An efficient gradient method with approximately optimal stepsizes based on regularization models for unconstrained optimization
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2403-2424

It is widely accepted that the stepsize is of great significance to gradient method. An efficient gradient method with approximately optimal stepsizes mainly based on regularization models is proposed for unconstrained optimization. More specifically, if the objective function is not close to a quadratic function on the line segment between the current and latest iterates, regularization model is exploited carefully to generate approximately optimal stepsize. Otherwise, quadratic approximation model is used. In addition, when the curvature is non-positive, special regularization model is developed. The convergence of the proposed method is established under some weak conditions. Extensive numerical experiments indicated the proposed method is very promising. Due to the surprising efficiency, we believe that gradient methods with approximately optimal stepsizes can become strong candidates for large-scale unconstrained optimization.

DOI : 10.1051/ro/2022107
Classification : 90C06, 65K
Keywords: Approximately optimal stepsize, gradient method, regularization method, Barzilai–Borwein (BB) method, global convergence
@article{RO_2022__56_4_2403_0,
     author = {Liu, Zexian and Chu, Wangli and Liu, Hongwei},
     title = {An efficient gradient method with approximately optimal stepsizes based on regularization models for unconstrained optimization},
     journal = {RAIRO. Operations Research},
     pages = {2403--2424},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022107},
     mrnumber = {4458848},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022107/}
}
TY  - JOUR
AU  - Liu, Zexian
AU  - Chu, Wangli
AU  - Liu, Hongwei
TI  - An efficient gradient method with approximately optimal stepsizes based on regularization models for unconstrained optimization
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2403
EP  - 2424
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022107/
DO  - 10.1051/ro/2022107
LA  - en
ID  - RO_2022__56_4_2403_0
ER  - 
%0 Journal Article
%A Liu, Zexian
%A Chu, Wangli
%A Liu, Hongwei
%T An efficient gradient method with approximately optimal stepsizes based on regularization models for unconstrained optimization
%J RAIRO. Operations Research
%D 2022
%P 2403-2424
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022107/
%R 10.1051/ro/2022107
%G en
%F RO_2022__56_4_2403_0
Liu, Zexian; Chu, Wangli; Liu, Hongwei. An efficient gradient method with approximately optimal stepsizes based on regularization models for unconstrained optimization. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2403-2424. doi: 10.1051/ro/2022107

[1] H. Akaike, On a successive transformation of probability distribution and its application to the analysis of the optimum gradient method. Ann. Inst. Statist. Math. 11 (1959) 1–17. | MR | DOI

[2] N. Andrei, An unconstrained optimization test functions collection. Adv. Model. Optim. 10 (2008) 147–161. | MR

[3] J. Barzilai and J. M. Borwein, Two-point step size gradient methods. IMA J. Numer. Anal. 8 (1988) 141–148. | MR | DOI

[4] T. Bianconcini and M. Q. Sciandrone, A cubic regularization algorithm for unconstrained optimization using line search and nonmonotone techniques. Optim. Methods Softw. 31 (2016) 1008–1035. | MR | DOI

[5] T. Bianconcini, G. Liuzzi and B. Morini, On the use of iterative methods in cubic regularization for unconstrained optimization. Comput. Optim. Appl. 60 (2015) 35–57. | MR | DOI

[6] F. Biglari and M. Solimanpur, Scaling on the spectral gradient method. J. Optim. Theory Appl. 158 (2013) 626–635. | MR | DOI

[7] E. G. Birgin, J. M. Martínez and M. Raydan, Nonmonotone spectral projected gradient methods for convex sets. SIAM J. Optim. 10 (2000) 1196–1211. | MR | DOI

[8] C. Cartis, N. I. M. Gould and P. L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part I: motivation, convergence and numerical results. Math. Program. 127 (2011) 245–295. | MR | DOI

[9] C. Cartis, N. I. Gould and P. L. Toint, Adaptive cubic regularisation methods for unconstrained optimization. Part II: worst-case function-and derivative-evaluation complexity. Math. Program. 130 (2011) 295–319. | MR | DOI

[10] A. Cauchy, Méthode générale pour la résolution des systéms déquations simultanées. Comput. Rend. Sci. Paris 25 (1847) 46–89.

