[v] = 0 for any two distinct vertices u,v € S. The
packing number p(G) is defined by

p(G) = max{|S| : S is a packing of G}.
Theorem 2.1. If G is a graph without isolated vertices, then v1(G) > 2p(G).

Proof. Let {v1,v2,...,v,G)} be a packing of G, and let f be a 7:;(G)-function. If we define the set A =

Uipicl;) Nvg], then, since {v1,va,...,v @)} is a packing, it follows from Lemma 1.1 that
W@ = > f@)=> f@)+ Y, f()

zeV(G) €A eV (G)\
p(G)

=Y W+ > f()
i=1 TEV(G)\
p(G)

> 2+ f(@) = 2p(G).
i=1 2eV(G)\A

O

Example 2.2. Let K, be a complete graph, and let X1, X»,..., X; be a partition of V(XK,) with X; U X, U
L UXy =V(K,) and |X;| > 1 for 1 < i < ¢. Now let F be the graph consisting of K, and ¢ further vertices
V1,2, . .., v such that v; is adjacent to all vertices of X; for 1 < ¢ < t. We observe that vy, vs, ..., v is a packing
of F', and therefore ~;;(F') > 2t according to Theorem 2.1.
Let next x; € X; for 1 < i < t. Then the function f defined by f(v;) = f(z;) =1for 1 <i<tand f(z) =0
otherwise, is a TIDF on F'. Therefore v;;(F) < 2t and thus ~;;(F) = 2t.

Example 2.2 shows that Theorem 2.1 is sharp. Let §* = §*(G) = min{6(G),é(G) }.

Theorem 2.3. Let G be a graph of order n with diam(G) = diam(G) = 2. If §*(G) = 6(G), then v(G) <
min{26*(G) +1, n+52*+1} and 1 (G) < 6*(G) + 3.

Proof. We deduce from diam(G) = diam(G) = 2 that §*(G) > 2. Let x be a vertex of minimum degree §*(G) in
G and let Y = V(G) \ Ng|z]. Since diam(G) = 2, any vertex in y € Y has at least one neighbor in Ng(z) and
since 6*(G) > 2, each isolated vertex in the induced subgraph G[Y] has at least two neighbors in Ng(x). Let T
be the set of isolated vertices of G[Y] and let S be a minimum dominating set of G[Y" — I]. Then the function
f:V(G) — {0,1,2} defined by f(u) =1if u € Ng[z]U S and f(z) = 0 for the remaining vertices, is a TIDF
of G. Using Ore’s Theorem we obtain v;1(G) < w(f) = |[Ng[z]| +|Y — I|/2 = 6" + 1+ 2= =L = nt8 1 Op
the other hand, the function ¢ : V(G) — {0, 1,2} defined by g(x) =1, g(u) = 2 if u € Ng(x) and g(z) = 0 for
the remaining vertices, is a TIDF of G. It follows that 7,7 (G) < w(g) = 2|Ng(z)| + 1 = 26*(G) + 1.

Next we show that 7,7 (G) < 6*(G) + 3. Let I be the set of isolated vertices of G[N¢(x)]. If I = 0, then the
function f : V(G) — {0,1,2} defined by f(z) = 1 for z € Ng(z), f(z) =2, f(y) = 1 for some y € Y and
f(u) = 0 otherwise, is a TIDF of G and so 1 (G) < w(g) = |Ng(z)| + 3 = 6*(G) + 3. Assume that I # () and
let I = {v1,...,v}. It follows from diam(G) = 2 that dg(z,v;) = 2 and so x and v; have a common neighbor
u; € Y in G for each 1 < ¢ < t. First let ¢t be even. Then dg(vgi,l,vgi) = 2 and we may assume, without
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loss of generality, that ug;—1 = ug; for each 1 < i < ¢/2. Then the function g : V(a) — {0, 1,2} defined by
g(x) = 2,g(ug;) =2 for 1 <14 < /2, g(z) =1 for each z € Ng(z) — I and g(z) = 0 otherwise, is a TIDF
of G and so ;1 (é) < w(g) = 2+ 6*(G). Now let ¢t be odd. As before, we may assume that ug;_1 = ug; for
each 1 <4 < (t —1)/2. Then the function g : V(G) — {0,1,2} defined by g(z) = g(u¢) = 2, g(ug;) = 2 for
1<i<(t—1)/2, g(z) =1 for each z € Ng(z) — I and ¢g(z) = 0 for the remaining vertices, is a TIDF of G and

s0 111 (G) < w(g) =3+ 0*(G). O
Using a similar argument as in the proof of Theorem 2.3 we obtain the next result.
Corollary 2.4. If G is a graph of order n with diam(G) =2 and 2 < §(G) < "T_l, then

3n+1
4

Y11 (G) <
This bound is sharp for Cs.

