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NORDHAUS–GADDUM TYPE INEQUALITIES ON THE TOTAL ITALIAN
DOMINATION NUMBER IN GRAPHS

Seyed Mahmoud Sheikholeslami1,* and Lutz Volkmann2

Abstract. Let 𝐺 be a graph with vertex set 𝑉 (𝐺). A total Italian dominating function (TIDF) on
a graph 𝐺 is a function 𝑓 : 𝑉 (𝐺) −→ {0, 1, 2} such that (i) every vertex 𝑣 with 𝑓(𝑣) = 0 is adjacent
to a vertex 𝑢 with 𝑓(𝑢) = 2 or to two vertices 𝑤 and 𝑧 with 𝑓(𝑤) = 𝑓(𝑧) = 1, and (ii) every vertex
𝑣 with 𝑓(𝑣) ≥ 1 is adjacent to a vertex 𝑢 with 𝑓(𝑢) ≥ 1. The total Italian domination number 𝛾𝑡𝐼(𝐺)
on a graph 𝐺 is the minimum weight of a total Italian dominating function. In this paper, we present
Nordhaus–Gaddum type inequalities for the total Italian domination number.
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1. Introduction

For definitions and notations not given here we refer to [15]. We consider simple and finite graphs 𝐺 without
isolated vertices with vertex set 𝑉 = 𝑉 (𝐺) and edge set 𝐸 = 𝐸(𝐺). The order of 𝐺 is 𝑛 = 𝑛(𝐺) = |𝑉 |. The
neighborhood of a vertex 𝑣 is the set 𝑁(𝑣) = 𝑁𝐺(𝑣) = {𝑢 ∈ 𝑉 (𝐺) | 𝑢𝑣 ∈ 𝐸}. The degree of vertex 𝑣 ∈ 𝑉
is 𝑑(𝑣) = 𝑑𝐺(𝑣) = |𝑁(𝑣)|. The maximum degree and minimum degree of 𝐺 are denoted by ∆ = ∆(𝐺) and
𝛿 = 𝛿(𝐺), respectively. The complement of a graph 𝐺 is denoted by 𝐺. For a subset 𝐷 of vertices in a graph
𝐺, we denote by 𝐺[𝐷] the subgraph of 𝐺 induced by 𝐷. The diameter of a connected graph 𝐺, denoted by
diam(𝐺), is the greatest distance between two vertices of 𝐺. We write 𝑃𝑛 for the path of order 𝑛, 𝐶𝑛 for the
cycle of length 𝑛 and 𝐾𝑛 for the complete graph of order 𝑛. The corona 𝐺 = 𝐹 ∘𝐾1 of a graph 𝐹 is that graph
obtained from 𝐹 by adding a pendant edge to each vertex of 𝐹 .

A subset 𝐷 ⊆ 𝑉 is a (total) dominating set of 𝐺 if every vertex in 𝑉 − 𝐷 (𝑉 ) has a neighbor in 𝐷. The
(total) domination number 𝛾(𝐺) (𝛾𝑡(𝐺)) is the minimum cardinality of a (total) dominating set of 𝐺.

In this paper we continue the study of Roman and Italian dominating functions in graphs (see, e.g., the
survey articles [9–11]). If 𝑓 : 𝑉 (𝐺) −→ {0, 1, 2} is a function, then let (𝑉0, 𝑉1, 𝑉2) be the ordered partition
of 𝑉 (𝐺) induced by 𝑓 , where 𝑉𝑖 = {𝑣 ∈ 𝑉 (𝐺) : 𝑓(𝑣) = 𝑖} for 𝑖 ∈ {0, 1, 2}. There is a 1–1 correspondence
between the function 𝑓 and the ordered partition (𝑉0, 𝑉1, 𝑉2). So we also write 𝑓 = (𝑉0, 𝑉1, 𝑉2). A Roman
dominating function (RDF) on a graph 𝐺 is defined in [12] as a function 𝑓 : 𝑉 (𝐺) −→ {0, 1, 2} such that
every vertex 𝑣 with 𝑓(𝑣) = 0 is adjacent to a vertex 𝑢 with 𝑓(𝑢) = 2. The weight of an RDF 𝑓 is the value
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𝜔(𝑓) = 𝑓(𝑉 (𝐺)) =
∑︀

𝑢∈𝑉 (𝐺) 𝑓(𝑢). The Roman domination number 𝛾𝑅(𝐺) is the minimum weight of an RDF
on 𝐺.

A total Roman dominating function (TRDF) on a graph 𝐺 without isolated vertices is defined in [17] as a
Roman dominating function 𝑓 with the property that the subgraph induced by 𝑉1 ∪ 𝑉2 has no isolated vertex.
The total Roman domination number 𝛾𝑡𝑅(𝐺) is the minimum weight of a TRDF on 𝐺. A TRDF on 𝐺 with
weight 𝛾𝑡𝑅(𝐺) is called a 𝛾𝑡𝑅(𝐺)-function. Total Roman domination is studied in [1, 4–7,18].

The concept of Italian domination has been introduced in 2016 by Chellali et al. [8] as a new variation of
Roman domination but called differently, Roman {2}-domination. An Italian dominating function (IDF, for
short) on a graph 𝐺 is a function 𝑓 : 𝑉 −→ {0, 1, 2} having the property that 𝑓(𝑁(𝑢)) ≥ 2 for each vertex 𝑢
with 𝑓(𝑢) = 0. The weight of an IDF 𝑓 is the value 𝜔(𝑓) = 𝑓(𝑉 (𝐺)) =

∑︀
𝑢∈𝑉 (𝐺) 𝑓(𝑢). The Italian domination

number 𝛾𝐼(𝐺) is the minimum weight of an IDF on 𝐺. A total Italian dominating function (TIDF) on a graph
𝐺 without isolated vertices is an Italian dominating function 𝑓 with the property that every vertex 𝑣 with
𝑓(𝑣) ≥ 1 has a neighbor 𝑢 with 𝑓(𝑢) ≥ 1. The total Italian domination number 𝛾𝑡𝐼(𝐺) is the minimum weight
of a TIDF on 𝐺. A TIDF on 𝐺 with weight 𝛾𝑡𝐼(𝐺) is called a 𝛾𝑡𝐼(𝐺)-function. The (total) Italian domination
number has been studied by several authors [2, 3, 7, 14,16,19,21].

If 𝐺 is a graph without isolated vertices, then the definitions lead to 𝛾𝐼(𝐺) ≤ 𝛾𝑡𝐼(𝐺) ≤ 𝛾𝑡𝑅(𝐺).
In this paper, we present Nordhaus–Gaddum type inequalities for total Italian domination. In particular, we

prove 7 ≤ 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4 and 𝛾𝑡𝐼(𝐺) · 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 6𝑛− 8, if 𝐺 and 𝐺 are graphs of order 𝑛 ≥ 4 without

isolated vertices. If 𝐺 and 𝐺 are graphs of order 𝑛 ≥ 12 without isolated vertices, then we even show that
𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.

