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AN EFFICIENT GRADIENT METHOD WITH APPROXIMATELY OPTIMAL
STEPSIZES BASED ON REGULARIZATION MODELS FOR UNCONSTRAINED

OPTIMIZATION

Zexian Liu1,*, Wangli Chu2 and Hongwei Liu2

Abstract. It is widely accepted that the stepsize is of great significance to gradient method. An ef-
ficient gradient method with approximately optimal stepsizes mainly based on regularization models
is proposed for unconstrained optimization. More specifically, if the objective function is not close to
a quadratic function on the line segment between the current and latest iterates, regularization model
is exploited carefully to generate approximately optimal stepsize. Otherwise, quadratic approximation
model is used. In addition, when the curvature is non-positive, special regularization model is developed.
The convergence of the proposed method is established under some weak conditions. Extensive numer-
ical experiments indicated the proposed method is very promising. Due to the surprising efficiency, we
believe that gradient methods with approximately optimal stepsizes can become strong candidates for
large-scale unconstrained optimization.
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1. Introduction

We consider the following unconstrained optimization problem:

min
𝑥∈𝑅𝑛

𝑓(𝑥), (1.1)

where 𝑓 : 𝑅𝑛 → 𝑅 is continuously differentiable and its gradient is denoted by 𝑔. The gradient method for
solving (1.1) has the following form

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘, (1.2)

where 𝛼𝑘 is the stepsize and 𝑔𝑘 = ∇𝑓(𝑥𝑘). Throughout this paper, 𝑓𝑘 = 𝑓(𝑥𝑘), 𝑠𝑘−1 = 𝑥𝑘 − 𝑥𝑘−1, 𝑦𝑘−1 =
𝑔𝑘 − 𝑔𝑘−1 and ‖.‖ denotes the Euclidean norm.

It is widely accepted that the stepsize is of great significance to the theory and numerical performance
of gradient method, and the stepsize is the core problem of gradient method. The classical steepest descent
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method [10], where the stepsize is given by 𝛼SD
𝑘 = arg min

𝛼>0
𝑓(𝑥𝑘 − 𝛼𝑔𝑘), is badly affected by ill conditioning

and thus converges slowly [1]. In 1988, Barzilai and Borwein [3] proposed a two-point gradient method (BB
method), where the famous stepsize (BB stepsize) is given by

𝛼BB1
𝑘 =

‖𝑠𝑘−1‖2

𝑠𝑇
𝑘−1𝑦𝑘−1

or 𝛼BB2
𝑘 =

𝑠𝑇
𝑘−1𝑦𝑘−1

‖𝑦𝑘−1‖2
· (1.3)

Due to the simplicity and nice numerical efficiency, the BB method has received extensive attention. The BB
method has been shown to be globally [30] and R-linearly [12] convergent for any dimensional strictly convex
quadratic functions. In 2021, Li and Sun [23] presented an interesting and improved R-linear convergence result
of the BB method. Raydan [31] proposed the global BB method by incorporating the nonmonotone line search
(GLL line search) [19]. Dai et al. [13] presented a quite efficient gradient method by adaptively choosing the
BB stepsizes. Dai et al. [14] viewed the BB stepsize from a new angle and constructed a quadratic model and
a conic model to derive two stepsizes for gradient methods. In 2018, Liu et al. [26] viewed the stepsize 𝛼BB1

𝑘

from the approximation model and introduced a new type of stepsize called approximately optimal stepsize for
gradient method.

Definition 1.1 ([26]). Suppose 𝑓 is continuously differentiable, and let 𝜑𝑘(𝛼) be an approximation model of
𝑓(𝑥𝑘 −𝛼𝑔𝑘). A positive constant 𝛼AOS

𝑘 is called approximately optimal stepsize associated to 𝜑𝑘(𝛼) for gradient
method if 𝛼AOS

𝑘 satisfies

𝛼AOS
𝑘 = arg min

𝛼>0
𝜑𝑘(𝛼). (1.4)

From (1.4), we can easily obtain the following simple facts:

(i) If 𝜑𝑘(𝛼) = 𝑓(𝑥𝑘 − 𝛼𝑔𝑘), then the resulted approximately optimal stepsize corresponds to Cauchy stepsize.
This is the reason that we call the stepsize (1.4) approximately optimal stepsize.

(ii) If 𝜑𝑘(𝛼) = 𝑓𝑘−𝛼‖𝑔𝑘‖2+ 1
2𝛼2𝑔𝑇

𝑘

(︁
𝑠𝑇

𝑘−1𝑦𝑘−1

‖𝑠𝑘−1‖2
𝐼
)︁
𝑔𝑘, then the resulted approximately optimal stepsize corresponds

to the BB stepsize 𝛼BB1
𝑘 .