Proof. Let = be a vertex of minimum degree §(G) in G and let Y = V(G) \ Ng[z]. Since diam(G) = 2, any
vertex in y € Y has at least one neighbor in Ng(x) and since 0(G) > 2, each isolated vertex in the induced
subgraph G[Y] has at least two neighbors in Ng(z). Let I be the set of isolated vertices of G[Y] and let S
be a minimum dominating set of G[Y — I|. Then the function f : V(G) — {0,1,2} defined by f(u) =1
if u € Ng[r]U S and f(z) = 0 for the remaining vertices, is a TIDF of G. Using Ore’s theorem we obtain
1 (G) < w(f) = |Nglz]|l + Y = I|/2 = 6(G) + 1 + ”_6(2G)_1 = "+6(2G)+1. Since 6(G) < 251, we obtain
Y (G) < 3%H U

Theorem 2.5. Let G be a graph of order n with diam(G) = diam(G) = 2. If §* = 5%, then v (G) <
max{0* + 1,5} and 1 (G) < max{5* +1,5}.

Proof. We deduce from §* = 251 that both G and G are §*-regular. Hence it is enough to show that v;(G) <
max{d* + 1,5}. Let v be a vertex of minimum degree 6* in G and let Y = V(G) \ Ng[v]. Since diam(G) = 2,
each vertex in Y has at least one neighbor in Ng(v). If each vertex in Y has at least two neighbors in
N¢g(v), then the function f defined on G by f(z) = 1 for € N[v] and f(z) = 0 otherwise, is a TIDF of
G and so v:7(G) < 6* + 1. Hence we assume that there exists a vertex y € Y such that y has exactly one
neighbor w in Ng(v). Then y is adjacent to all vertices in Y — {y} and the function f defined on G by
fw) = fly) =2, f(w) =1 and f(x) = 0 otherwise, is a TIDF of G of weight 5 and so v;(G) < 5. Thus
Y1 (G) < max{é* +1,5}. O

Theorem 2.6. Let G be a graph of order n with diam(G) = diam(é) = 2. If 6 = ”T_Q, then one of the
following hold.

(1) m1(G) <max{d* + 1,7} and v

(G) < max{6* +2,5}.
(2) 71(G) < max{6* +2,5} and v, (G

) < max{6* +1,7}.

Proof. Assume that §(G) = 0* = 252 (the case §(G) = 6* = 252 is similar). Let v be a vertex of minimum
degree §* in G and let Y = V(G) \ Ngv]. Since diam(G) = 2, each vertex in Y has at least one neighbor
in Ng(v). If each vertex in Y has at least two neighbors in Ng(v), then as in the proof of Theorem 2.5 we
have 17 (G) < 6* + 1. Hence we assume that there exists a vertex y € Y such that y has exactly one neighbor
w in Ng(v). Then y is adjacent to all vertices in Y — {y} but at most one. If y is adjacent to all vertices
in Y — {y}, then as in the proof of Theorem 2.5 we have v;;(G) < 5. Hence, suppose y is not adjacent to
a vertex ¥ € Y — {y}. Let w; € N(v) N N(y) and wy € N(v) N N(y') and define the function f on G by
fw) = fly) = fwe) =2, f(w1) =1 and f(z) = 0 otherwise. Clearly f is a TIDF of G of weight 7 and so
Y1 (G) < 7. Thus 74/ (G) < max{§* +1,7}.
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Now we show that ;7 (G) < max{6*(G) + 2,5}. We deduce from §(G) = 6* = 252 that A(G) = %. Let v
be a vertex of maximum degree % in G and let Y = V(G) \ Ng[v]. Since diam(G) = 2, each vertex in Y has
at least one neighbor in Ng(v). If each vertex in Y has at least two neighbors in N&(v), then as in the proof
of Theorem 2.5 and using the fact that A(@) = 0" + 1 we have (é) < §* 4+ 2. Hence we assume that there
exists a vertex y € Y such that y has exactly one neighbor w in Ng(v). Then y is adjacent to all vertices in

Y — {y} and as in the proof of Theorem 2.5 we have 7,7 (G) < 5. Thus v (G) < max{6* +2,5}. O

In the next result we present a sharp lower bound on 77 (G) + i1 (G).