The following results will be useful in the rest of the paper.

Observation 1.1. Let 𝐺 be a graph without isolated vertices. If 𝑓 is a TIDF on 𝐺, then 𝑓(𝑁 [𝑢]) ≥ 2 for each
vertex 𝑢 ∈ 𝑉 (𝐺).

Proof. If 𝑓(𝑢) = 0, then the definition leads to 𝑓(𝑁 [𝑢]) = 𝑓(𝑁(𝑢)) ≥ 2. If 𝑓(𝑢) ≥ 1, then 𝑢 has a neighbor 𝑣
with 𝑓(𝑣) ≥ 1 and therefore 𝑓(𝑁 [𝑢]) ≥ 2. �

Observation 1.2. Let 𝐺 be a nontrivial connected graph of order 𝑛. If diam(𝐺) ≥ 3, then 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 4.

Proof. Let 𝑥, 𝑦 be two vertices of 𝐺 at distance diam(𝐺) and define 𝑔 : 𝑉
(︀
𝐺

)︀
→ {0, 1, 2} by 𝑔(𝑥) = 𝑔(𝑦) = 2

and 𝑓(𝑢) = 0 for the remaining vertices. Obviously, 𝑔 is a TIDF of 𝐺 and hence 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 4. �

Observation 1.3. Let 𝐺 be a graph of order 𝑛 with 𝛿 ≥ 2. Then 𝛾𝑡𝐼(𝐺) ≤ 𝑛− 𝛿 + 1.

Proof. Let 𝑥1, 𝑥2, . . . , 𝑥𝛿−1 be arbitrary vertices of 𝐺 and define 𝑔 : 𝑉 (𝐺)→{0, 1, 2} by 𝑔(𝑥𝑖) = 0 for 1≤ 𝑖≤ 𝛿−1
and 𝑓(𝑢) = 1 for the remaining vertices. Obviously, 𝑔 is a TIDF of 𝐺 and hence 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛− 𝛿 + 1. �

Theorem 1.4 ([3, 14]). Let 𝐺 be an nontrivial connected graph of order 𝑛. Then

(1) 𝛾𝑡𝐼(𝐺) = 2 if and only if G has two vertices of degree 𝑛− 1.
(2) 𝛾𝑡𝐼(𝐺) ≤ 𝑛, with equality if and only if 𝐺 ∈ {𝐾2, 𝐾1,2} or every vertex of 𝐺 is either a leaf or a weak

support vertex.

Theorem 1.5. (1) [14] For any graph 𝐺 of order 𝑛 and 𝛿(𝐺) ≥ 2, 𝛾𝑡𝐼(𝐺) ≤
⌊︁

𝑛+𝛾𝑡(𝐺)
2

⌋︁
.

(2) [14] For any graph 𝐺 of order 𝑛 with 𝛿(𝐺) ≥ 3, 𝛾𝑡𝐼(𝐺) ≤ 3𝑛
4 .

(3) For any graph 𝐺 of order 𝑛 with 𝛿(𝐺) ≥ 4, 𝛾𝑡𝐼(𝐺) ≤ 5𝑛
7 .

(4) For any graph 𝐺 of order 𝑛 with 𝛿(𝐺) ≥ 5, 𝛾𝑡𝐼(𝐺) ≤ 61𝑛
88 .

Proof. It is enough to prove (3) and (4). It is proved that 𝛾𝑡(𝐺) ≤ 3𝑛/7 for any graph 𝐺 of order 𝑛 with 𝛿(𝐺) ≥ 4
(see [20]) and that 𝛾𝑡(𝐺) ≤ 17𝑛/44 for any graph 𝐺 of order 𝑛 with 𝛿(𝐺) ≥ 5 (see [13]). Applying Item (1), we
obtain 𝛾𝑡𝐼(𝐺) ≤ 5𝑛

7 if 𝛿(𝐺) ≥ 4 and 𝛾𝑡𝐼(𝐺) ≤ 61𝑛
88 if 𝛿(𝐺) ≥ 5. �
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2. Nordhaus–Gaddum bounds for total Italian domination

In this section, we present Nordhaus–Gaddum type results for the total Italian domination number. We first
provide upper bounds on the total Italian domination number.

A set 𝑆 ⊆ 𝑉 (𝐺) is a packing of a graph 𝐺 if 𝑁 [𝑢] ∩ 𝑁 [𝑣] = ∅ for any two distinct vertices 𝑢, 𝑣 ∈ 𝑆. The
packing number 𝜌(𝐺) is defined by

𝜌(𝐺) = max{|𝑆| : 𝑆 is a packing of 𝐺}.

Theorem 2.1. If 𝐺 is a graph without isolated vertices, then 𝛾𝑡𝐼(𝐺) ≥ 2𝜌(𝐺).

Proof. Let {𝑣1, 𝑣2, . . . , 𝑣𝜌(𝐺)} be a packing of 𝐺, and let 𝑓 be a 𝛾𝑡𝐼(𝐺)-function. If we define the set 𝐴 =⋃︀𝜌(𝐺)
𝑖=1 𝑁 [𝑣𝑖], then, since {𝑣1, 𝑣2, . . . , 𝑣𝜌(𝐺)} is a packing, it follows from Lemma 1.1 that

𝛾𝑡𝐼(𝐺) =
∑︁

𝑥∈𝑉 (𝐺)

𝑓(𝑥) =
∑︁
𝑥∈𝐴

𝑓(𝑥) +
∑︁

𝑥∈𝑉 (𝐺)∖𝐴

𝑓(𝑥)

=
𝜌(𝐺)∑︁
𝑖=1

𝑓(𝑁 [𝑣𝑖]) +
∑︁

𝑥∈𝑉 (𝐺)∖𝐴

𝑓(𝑥)

≥
𝜌(𝐺)∑︁
𝑖=1

2 +
∑︁

𝑥∈𝑉 (𝐺)∖𝐴

𝑓(𝑥) ≥ 2𝜌(𝐺).

�

Example 2.2. Let 𝐾𝑝 be a complete graph, and let 𝑋1, 𝑋2, . . . , 𝑋𝑡 be a partition of 𝑉 (𝐾𝑝) with 𝑋1 ∪ 𝑋2 ∪
. . . ∪𝑋𝑡 = 𝑉 (𝐾𝑝) and |𝑋𝑖| ≥ 1 for 1 ≤ 𝑖 ≤ 𝑡. Now let 𝐹 be the graph consisting of 𝐾𝑝 and 𝑡 further vertices
𝑣1, 𝑣2, . . . , 𝑣𝑡 such that 𝑣𝑖 is adjacent to all vertices of 𝑋𝑖 for 1 ≤ 𝑖 ≤ 𝑡. We observe that 𝑣1, 𝑣2, . . . , 𝑣𝑡 is a packing
of 𝐹 , and therefore 𝛾𝑡𝐼(𝐹 ) ≥ 2𝑡 according to Theorem 2.1.