[11] Y. H. Dai and C. X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim. 23 (2013) 296–320. | MR | DOI

[12] Y. H. Dai and L. Z. Liao, 𝐑 -linear convergence of the Barzilai and Borwein gradient method. IMA J. Numer. Anal. 22 (2002) 1–10. | MR | DOI

[13] Y. H. Dai and H. C. Zhang, An adaptive two-point stepsize gradient algorithm. Numer. Algorithms 27 (2001) 377–385. | MR | DOI

[14] Y. H. Dai, J. Y. Yuan and Y. X. Yuan, Modified two-point stepsize gradient methods for unconstrained optimization. Comput. Optim. Appl. 22 (2002) 103–109. | MR | DOI

[15] Y. H. Dai, W. W. Hager, K. Schittkowski and H. Zhang, The cyclic Barzilai-Borwein method for unconstrained optimization. IMA J. Numer. Anal. 26 (2006) 604–627. | MR | DOI

[16] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles. Math. Program. 91 (2002) 201–213. | MR | DOI

[17] N. I. M. Gould and M. Porcelli, Updating the regularization parameter in the adaptive cubic regularization algorithm. Comput. Optim. Appl. 53 (2012) 1–22. | MR | DOI

[18] N. I. M. Gould, D. Orban and P. L. Toint, CUTEr and SifDec: a constrained and unconstrained testing environment, revisited. ACM Trans. Math. Softw. 29 (2003) 373–394. | DOI

[19] L. Grippo, F. Lamparillo and S. Lucidi, A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23 (1986) 707–716. | MR | DOI

[20] W. W. Hager and H. C. Zhang, A new conjugate gradient method with guaranteed descent and an efficient line search. SIAM J. Optim. 16 (2005) 170–192. | MR | DOI

[21] W. W. Hager and H. C. Zhang, Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw. 32 (2006) 113–137. | MR | DOI

[22] Y. K. Huang, Y. H. Dai and X. W. Liu, Equipping Barzilai-Borwein method with two dimensional quadratic termination property. SIAM J. Optim. 31 (2021) 3068–3096. | MR | DOI

[23] D. W. Li and R. Y. Sun, On a faster R-linear convergence rate of the Barzilai-Borwein method (2020). Preprint . | arXiv

[24] Z. X. Liu and H. W. Liu, Several efficient gradient methods with approximate optimal stepsizes for large scale unconstrained optimization. J. Comput. Appl. Math. 328 (2018) 400–413. | MR | DOI

[25] Z. X. Liu and H. W. Liu, An efficient gradient method with approximate optimal stepsize for large-scale unconstrained optimization. Numer. Algorithms 78 (2018) 21–39. | MR | DOI

[26] Z. X. Liu, H. W. Liu and X. L. Dong, An efficient gradient method with approximate optimal stepsize for the strictly convex quadratic minimization problem. Optimization 67 (2018) 427–440. | MR | DOI

[27] F. Luengo and M. Raydan, Gradient method with dynamical retards for large-scale optimization problems. Electron. Trans. Numer. Anal. 16 (2003) 186–193. | MR

[28] M. Miladinović, P. Stanimirović and S. Miljković, Scalar correction method for solving large scale unconstrained minimization problems. J. Optim. Theory Appl. 151 (2011) 304–320. | MR | DOI

[29] H. Nosratipour, O. S. Fard and A. H. Borzabadi, An adaptive nonmonotone global Barzilai-Borwein gradient method for unconstrained optimization. Optimization 66 (2017) 641–655. | MR | DOI

[30] M. Raydan and On the Barzilai and Borwein choice of steplength for the gradient method. IMA J. Numer. Anal. 13 (1993) 321–326. | MR | DOI

[31] M. Raydan, The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7 (1997) 26–33. | MR | DOI

[32] W. Y. Sun, Optimization methods for non-quadratic model. Asia-Pac. J. Oper. Res. 13 (1996) 43–63. | MR

[33] W. Y. Sun and D. Xu, A filter-trust-region method based on conic model for unconstrained optimization. Sci. Sin. Math. 55 (2012) 527–543.

[34] P. L. Toint, A non-monotone trust-region algorithm for nonlinear optimization subject to convex constraints. Math. Program. 77 (1997) 69–94. | MR | DOI

[35] Y. H. Xiao, Q. Y. Wang and D. Wang, Notes on the Dai-Yuan-Yuan modified spectral gradient method. J. Comput. Appl. Math. 234 (2010) 2986–2992. | MR | DOI

[36] Y. X. Yuan, A new stepsize for the steepest descent method. J. Comput. Math. 24 (2006) 149–156. | MR

[37] H. C. Zhang and W. W. Hager, A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14 (2004) 1043–1056. | MR | DOI

[38] J. Z. Zhang, N. Y. Deng and L. H. Chen, New quasi-Newton equation and related methods for unconstrained optimization. J. Optim. Theory Appl. 102 (1999) 147–167. | MR | DOI

Cité par Sources :