Theorem 2.7. If G and G are graphs of order n > 4 without isolated vertices, then ;1 (G) + Ver (é) >T.

Proof. Since G and G are without isolated vertices, we observe that A(G) < n — 2 and A(é) < n — 2. Hence
Theorem 1.4-(1) implies ’yt[(G),’Vt[(é) > 3. Next let 7(G) = 3. We will show that ’Yt[(é) >4.If fisa
Y1 (G)-function, then |Vo| = |Vi| = 1 or |Vo| = 0 and |V4| = 3. If [V3] = |V4] = 1, then it is easy to see
that A(G) = n — 1, a contradiction. Thus assume that |Vi| = 3, and let v;,v2 and vs be the vertices with
f(v1) = f(v2) = f(vs) = 1, and assume, without loss of generality, that vy is adjacent to v; and vs. Then every
vertex © € V(G) \ {v1,v2,v3} is adjacent to least two vertices of the set {vi,vs,v3}. Let X; ; be the set of
vertices exactly adjacent to v; and v; for 1 <14 < 7 < 3 and X 23 be the set of vertices adjacent to vq,v2 and
V3.

If X153 =0, then A(G) =n — 1, a contradiction. Therefore we assume in the following that X; 3 # (. Next
we distinguish the cases vivs € E(G) or vivs € E(G).

Case 1. Let vju3 € E(G).
If X1,2 7& @ and X273 = @ or X273 7é @ and X172 = @ or X172 = X273 = @, then A(G) =N — 1, a contradiction.
Thus we assume now that X o # 0 and X5 3 # (). We observe that {v1,vq,v3} is a packing of G, and hence
we deduce from Theorem 2.1 that v (G) > 6.

Case 2. Let vyvs € E(é) In this case note that {v1, v} is a packing of G, and hence Theorem 2.1 implies
that ;s (é) > 4.

]

Example 2.8. Let H be the graph consisting of a path 212223 and the vertex sets A = {uq,ug,...,up},
B = {v1,v2,...,vq} and C = {wq,wy, ..., w, } with p, g, > 2 such that all vertices of A are adjacent to z; and
29, all vertices of B are adjacent to z; and z3 and all vertices of C' are adjacent to z2 and z3. Clearly, v (H) = 3.
If we define the function g by g(21) = g(23) = 1, g(v1) = g(v2) = 1 and g(z) = 0 for z € V(H) \ {v1,vs, 21, 23},
then g is a TIDF on H. Therefore v, (H)+~:r(H) < 7 and thus v (H)+~.;(H) = 7, according to Theorem 2.7.

Example 2.8 demonstarates that Theorem 2.7 is sharp. The proof of the following theorem can be found in
[5].
Theorem 2.9. Let G and G be connected graphs of order n. Then the following holds.
(1) (r(G) = 4)(7r(G) —4) < 46%(G) — 4.
(2) 1r(G) + 3r(C) < 26°(G) + 8 - rO=D (€)1

¢ 2
(3) If %r(G) > 8 and vz (G) > 8, then vr(G) + %r(G) < 26%(G) + 5.

Theorem 2.10. If G and G are graphs of order n without isolated vertices, then
Y21 (G) + 71 (G) < n+4.

The bound is sharp for Pj.
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Proof. Let G be a graph of order n such that neither G nor G has an isolated vertex. We observe then that n > 4.
If G is disconnected, then clearly ;s (é) < 4 and the result is immediate. Hence we assume that G is connected.
We assume likewise that G is connected. If diam(G) > 3, then the result is immediate by Observation 1.2 and
Theorem 1.4-(2). Thus we assume that diam(G) = 2. Similarly, we can assume that diam(G) = 2.