Let next 𝑥𝑖 ∈ 𝑋𝑖 for 1 ≤ 𝑖 ≤ 𝑡. Then the function 𝑓 defined by 𝑓(𝑣𝑖) = 𝑓(𝑥𝑖) = 1 for 1 ≤ 𝑖 ≤ 𝑡 and 𝑓(𝑥) = 0
otherwise, is a TIDF on 𝐹 . Therefore 𝛾𝑡𝐼(𝐹 ) ≤ 2𝑡 and thus 𝛾𝑡𝐼(𝐹 ) = 2𝑡.

Example 2.2 shows that Theorem 2.1 is sharp. Let 𝛿* = 𝛿*(𝐺) = min
{︀
𝛿(𝐺), 𝛿

(︀
𝐺

)︀}︀
.

Theorem 2.3. Let 𝐺 be a graph of order 𝑛 with diam(𝐺) = diam
(︀
𝐺

)︀
= 2. If 𝛿*(𝐺) = 𝛿(𝐺), then 𝛾𝑡𝐼(𝐺) ≤

min
{︁

2𝛿*(𝐺) + 1, 𝑛+𝛿*+1
2

}︁
and 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝛿*(𝐺) + 3.

Proof. We deduce from diam(𝐺) = diam
(︀
𝐺

)︀
= 2 that 𝛿*(𝐺) ≥ 2. Let 𝑥 be a vertex of minimum degree 𝛿*(𝐺) in

𝐺 and let 𝑌 = 𝑉 (𝐺) ∖𝑁𝐺[𝑥]. Since diam(𝐺) = 2, any vertex in 𝑦 ∈ 𝑌 has at least one neighbor in 𝑁𝐺(𝑥) and
since 𝛿*(𝐺) ≥ 2, each isolated vertex in the induced subgraph 𝐺[𝑌 ] has at least two neighbors in 𝑁𝐺(𝑥). Let 𝐼
be the set of isolated vertices of 𝐺[𝑌 ] and let 𝑆 be a minimum dominating set of 𝐺[𝑌 − 𝐼]. Then the function
𝑓 : 𝑉 (𝐺) −→ {0, 1, 2} defined by 𝑓(𝑢) = 1 if 𝑢 ∈ 𝑁𝐺[𝑥] ∪ 𝑆 and 𝑓(𝑧) = 0 for the remaining vertices, is a TIDF
of 𝐺. Using Ore’s Theorem we obtain 𝛾𝑡𝐼(𝐺) ≤ 𝑤(𝑓) = |𝑁𝐺[𝑥]| + |𝑌 − 𝐼|/2 = 𝛿* + 1 + 𝑛−𝛿*−1

2 = 𝑛+𝛿*+1
2 . On

the other hand, the function 𝑔 : 𝑉 (𝐺) −→ {0, 1, 2} defined by 𝑔(𝑥) = 1, 𝑔(𝑢) = 2 if 𝑢 ∈ 𝑁𝐺(𝑥) and 𝑔(𝑧) = 0 for
the remaining vertices, is a TIDF of 𝐺. It follows that 𝛾𝑡𝐼(𝐺) ≤ 𝑤(𝑔) = 2|𝑁𝐺(𝑥)|+ 1 = 2𝛿*(𝐺) + 1.

Next we show that 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝛿*(𝐺) + 3. Let 𝐼 be the set of isolated vertices of 𝐺[𝑁𝐺(𝑥)]. If 𝐼 = ∅, then the

function 𝑓 : 𝑉
(︀
𝐺

)︀
−→ {0, 1, 2} defined by 𝑓(𝑧) = 1 for 𝑧 ∈ 𝑁𝐺(𝑥), 𝑓(𝑥) = 2, 𝑓(𝑦) = 1 for some 𝑦 ∈ 𝑌 and

𝑓(𝑢) = 0 otherwise, is a TIDF of 𝐺 and so 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑤(𝑔) = |𝑁𝐺(𝑥)|+ 3 = 𝛿*(𝐺) + 3. Assume that 𝐼 ̸= ∅ and

let 𝐼 = {𝑣1, . . . , 𝑣𝑡}. It follows from diam
(︀
𝐺

)︀
= 2 that 𝑑𝐺(𝑥, 𝑣𝑖) = 2 and so 𝑥 and 𝑣𝑖 have a common neighbor

𝑢𝑖 ∈ 𝑌 in 𝐺 for each 1 ≤ 𝑖 ≤ 𝑡. First let 𝑡 be even. Then 𝑑𝐺(𝑣2𝑖−1, 𝑣2𝑖) = 2 and we may assume, without
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loss of generality, that 𝑢2𝑖−1 = 𝑢2𝑖 for each 1 ≤ 𝑖 ≤ 𝑡/2. Then the function 𝑔 : 𝑉
(︀
𝐺

)︀
−→ {0, 1, 2} defined by

𝑔(𝑥) = 2, 𝑔(𝑢2𝑖) = 2 for 1 ≤ 𝑖 ≤ 𝑡/2, 𝑔(𝑧) = 1 for each 𝑧 ∈ 𝑁𝐺(𝑥) − 𝐼 and 𝑔(𝑧) = 0 otherwise, is a TIDF
of 𝐺 and so 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑤(𝑔) = 2 + 𝛿*(𝐺). Now let 𝑡 be odd. As before, we may assume that 𝑢2𝑖−1 = 𝑢2𝑖 for

each 1 ≤ 𝑖 ≤ (𝑡 − 1)/2. Then the function 𝑔 : 𝑉
(︀
𝐺

)︀
−→ {0, 1, 2} defined by 𝑔(𝑥) = 𝑔(𝑢𝑡) = 2, 𝑔(𝑢2𝑖) = 2 for

1 ≤ 𝑖 ≤ (𝑡− 1)/2, 𝑔(𝑧) = 1 for each 𝑧 ∈ 𝑁𝐺(𝑥)− 𝐼 and 𝑔(𝑧) = 0 for the remaining vertices, is a TIDF of 𝐺 and
so 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑤(𝑔) = 3 + 𝛿*(𝐺). �

Using a similar argument as in the proof of Theorem 2.3 we obtain the next result.

Corollary 2.4. If 𝐺 is a graph of order 𝑛 with diam(𝐺) = 2 and 2 ≤ 𝛿(𝐺) ≤ 𝑛−1
2 , then

𝛾𝑡𝐼(𝐺) ≤ 3𝑛 + 1
4

·

This bound is sharp for 𝐶5.

Proof. Let 𝑥 be a vertex of minimum degree 𝛿(𝐺) in 𝐺 and let 𝑌 = 𝑉 (𝐺) ∖ 𝑁𝐺[𝑥]. Since diam(𝐺) = 2, any
vertex in 𝑦 ∈ 𝑌 has at least one neighbor in 𝑁𝐺(𝑥) and since 𝛿(𝐺) ≥ 2, each isolated vertex in the induced
subgraph 𝐺[𝑌 ] has at least two neighbors in 𝑁𝐺(𝑥). Let 𝐼 be the set of isolated vertices of 𝐺[𝑌 ] and let 𝑆
be a minimum dominating set of 𝐺[𝑌 − 𝐼]. Then the function 𝑓 : 𝑉 (𝐺) −→ {0, 1, 2} defined by 𝑓(𝑢) = 1
if 𝑢 ∈ 𝑁𝐺[𝑥] ∪ 𝑆 and 𝑓(𝑧) = 0 for the remaining vertices, is a TIDF of 𝐺. Using Ore’s theorem we obtain
𝛾𝑡𝐼(𝐺) ≤ 𝑤(𝑓) = |𝑁𝐺[𝑥]| + |𝑌 − 𝐼|/2 = 𝛿(𝐺) + 1 + 𝑛−𝛿(𝐺)−1

2 = 𝑛+𝛿(𝐺)+1
2 . Since 𝛿(𝐺) ≤ 𝑛−1

2 , we obtain
𝛾𝑡𝐼(𝐺) ≤ 3𝑛+1

4 . �

Theorem 2.5. Let 𝐺 be a graph of order 𝑛 with diam(𝐺) = diam
(︀
𝐺

)︀
= 2. If 𝛿* = 𝑛−1

2 , then 𝛾𝑡𝐼(𝐺) ≤
max{𝛿* + 1, 5} and 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ max{𝛿* + 1, 5}.

Proof. We deduce from 𝛿* = 𝑛−1
2 that both 𝐺 and 𝐺 are 𝛿*-regular. Hence it is enough to show that 𝛾𝑡𝐼(𝐺) ≤

max{𝛿* + 1, 5}. Let 𝑣 be a vertex of minimum degree 𝛿* in 𝐺 and let 𝑌 = 𝑉 (𝐺) ∖𝑁𝐺[𝑣]. Since diam(𝐺) = 2,
each vertex in 𝑌 has at least one neighbor in 𝑁𝐺(𝑣). If each vertex in 𝑌 has at least two neighbors in
𝑁𝐺(𝑣), then the function 𝑓 defined on 𝐺 by 𝑓(𝑥) = 1 for 𝑥 ∈ 𝑁 [𝑣] and 𝑓(𝑥) = 0 otherwise, is a TIDF of
𝐺 and so 𝛾𝑡𝐼(𝐺) ≤ 𝛿* + 1. Hence we assume that there exists a vertex 𝑦 ∈ 𝑌 such that 𝑦 has exactly one
neighbor 𝑤 in 𝑁𝐺(𝑣). Then 𝑦 is adjacent to all vertices in 𝑌 − {𝑦} and the function 𝑓 defined on 𝐺 by
𝑓(𝑣) = 𝑓(𝑦) = 2, 𝑓(𝑤) = 1 and 𝑓(𝑥) = 0 otherwise, is a TIDF of 𝐺 of weight 5 and so 𝛾𝑡𝐼(𝐺) ≤ 5. Thus
𝛾𝑡𝐼(𝐺) ≤ max{𝛿* + 1, 5}. �

Theorem 2.6. Let 𝐺 be a graph of order 𝑛 with diam(𝐺) = diam
(︀
𝐺

)︀
= 2. If 𝛿* = 𝑛−2

2 , then one of the
following hold.

(1) 𝛾𝑡𝐼(𝐺) ≤ max{𝛿* + 1, 7} and 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ max{𝛿* + 2, 5}.

(2) 𝛾𝑡𝐼(𝐺) ≤ max{𝛿* + 2, 5} and 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ max{𝛿* + 1, 7}.

Proof. Assume that 𝛿(𝐺) = 𝛿* = 𝑛−2
2 (the case 𝛿

(︀
𝐺

)︀
= 𝛿* = 𝑛−2

2 is similar). Let 𝑣 be a vertex of minimum
degree 𝛿* in 𝐺 and let 𝑌 = 𝑉 (𝐺) ∖ 𝑁𝐺[𝑣]. Since diam(𝐺) = 2, each vertex in 𝑌 has at least one neighbor
in 𝑁𝐺(𝑣). If each vertex in 𝑌 has at least two neighbors in 𝑁𝐺(𝑣), then as in the proof of Theorem 2.5 we
have 𝛾𝑡𝐼(𝐺) ≤ 𝛿* + 1. Hence we assume that there exists a vertex 𝑦 ∈ 𝑌 such that 𝑦 has exactly one neighbor
𝑤 in 𝑁𝐺(𝑣). Then 𝑦 is adjacent to all vertices in 𝑌 − {𝑦} but at most one. If 𝑦 is adjacent to all vertices
in 𝑌 − {𝑦}, then as in the proof of Theorem 2.5 we have 𝛾𝑡𝐼(𝐺) ≤ 5. Hence, suppose 𝑦 is not adjacent to
a vertex 𝑦′ ∈ 𝑌 − {𝑦}. Let 𝑤1 ∈ 𝑁(𝑣) ∩ 𝑁(𝑦) and 𝑤2 ∈ 𝑁(𝑣) ∩ 𝑁(𝑦′) and define the function 𝑓 on 𝐺 by
𝑓(𝑣) = 𝑓(𝑦) = 𝑓(𝑤2) = 2, 𝑓(𝑤1) = 1 and 𝑓(𝑥) = 0 otherwise. Clearly 𝑓 is a TIDF of 𝐺 of weight 7 and so
𝛾𝑡𝐼(𝐺) ≤ 7. Thus 𝛾𝑡𝐼(𝐺) ≤ max{𝛿* + 1, 7}.
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Now we show that 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ max{𝛿*(𝐺) + 2, 5}. We deduce from 𝛿(𝐺) = 𝛿* = 𝑛−2

2 that ∆
(︀
𝐺

)︀
= 𝑛

2 . Let 𝑣

be a vertex of maximum degree 𝑛
2 in 𝐺 and let 𝑌 = 𝑉

(︀
𝐺

)︀
∖𝑁𝐺[𝑣]. Since diam

(︀
𝐺

)︀
= 2, each vertex in 𝑌 has

at least one neighbor in 𝑁𝐺(𝑣). If each vertex in 𝑌 has at least two neighbors in 𝑁𝐺(𝑣), then as in the proof
of Theorem 2.5 and using the fact that ∆

(︀
𝐺

)︀
= 𝛿* + 1 we have 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝛿* + 2. Hence we assume that there

exists a vertex 𝑦 ∈ 𝑌 such that 𝑦 has exactly one neighbor 𝑤 in 𝑁𝐺(𝑣). Then 𝑦 is adjacent to all vertices in
𝑌 − {𝑦} and as in the proof of Theorem 2.5 we have 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 5. Thus 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ max{𝛿* + 2, 5}. �

In the next result we present a sharp lower bound on 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
.