By symmetry, we can assume that ~y;y (6) > v1(G). If %1 (G) = 3 or 4, then the result is true since ;s (@) <
n. If v (G) = 5, then we conclude from Theorem 1.4-(2) that ;s (é) < n—1yielding 1 (G) + 1 (é) <n+4.
Assume that 7;7(G) = 6. We deduce from Theorem 2.3 that §* > 3. Now for any edge uv € E(é), the
function f defined on G by f(u) = f(v) = 0 and f(z) = 1 otherwise, is an IDF of G of weight n — 2
implying that 71 (G) 4+ 71 (G) < n+ 4. If ;(G) > 8, then by Theorem 2.9-(3) we have v;(G) + 1 (G) <
26%(G) +5 < 2251 +5 = n+ 4. Let 47(G) = 7. If 4;(G) > 11, then as above by Theorem 2.9-(2) we have
i (G) + ’yt[(é) <20%(G)+5 < 2”7_1 + 5 = n + 4. Assume that ’ytl(é) < 10. If ’yﬂ(@) = 8 and 0* = §(G),
then by Theorem 2.3 we have §* + 3 > 8 which leads to n > 11, and if 6* = §(G), then using Corollary 2.4 for
G, we have 8 < 3%‘1 and so n > 11. Therefore, v:1(G) —|—'yt1(§) <n+4. 1If %1(@) =9 and 6* = §(G), then
by Theorem 2.3 we have §* + 3 > 9 which leads to n > 12, and if §* = 5(@), then using Corollary 2.4 for G,
we have 9 < 3’%1 and so n > 12. Therefore, 47 (G) + Vi1 (é) <n+4. If vy (é) = 10 and §* = 6(G), then by
Theorem 2.3 we have 6* + 3 > 10 which leads to n > 15, and if §* = 6(@), then using Corollary 2.4 for G, we
have 10 < % and so n > 13. Therefore, v1(G) + Y1 (é) < n+4. Finally let ;s (6) = 7. Then 6* > 4 and so
n > 9. If n > 10, then the result is immediate. Let n = 9. Thus G and G are 4-regular. This leads to v,; (@) <5
which contradicts the assumption ;s (é) = 7. This completes the proof. (]

Using Theorem 1.4-(2), one can improve the bound of Theorem 2.10 slightly.

Theorem 2.11. Let G and G be graphs of order n > 6 without isolated vertices. If diam(G) > 3 or diam(é) >
3, then

Y21(G) + 7 (G) <n+3.

Proof. Assume, without loss of generality, that diam(G) > 3. If 147(G) < n — 1, then we deduce from Obser-
vation 1.2 that v7(G) + 71 (G) < n + 3. Hence we assume that v;;(G) = n. It follows from Theorem 1.4-(2)
that the components of G are isomorphic to K3, K; 2 or the corona H = F o K; for a connected graph F' with
n(F) > 2. Assume first that G has a component H = F o K for a connected graph F with n(F) > 3. Let uy, ug
and ug be three leaves of H. Then the function f defined on G by f(u1) = f(u2) = f(uz) = 1 and f(z) = 0
otherwise, is a TIDF of G and this implies that v;7(G) + 47 (é) <n+3.

Assume second that G has a component H = K5 o K1, and let u; and us be the leaves of H. Since n > 6,
there exists a further component. If v is a vertex of a further component, then define the function f on G by
f(u1) = f(uz) = f(v) =1 and f(z) = 0 otherwise. Then f is a TIDF on G and thus v;(G) + v (G) < n + 3.

Assume third that G has a component K; 5 = ujugus. Since n > 6, there exists a further component. If v is
a vertex of a further component, then define the function f on G by f(u1) = f(uz) = f(v) =1 and f(x) =0
otherwise. Then f is a TIDF on G and thus v;7(G) + Vi1 (é) <n+3.

Finally, assume that all components are isomorphic to Ks. Let {u1,us} and {vy,v2} be the vertices of two
such components. Then the function f defined on G by f(u1) = f(ua) = f(v1) = 1 and f(z) = 0 otherwise is a
TIDF on G and thus 77 (G) + ver (é) <n+3. O

If H is the corona F'o K of a connected graph F' with n(F") > 3, then we have equality in the above theorem.
Theorem 2.12. If G and G are graphs of order n > 12 without isolated vertices, then