Theorem 2.7. If 𝐺 and 𝐺 are graphs of order 𝑛 ≥ 4 without isolated vertices, then 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 7.

Proof. Since 𝐺 and 𝐺 are without isolated vertices, we observe that ∆(𝐺) ≤ 𝑛 − 2 and ∆
(︀
𝐺

)︀
≤ 𝑛 − 2. Hence

Theorem 1.4-(1) implies 𝛾𝑡𝐼(𝐺), 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 3. Next let 𝛾𝑡𝐼(𝐺) = 3. We will show that 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 4. If 𝑓 is a

𝛾𝑡𝐼(𝐺)-function, then |𝑉2| = |𝑉1| = 1 or |𝑉2| = 0 and |𝑉1| = 3. If |𝑉2| = |𝑉1| = 1, then it is easy to see
that ∆(𝐺) = 𝑛 − 1, a contradiction. Thus assume that |𝑉1| = 3, and let 𝑣1, 𝑣2 and 𝑣3 be the vertices with
𝑓(𝑣1) = 𝑓(𝑣2) = 𝑓(𝑣3) = 1, and assume, without loss of generality, that 𝑣2 is adjacent to 𝑣1 and 𝑣3. Then every
vertex 𝑥 ∈ 𝑉 (𝐺) ∖ {𝑣1, 𝑣2, 𝑣3} is adjacent to least two vertices of the set {𝑣1, 𝑣2, 𝑣3}. Let 𝑋𝑖,𝑗 be the set of
vertices exactly adjacent to 𝑣𝑖 and 𝑣𝑗 for 1 ≤ 𝑖 < 𝑗 ≤ 3 and 𝑋1,2,3 be the set of vertices adjacent to 𝑣1, 𝑣2 and
𝑣3.

If 𝑋1,3 = ∅, then ∆(𝐺) = 𝑛 − 1, a contradiction. Therefore we assume in the following that 𝑋1,3 ̸= ∅. Next
we distinguish the cases 𝑣1𝑣3 ∈ 𝐸(𝐺) or 𝑣1𝑣3 ∈ 𝐸

(︀
𝐺

)︀
.

Case 1. Let 𝑣1𝑣3 ∈ 𝐸(𝐺).
If 𝑋1,2 ̸= ∅ and 𝑋2,3 = ∅ or 𝑋2,3 ̸= ∅ and 𝑋1,2 = ∅ or 𝑋1,2 = 𝑋2,3 = ∅, then ∆(𝐺) = 𝑛− 1, a contradiction.
Thus we assume now that 𝑋1,2 ̸= ∅ and 𝑋2,3 ̸= ∅. We observe that {𝑣1, 𝑣2, 𝑣3} is a packing of 𝐺, and hence
we deduce from Theorem 2.1 that 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 6.

Case 2. Let 𝑣1𝑣3 ∈ 𝐸
(︀
𝐺

)︀
. In this case note that {𝑣1, 𝑣2} is a packing of 𝐺, and hence Theorem 2.1 implies

that 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 4.

�

Example 2.8. Let 𝐻 be the graph consisting of a path 𝑧1𝑧2𝑧3 and the vertex sets 𝐴 = {𝑢1, 𝑢2, . . . , 𝑢𝑝},
𝐵 = {𝑣1, 𝑣2, . . . , 𝑣𝑞} and 𝐶 = {𝑤1, 𝑤2, . . . , 𝑤𝑟} with 𝑝, 𝑞, 𝑟 ≥ 2 such that all vertices of 𝐴 are adjacent to 𝑧1 and
𝑧2, all vertices of 𝐵 are adjacent to 𝑧1 and 𝑧3 and all vertices of 𝐶 are adjacent to 𝑧2 and 𝑧3. Clearly, 𝛾𝑡𝐼(𝐻) = 3.
If we define the function 𝑔 by 𝑔(𝑧1) = 𝑔(𝑧3) = 1, 𝑔(𝑣1) = 𝑔(𝑣2) = 1 and 𝑔(𝑥) = 0 for 𝑥 ∈ 𝑉 (𝐻) ∖ {𝑣1, 𝑣2, 𝑧1, 𝑧3},
then 𝑔 is a TIDF on 𝐻. Therefore 𝛾𝑡𝐼(𝐻)+𝛾𝑡𝐼(𝐻) ≤ 7 and thus 𝛾𝑡𝐼(𝐻)+𝛾𝑡𝐼(𝐻) = 7, according to Theorem 2.7.

Example 2.8 demonstarates that Theorem 2.7 is sharp. The proof of the following theorem can be found in
[5].

Theorem 2.9. Let 𝐺 and 𝐺 be connected graphs of order 𝑛. Then the following holds.

(1) (𝛾𝑡𝑅(𝐺)− 4)
(︀
𝛾𝑡𝑅

(︀
𝐺

)︀
− 4

)︀
≤ 4𝛿*(𝐺)− 4.

(2) 𝛾𝑡𝑅(𝐺) + 𝛾𝑡𝑅

(︀
𝐺

)︀
≤ 2𝛿*(𝐺) + 8− (𝛾𝑡𝑅(𝐺)−6)(𝛾𝑡𝑅(𝐺)−6)

2 .
(3) If 𝛾𝑡𝑅(𝐺) ≥ 8 and 𝛾𝑡𝑅

(︀
𝐺

)︀
≥ 8, then 𝛾𝑡𝑅(𝐺) + 𝛾𝑡𝑅

(︀
𝐺

)︀
≤ 2𝛿*(𝐺) + 5.

Theorem 2.10. If 𝐺 and 𝐺 are graphs of order 𝑛 without isolated vertices, then

𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4.

The bound is sharp for 𝑃4.
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Proof. Let 𝐺 be a graph of order 𝑛 such that neither 𝐺 nor 𝐺 has an isolated vertex. We observe then that 𝑛 ≥ 4.
If 𝐺 is disconnected, then clearly 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 4 and the result is immediate. Hence we assume that 𝐺 is connected.

We assume likewise that 𝐺 is connected. If diam(𝐺) ≥ 3, then the result is immediate by Observation 1.2 and
Theorem 1.4-(2). Thus we assume that diam(𝐺) = 2. Similarly, we can assume that diam

(︀
𝐺

)︀
= 2.

By symmetry, we can assume that 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 𝛾𝑡𝐼(𝐺). If 𝛾𝑡𝐼(𝐺) = 3 or 4, then the result is true since 𝛾𝑡𝐼

(︀
𝐺

)︀
≤

𝑛. If 𝛾𝑡𝐼(𝐺) = 5, then we conclude from Theorem 1.4-(2) that 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛− 1 yielding 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4.

Assume that 𝛾𝑡𝐼(𝐺) = 6. We deduce from Theorem 2.3 that 𝛿* ≥ 3. Now for any edge 𝑢𝑣 ∈ 𝐸
(︀
𝐺

)︀
, the

function 𝑓 defined on 𝐺 by 𝑓(𝑢) = 𝑓(𝑣) = 0 and 𝑓(𝑥) = 1 otherwise, is an IDF of 𝐺 of weight 𝑛 − 2
implying that 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4. If 𝛾𝑡𝐼(𝐺) ≥ 8, then by Theorem 2.9-(3) we have 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤

2𝛿*(𝐺) + 5 ≤ 2𝑛−1
2 + 5 = 𝑛 + 4. Let 𝛾𝑡𝐼(𝐺) = 7. If 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 11, then as above by Theorem 2.9-(2) we have

𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 2𝛿*(𝐺) + 5 ≤ 2𝑛−1

2 + 5 = 𝑛 + 4. Assume that 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 10. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 8 and 𝛿* = 𝛿(𝐺),

then by Theorem 2.3 we have 𝛿* + 3 ≥ 8 which leads to 𝑛 ≥ 11, and if 𝛿* = 𝛿
(︀
𝐺

)︀
, then using Corollary 2.4 for

𝐺, we have 8 ≤ 3𝑛+1
4 and so 𝑛 ≥ 11. Therefore, 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 9 and 𝛿* = 𝛿(𝐺), then

by Theorem 2.3 we have 𝛿* + 3 ≥ 9 which leads to 𝑛 ≥ 12, and if 𝛿* = 𝛿
(︀
𝐺

)︀
, then using Corollary 2.4 for 𝐺,

we have 9 ≤ 3𝑛+1
4 and so 𝑛 ≥ 12. Therefore, 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 10 and 𝛿* = 𝛿(𝐺), then by

Theorem 2.3 we have 𝛿* + 3 ≥ 10 which leads to 𝑛 ≥ 15, and if 𝛿* = 𝛿
(︀
𝐺

)︀
, then using Corollary 2.4 for 𝐺, we

have 10 ≤ 3𝑛+1
4 and so 𝑛 ≥ 13. Therefore, 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 4. Finally let 𝛾𝑡𝐼

(︀
𝐺

)︀
= 7. Then 𝛿* ≥ 4 and so

𝑛 ≥ 9. If 𝑛 ≥ 10, then the result is immediate. Let 𝑛 = 9. Thus 𝐺 and 𝐺 are 4-regular. This leads to 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 5

which contradicts the assumption 𝛾𝑡𝐼

(︀
𝐺

)︀
= 7. This completes the proof. �

Using Theorem 1.4-(2), one can improve the bound of Theorem 2.10 slightly.

Theorem 2.11. Let 𝐺 and 𝐺 be graphs of order 𝑛 ≥ 6 without isolated vertices. If diam(𝐺) ≥ 3 or diam
(︀
𝐺

)︀
≥

3, then
𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.

Proof. Assume, without loss of generality, that diam(𝐺) ≥ 3. If 𝛾𝑡𝐼(𝐺) ≤ 𝑛 − 1, then we deduce from Obser-
vation 1.2 that 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3. Hence we assume that 𝛾𝑡𝐼(𝐺) = 𝑛. It follows from Theorem 1.4-(2)

that the components of 𝐺 are isomorphic to 𝐾2, 𝐾1,2 or the corona 𝐻 = 𝐹 ∘𝐾1 for a connected graph 𝐹 with
𝑛(𝐹 ) ≥ 2. Assume first that 𝐺 has a component 𝐻 = 𝐹 ∘𝐾1 for a connected graph 𝐹 with 𝑛(𝐹 ) ≥ 3. Let 𝑢1, 𝑢2

and 𝑢3 be three leaves of 𝐻. Then the function 𝑓 defined on 𝐺 by 𝑓(𝑢1) = 𝑓(𝑢2) = 𝑓(𝑢3) = 1 and 𝑓(𝑥) = 0
otherwise, is a TIDF of 𝐺 and this implies that 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.

Assume second that 𝐺 has a component 𝐻 = 𝐾2 ∘𝐾1, and let 𝑢1 and 𝑢2 be the leaves of 𝐻. Since 𝑛 ≥ 6,
there exists a further component. If 𝑣 is a vertex of a further component, then define the function 𝑓 on 𝐺 by
𝑓(𝑢1) = 𝑓(𝑢2) = 𝑓(𝑣) = 1 and 𝑓(𝑥) = 0 otherwise. Then 𝑓 is a TIDF on 𝐺 and thus 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.

Assume third that 𝐺 has a component 𝐾1,2 = 𝑢1𝑢2𝑢3. Since 𝑛 ≥ 6, there exists a further component. If 𝑣 is
a vertex of a further component, then define the function 𝑓 on 𝐺 by 𝑓(𝑢1) = 𝑓(𝑢2) = 𝑓(𝑣) = 1 and 𝑓(𝑥) = 0
otherwise. Then 𝑓 is a TIDF on 𝐺 and thus 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.

Finally, assume that all components are isomorphic to 𝐾2. Let {𝑢1, 𝑢2} and {𝑣1, 𝑣2} be the vertices of two
such components. Then the function 𝑓 defined on 𝐺 by 𝑓(𝑢1) = 𝑓(𝑢2) = 𝑓(𝑣1) = 1 and 𝑓(𝑥) = 0 otherwise is a
TIDF on 𝐺 and thus 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3. �

If 𝐻 is the corona 𝐹 ∘𝐾1 of a connected graph 𝐹 with 𝑛(𝐹 ) ≥ 3, then we have equality in the above theorem.

Theorem 2.12. If 𝐺 and 𝐺 are graphs of order 𝑛 ≥ 12 without isolated vertices, then

𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.