Y21 (G) + v (G) <n+3.
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Proof. Considering Theorem 2.11, we may assume that diam(G) = diam(é) = 2. It follows from
Theorem 1.4-(2) that v,;(G) < n — 1 and v;(G) < n — 1, since n > 12. By symmetry, we can assume
that 7 (é) > v1(G). If 41 (G) = 3 or 4, then the result is immediate. If v;;(G) > 9, then by Theorem 2.9-(2),
we have v;7(G) + %I(@) <20%(G)+3 < 2”7_1 + 3 =n+ 2. Assume that v;;(G) € {5,6,7,8}. Let v;(G) = 5.
Then the result is clear if 47 (G) < 10, because n > 12. Let v, (G) > 11. If §* = 6(G), then it follows from The-
orem 2.3 that 6* > v (G) — 3 = 8 and if §* = §(G), then it follows from Theorem 2.3 that * > % =5.
By Observation 1.3 we get 7,7 (G) < n — 4, which leads to v/(G) + 7 (G) <n+ 1.

Assume now that v¢;(G) = 6. If 7, (G) < 9, then the result is immediate since n > 12. Let v, (G) > 10.
Using the argument above, we obtain §* > 5 and we deduce from Observation 1.3 that v:7(G) +y:r (é) <n+2.

Assume next that 7,7 (G) = 7. If v (G) € {7,8}, then the result is immediate since n > 12. Let v,/ (G) > 9.
If %7 (G) > 10, then as above, we have 7,7 (G) < n— 4 and so v1(G) + 1 (G) < n+ 3. Hence, let v, (G) = 9.
Using the argument above, we obtain §* > 4, Applying Theorem 1.5-(3) to G we observe that ;7 (@) =9< 57”
and so n > 13, yielding 747 (G) + 7 (G) < n+3.

Finally let v;(G) = 8. If vy (é) > 12, then Theorem 2.3 implies that §* > 6 and by Observation 1.3
we have 77(G) + 11(G) < 8+ (n— 6" +1) < n+ 3. Hence we assume that v,/ (G) € {8,9,10,11}. If
§* = (@), then by Theorem 8 we have 0* + 3 > v,;(G) > 8 and if 6* = §(G), then by Theorem 8 we have
6" +3 > %(G) = 8. Thus 6*(G) > 5. If ;(G) = 11, then it follows from Theorem 1.5-(4) that n > 16,
yielding 71 (G) + %1 (G) = 19 < n+ 3. If 3;(G) = 10, then as above, we obtain n > 15 which leads to
Y1 (G) + yer (é) = 18 < n + 3. Assume that ;1 (é) = 9. Then as above, we obtain n > 13. If n > 14, then the
result is immediate. Let n = 13. It follows that 6(6) = §* = 5. Therefore A(G) = 7. Let z € V(G) be a vertex
of maximum degree 7 and let N(z) = {z1,...,27}. Assume that X = V(G) — N[z] = {y1,...,ys5} and let ¥}
be a common neighbor of = and y;. If y; is adjacent to all vertices in X — {y;} for some 4, then the function
f defined on G by f(z) = f(y;) = 2, f(y;) = 1 and f(z) = 0 otherwise, is a TIDF of G which contradicts
the assumption ¢/ (G) = 8. If y; is adjacent to all vertices in X — {y;} but one, say y;, for some 7, then the
function f defined on G by f(x) = f(y;) = f(y}) =2, f(y;) =1 and f(z) = 0 otherwise, is a TIDF of G, which
contradicts the assumption ;7 (G) = 8 again. Thus each y; is adjacent to at most two vertices in X —{y;} and so
it is adjacent to at least three vertices in N (z). If a; is adjacent to all vertices in X for some i, then the function
f defined on G by f(z) = f(z;) =2, and f(z) = 0 otherwise, is a TIDF of G which contradicts the assumption
ver(G) = 8. If x; is adjacent to all vertices in X but one, say y;, for some ¢, then the function f defined on G by
f(z) = f(z:) = f(y;) = 2 and f(z) = 0 otherwise, is a TIDF of G which contradicts the assumption v¢;(G) = 8
again. Thus each vertex x; is adjacent to at most three vertices in X and so it is adjacent to at least one vertex
in N(x). Then the function f defined on G by f(z) = f(x;) =1 for 1 < i < 6 and f(z) = 0 otherwise, is a
TIDF of G of weight 7 which leads to a contradiction.