NORDHAUS-GADDUM TYPE INEQUALITIES ON THE TOTAL ITALIAN DOMINATION 2241

Proof. Considering Theorem 2.11, we may assume that diam(𝐺) = diam
(︀
𝐺

)︀
= 2. It follows from

Theorem 1.4-(2) that 𝛾𝑡𝐼(𝐺) ≤ 𝑛 − 1 and 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 − 1, since 𝑛 ≥ 12. By symmetry, we can assume

that 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 𝛾𝑡𝐼(𝐺). If 𝛾𝑡𝐼(𝐺) = 3 or 4, then the result is immediate. If 𝛾𝑡𝐼(𝐺) ≥ 9, then by Theorem 2.9-(2),

we have 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 2𝛿*(𝐺) + 3 ≤ 2𝑛−1

2 + 3 = 𝑛 + 2. Assume that 𝛾𝑡𝐼(𝐺) ∈ {5, 6, 7, 8}. Let 𝛾𝑡𝐼(𝐺) = 5.
Then the result is clear if 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 10, because 𝑛 ≥ 12. Let 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 11. If 𝛿* = 𝛿(𝐺), then it follows from The-

orem 2.3 that 𝛿* ≥ 𝛾𝑡𝐼

(︀
𝐺

)︀
− 3 = 8 and if 𝛿* = 𝛿

(︀
𝐺

)︀
, then it follows from Theorem 2.3 that 𝛿* ≥ 𝛾𝑡𝐼(𝐺)−1

2 = 5.
By Observation 1.3 we get 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛− 4, which leads to 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 1.

Assume now that 𝛾𝑡𝐼(𝐺) = 6. If 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 9, then the result is immediate since 𝑛 ≥ 12. Let 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 10.

Using the argument above, we obtain 𝛿* ≥ 5 and we deduce from Observation 1.3 that 𝛾𝑡𝐼(𝐺) +𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛+ 2.

Assume next that 𝛾𝑡𝐼(𝐺) = 7. If 𝛾𝑡𝐼

(︀
𝐺

)︀
∈ {7, 8}, then the result is immediate since 𝑛 ≥ 12. Let 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 9.

If 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 10, then as above, we have 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛− 4 and so 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3. Hence, let 𝛾𝑡𝐼

(︀
𝐺

)︀
= 9.

Using the argument above, we obtain 𝛿* ≥ 4, Applying Theorem 1.5-(3) to 𝐺 we observe that 𝛾𝑡𝐼

(︀
𝐺

)︀
= 9 ≤ 5𝑛

7

and so 𝑛 ≥ 13, yielding 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝑛 + 3.

Finally let 𝛾𝑡𝐼(𝐺) = 8. If 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 12, then Theorem 2.3 implies that 𝛿* ≥ 6 and by Observation 1.3

we have 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 8 + (𝑛 − 𝛿* + 1) ≤ 𝑛 + 3. Hence we assume that 𝛾𝑡𝐼

(︀
𝐺

)︀
∈ {8, 9, 10, 11}. If

𝛿* = 𝛿(𝐺), then by Theorem 8 we have 𝛿* + 3 ≥ 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 8 and if 𝛿* = 𝛿

(︀
𝐺

)︀
, then by Theorem 8 we have

𝛿* + 3 ≥ 𝛾𝑡𝐼(𝐺) = 8. Thus 𝛿*(𝐺) ≥ 5. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 11, then it follows from Theorem 1.5-(4) that 𝑛 ≥ 16,

yielding 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
= 19 ≤ 𝑛 + 3. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 10, then as above, we obtain 𝑛 ≥ 15 which leads to

𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
= 18 ≤ 𝑛 + 3. Assume that 𝛾𝑡𝐼

(︀
𝐺

)︀
= 9. Then as above, we obtain 𝑛 ≥ 13. If 𝑛 ≥ 14, then the

result is immediate. Let 𝑛 = 13. It follows that 𝛿
(︀
𝐺

)︀
= 𝛿* = 5. Therefore ∆(𝐺) = 7. Let 𝑥 ∈ 𝑉 (𝐺) be a vertex

of maximum degree 7 and let 𝑁(𝑥) = {𝑥1, . . . , 𝑥7}. Assume that 𝑋 = 𝑉 (𝐺) − 𝑁 [𝑥] = {𝑦1, . . . , 𝑦5} and let 𝑦′𝑖
be a common neighbor of 𝑥 and 𝑦𝑖. If 𝑦𝑖 is adjacent to all vertices in 𝑋 − {𝑦𝑖} for some 𝑖, then the function
𝑓 defined on 𝐺 by 𝑓(𝑥) = 𝑓(𝑦𝑖) = 2, 𝑓(𝑦′𝑖) = 1 and 𝑓(𝑧) = 0 otherwise, is a TIDF of 𝐺 which contradicts
the assumption 𝛾𝑡𝐼(𝐺) = 8. If 𝑦𝑖 is adjacent to all vertices in 𝑋 − {𝑦𝑖} but one, say 𝑦𝑗 , for some 𝑖, then the
function 𝑓 defined on 𝐺 by 𝑓(𝑥) = 𝑓(𝑦𝑖) = 𝑓(𝑦′𝑗) = 2, 𝑓(𝑦′𝑖) = 1 and 𝑓(𝑧) = 0 otherwise, is a TIDF of 𝐺, which
contradicts the assumption 𝛾𝑡𝐼(𝐺) = 8 again. Thus each 𝑦𝑖 is adjacent to at most two vertices in 𝑋−{𝑦𝑖} and so
it is adjacent to at least three vertices in 𝑁(𝑥). If 𝑥𝑖 is adjacent to all vertices in 𝑋 for some 𝑖, then the function
𝑓 defined on 𝐺 by 𝑓(𝑥) = 𝑓(𝑥𝑖) = 2, and 𝑓(𝑧) = 0 otherwise, is a TIDF of 𝐺 which contradicts the assumption
𝛾𝑡𝐼(𝐺) = 8. If 𝑥𝑖 is adjacent to all vertices in 𝑋 but one, say 𝑦𝑗 , for some 𝑖, then the function 𝑓 defined on 𝐺 by
𝑓(𝑥) = 𝑓(𝑥𝑖) = 𝑓(𝑦′𝑗) = 2 and 𝑓(𝑧) = 0 otherwise, is a TIDF of 𝐺 which contradicts the assumption 𝛾𝑡𝐼(𝐺) = 8
again. Thus each vertex 𝑥𝑖 is adjacent to at most three vertices in 𝑋 and so it is adjacent to at least one vertex
in 𝑁(𝑥). Then the function 𝑓 defined on 𝐺 by 𝑓(𝑥) = 𝑓(𝑥𝑖) = 1 for 1 ≤ 𝑖 ≤ 6 and 𝑓(𝑧) = 0 otherwise, is a
TIDF of 𝐺 of weight 7 which leads to a contradiction.