Assume next that ;s (é) = 8. If n > 13, then the result is immediate. Let n = 12. Without loss of generality,
we may assume that A(G) = 6. Let € V(G) be a vertex of maximum degree 6, N(x) = {z1,...,z6} and
X =V(G) — N[z] ={y1,---,ys}. If some y; is adjacent to all vertices in X — {y;}, then the function f defined
by f(z) = f(y:) = 2, f(w) =1 for some w € N(z) N N(y;) and f(z) = 0 otherwise, is a TIDF of G which
contradicts the assumption vy (G) = 8. Thus each y; is adjacent to at most three vertices in X and so each
y; is adjacent to at least two vertices in N(z). But then the function f defined by f(z) =1 for z € N[z] and
f(2) = 0 otherwise, is a TIDF of G of weight 7 which contradicts the assumption ~;;(G) = 8. This completes
the proof. O

Theorem 2.13. If G and G are graphs of order n without isolated vertices, then
Yer (G)yer (é) <6n —8.

The bound is sharp for Pj.
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Proof. We observe that n > 4. If G is disconnected, then clearly ~;; (é) < 4 and the result is immediate.
Hence we assume that G is connected. We assume likewise that G is connected. If diam(G) > 3, then the result
is immediate by Observation 1.2 and Theorem 1.4-(2). Thus we assume that diam(G) = 2. Similarly, we can
assume that diam(G) = 2.

By symmetry, we can assume that v:;(G) > i1 (é) > 3. If yy1 (é) = 3 or 4, then the bound is immediate.
If 7,/ (G) = 5, then we deduce from diam(G) = diam(G) = 2 and Theorem 1.4-(2) that v;(G) < n — 1. Thus
Y1 (G)Ver (é) < 5(n—1) < 6n — 8. Hence we assume that v:7(G) > i1 (@) > 6. Hence by Theorem 2.3, §* > 3
and son > 7. If v (é) = 6, then by Theorem 1.5-(2) we have v¢;(G)vir (é) < 6% < 6n—8&.If ’ytl(é) =7,
then §* > 4 and by Theorem 1.5-(3) we have 7 (G)vyer (@) < 757" < 6n— 8. If 1 (é) > 9, then using first
Theorem 2.9-(1), then Theorem 2.9-(2) and the that fact §*(G) < 251, we obtain

Yer (G (G) < vr(G)nr(G) < 46*(G) — 20+ 4(vr(G) + 1r(G))
< 46" (G) — 20+ 4(26"(G) + 3)

S127171

= 6n — 14.

-8

Now assume that ’Yt](é) = 8. Theorem 2.3 implies that §* > 5 and so n > 11. If ~;(G) > 10, then by
Theorem 2.9 we have v:7(G) + Vi1 (é) < 20" 4+ 4, and as above we get the desired result. Hence we assume
that v7(G) € {8,9}. First let v:;(G) = 8. If n > 12, then the result is immediate. Let n < 11. Then n = 11
and both G and G must be 5-regular which is impossible. Now let v;7(G) = 9. By Theorem 1.5-(3) we have
n > 13. If n > 14, then the result is immediate. Let n = 13 and so §* < 6. If 6* = 6, then Theorem 2.5 implies
that v,7(G) < 7, contradicting the assumption v;;(G) = 9. Thus §* = 5 and so A* = max{A(G),A(G)} = 7.
Without loss of generality, assume that A(G) = 7 and let u be a vertex with degree 7 in G. If some vertex v in
Ng(u) is adjacent to all vertices of V (G) — Ng[u], then the function f defined by f(u) = f(v) =2 and f(z) =0
otherwise, is a TIDF of G which contradicts the assumption Yer (5) = 8. Hence we assume that no vertex of
Ng(u) is adjacent to all vertices of Y = V(G) — Ng[u] and so the induced subgraph of G by Ng(u) has no
isolated vertex because §* > 5. If some vertex v € Y is adjacent to all vertices Y — {v}, then function f defined
by f(u) = f(v) =2, f(v') =1 and f(x) = 0 otherwise, where v’ is a common neighbor of v and v, is a TIDF
of G which leads to a contradiction again. Thus we assume that each vertex in Y has at most three neighbors
in Y and so each vertex in Y has at least two neighbors in Ng(u). Then the function f defined by f(v) =1 for
v € Ng(u) and f(x) = 0 otherwise, is a TIDF of G of weight 7 which is a contradiction. This completes the
proof. |
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