Assume next that 𝛾𝑡𝐼

(︀
𝐺

)︀
= 8. If 𝑛 ≥ 13, then the result is immediate. Let 𝑛 = 12. Without loss of generality,

we may assume that ∆(𝐺) = 6. Let 𝑥 ∈ 𝑉 (𝐺) be a vertex of maximum degree 6, 𝑁(𝑥) = {𝑥1, . . . , 𝑥6} and
𝑋 = 𝑉 (𝐺)−𝑁 [𝑥] = {𝑦1, . . . , 𝑦5}. If some 𝑦𝑖 is adjacent to all vertices in 𝑋 − {𝑦𝑖}, then the function 𝑓 defined
by 𝑓(𝑥) = 𝑓(𝑦𝑖) = 2, 𝑓(𝑤) = 1 for some 𝑤 ∈ 𝑁(𝑥) ∩ 𝑁(𝑦𝑖) and 𝑓(𝑧) = 0 otherwise, is a TIDF of 𝐺 which
contradicts the assumption 𝛾𝑡𝐼(𝐺) = 8. Thus each 𝑦𝑖 is adjacent to at most three vertices in 𝑋 and so each
𝑦𝑖 is adjacent to at least two vertices in 𝑁(𝑥). But then the function 𝑓 defined by 𝑓(𝑧) = 1 for 𝑧 ∈ 𝑁 [𝑥] and
𝑓(𝑧) = 0 otherwise, is a TIDF of 𝐺 of weight 7 which contradicts the assumption 𝛾𝑡𝐼(𝐺) = 8. This completes
the proof. �

Theorem 2.13. If 𝐺 and 𝐺 are graphs of order 𝑛 without isolated vertices, then

𝛾𝑡𝐼(𝐺)𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 6𝑛− 8.

The bound is sharp for 𝑃4.
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Proof. We observe that 𝑛 ≥ 4. If 𝐺 is disconnected, then clearly 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 4 and the result is immediate.

Hence we assume that 𝐺 is connected. We assume likewise that 𝐺 is connected. If diam(𝐺) ≥ 3, then the result
is immediate by Observation 1.2 and Theorem 1.4-(2). Thus we assume that diam(𝐺) = 2. Similarly, we can
assume that diam

(︀
𝐺

)︀
= 2.

By symmetry, we can assume that 𝛾𝑡𝐼(𝐺) ≥ 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 3. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 3 or 4, then the bound is immediate.

If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 5, then we deduce from diam(𝐺) = diam

(︀
𝐺

)︀
= 2 and Theorem 1.4-(2) that 𝛾𝑡𝐼(𝐺) ≤ 𝑛 − 1. Thus

𝛾𝑡𝐼(𝐺)𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 5(𝑛− 1) ≤ 6𝑛− 8. Hence we assume that 𝛾𝑡𝐼(𝐺) ≥ 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 6. Hence by Theorem 2.3, 𝛿* ≥ 3

and so 𝑛 ≥ 7. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 6, then by Theorem 1.5-(2) we have 𝛾𝑡𝐼(𝐺)𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 6 3𝑛

4 < 6𝑛 − 8. If 𝛾𝑡𝐼

(︀
𝐺

)︀
= 7,

then 𝛿* ≥ 4 and by Theorem 1.5-(3) we have 𝛾𝑡𝐼(𝐺)𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 7 5𝑛

7 ≤ 6𝑛 − 8. If 𝛾𝑡𝐼

(︀
𝐺

)︀
≥ 9, then using first

Theorem 2.9-(1), then Theorem 2.9-(2) and the that fact 𝛿*(𝐺) ≤ 𝑛−1
2 , we obtain

𝛾𝑡𝐼(𝐺)𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 𝛾𝑡𝑅(𝐺)𝛾𝑡𝑅

(︀
𝐺

)︀
≤ 4𝛿*(𝐺)− 20 + 4(𝛾𝑡𝑅(𝐺) + 𝛾𝑡𝑅

(︀
𝐺

)︀
)

≤ 4𝛿*(𝐺)− 20 + 4(2𝛿*(𝐺) + 3)

≤ 12
𝑛− 1

2
− 8

= 6𝑛− 14.

Now assume that 𝛾𝑡𝐼

(︀
𝐺

)︀
= 8. Theorem 2.3 implies that 𝛿* ≥ 5 and so 𝑛 ≥ 11. If 𝛾𝑡𝐼(𝐺) ≥ 10, then by

Theorem 2.9 we have 𝛾𝑡𝐼(𝐺) + 𝛾𝑡𝐼

(︀
𝐺

)︀
≤ 2𝛿* + 4, and as above we get the desired result. Hence we assume

that 𝛾𝑡𝐼(𝐺) ∈ {8, 9}. First let 𝛾𝑡𝐼(𝐺) = 8. If 𝑛 ≥ 12, then the result is immediate. Let 𝑛 ≤ 11. Then 𝑛 = 11
and both 𝐺 and 𝐺 must be 5-regular which is impossible. Now let 𝛾𝑡𝐼(𝐺) = 9. By Theorem 1.5-(3) we have
𝑛 ≥ 13. If 𝑛 ≥ 14, then the result is immediate. Let 𝑛 = 13 and so 𝛿* ≤ 6. If 𝛿* = 6, then Theorem 2.5 implies
that 𝛾𝑡𝐼(𝐺) ≤ 7, contradicting the assumption 𝛾𝑡𝐼(𝐺) = 9. Thus 𝛿* = 5 and so ∆* = max{∆(𝐺), ∆

(︀
𝐺

)︀
} = 7.

Without loss of generality, assume that ∆
(︀
𝐺

)︀
= 7 and let 𝑢 be a vertex with degree 7 in 𝐺. If some vertex 𝑣 in

𝑁𝐺(𝑢) is adjacent to all vertices of 𝑉
(︀
𝐺

)︀
−𝑁𝐺[𝑢], then the function 𝑓 defined by 𝑓(𝑢) = 𝑓(𝑣) = 2 and 𝑓(𝑥) = 0

otherwise, is a TIDF of 𝐺 which contradicts the assumption 𝛾𝑡𝐼

(︀
𝐺

)︀
= 8. Hence we assume that no vertex of

𝑁𝐺(𝑢) is adjacent to all vertices of 𝑌 = 𝑉
(︀
𝐺

)︀
− 𝑁𝐺[𝑢] and so the induced subgraph of 𝐺 by 𝑁𝐺(𝑢) has no

isolated vertex because 𝛿* ≥ 5. If some vertex 𝑣 ∈ 𝑌 is adjacent to all vertices 𝑌 −{𝑣}, then function 𝑓 defined
by 𝑓(𝑢) = 𝑓(𝑣) = 2, 𝑓(𝑢′) = 1 and 𝑓(𝑥) = 0 otherwise, where 𝑢′ is a common neighbor of 𝑢 and 𝑣, is a TIDF
of 𝐺 which leads to a contradiction again. Thus we assume that each vertex in 𝑌 has at most three neighbors
in 𝑌 and so each vertex in 𝑌 has at least two neighbors in 𝑁𝐺(𝑢). Then the function 𝑓 defined by 𝑓(𝑣) = 1 for
𝑣 ∈ 𝑁𝐺(𝑢) and 𝑓(𝑥) = 0 otherwise, is a TIDF of 𝐺 of weight 7 which is a contradiction. This completes the
proof. �
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