(iii) For any stepsize 𝛼𝑘 > 0, let 𝜑𝑘(𝛼) = 𝑓𝑘 − 𝛼‖𝑔𝑘‖2 + 1
2𝛼2𝑔𝑇

𝑘

(︂
1
𝛼𝑘

𝐼

)︂
𝑔𝑘, it is easy to see that the resulted

approximately optimal stepsize is exactly 𝛼𝑘. As a result, all existing stepsizes for gradient methods can
be treated as approximately optimal stepsizes in this sense.

Some gradient methods with approximately optimal stepsizes [24,25] were proposed, and the numerical exper-
iments in [24,25] indicated that these gradient methods are very efficient. Gradient methods with approximately
optimal stepsizes have illustrated powerful potentiality for unconstrained optimization.

In addition, based on a fourth order conic model and some modified secant equations, Biglari and Soliman-
pur [6] presented some modified BB methods. Recently, motivated by Yuan’s stepsize [36], Huang et al. [22]
equipped the Barzilai and Borwein method with two dimensional quadratic termination property and proposed
a novel stepsize for gradient method (HDL, corresponding to Algorithm 3.1 in [22]) for general unconstrained
optimization. More modified BB methods can be found in [15,28,29,35].
Contributions. According to Definition 1.1, it is not difficult to see that the effectiveness of approximately
optimal stepsize relies heavily on the approximation model 𝜑𝑘(𝛼). To obtain more efficient gradient methods
with approximately optimal stepsizes, one should take full advantage of the properties of 𝑓 at 𝑥𝑘 to exploit
suitable approximation models including quadratic models and non-quadratic models for deriving approximately
optimal stepsize. In the paper, we present an efficient gradient method with approximately optimal stepsizes
based on regularization models for unconstrained optimization. In the proposed method, if the objective function
𝑓 is not close to a quadratic function on the line segment between 𝑥𝑘−1 and 𝑥𝑘, then a regularization model
is exploited to generate approximately optimal stepsizes. Otherwise, a quadratic approximation model is used
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to derive approximately optimal stepsize. In addition, when 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0, a special regularization model is

developed carefully. The global convergence of the proposed method is analyzed. The numerical results indicate
that the proposed method is superior to the HDL method [22] and other efficient gradient methods, and is
competitive to two famous conjugate gradient software packages CGOPT (1.0) [11] and CG DESCENT (5.0)
[20] for the 145 test problems in the CUTEr library [18], and has significant improvement over CGOPT (1.0) [11]
and CG DESCENT (5.0) [20] for the 80 test problems mainly from [2].

The rest of the paper is organized as follows. In Section 2, some approximation models including regularization
models and quadratic models are exploited to generate approximately optimal stepsizes for gradient method.
In Section 3, an efficient gradient method with the approximately optimal stepsizes is described in detail. The
global convergence of the proposed method is analyzed in Section 4. In Section 5, some numerical results are
presented. Conclusion and discussion are given in the last section.

2. Derivation of approximately optimal stepsizes

Based on the properties of 𝑓 at the current iterate 𝑥𝑘, some approximation models including regularization
models and quadratic models are exploited carefully to derive approximately optimal stepsizes for gradient
method in the section.

As mentioned above, the effectiveness of approximately optimal stepsize relies heavily on approximation
model 𝜑𝑘(𝛼). So we design carefully suitable approximation models mainly based on the properties of 𝑓 at 𝑥𝑘.
The choices of approximation models are from the following observation.

Define

𝜇𝑘 =

⃒⃒⃒⃒
⃒2
(︀
𝑓𝑘−1 − 𝑓𝑘 + 𝑔𝑇

𝑘 𝑠𝑘−1

)︀
𝑠𝑇

𝑘−1𝑦𝑘−1
− 1

⃒⃒⃒⃒
⃒. (2.1)

According to [26], 𝜇𝑘 is an important criterion for measuring the degree of 𝑓 to approximate quadratic function.
If the condition [14,25]

𝜇𝑘 ≤ 𝑐1 or max{𝜇𝑘, 𝜇𝑘−1} ≤ 𝑐2 (2.2)

holds, then 𝑓 might be close to a quadratic function on the line segment between 𝑥𝑘−1 and 𝑥𝑘. Here 0 < 𝑐1 < 𝑐2.
When 𝑓 is close to a quadratic function on the line segment between 𝑥𝑘−1 and 𝑥𝑘, quadratic approximation

model is certainly preferable. However, if the objective function 𝑓 possesses high non-linearity, then quadratic
models might not work very well [32, 33], so some nonquadratic approximation models should be considered
in this case. In recent years, regularization algorithms, which are defined as the standard quadratic model
plus a regularization term, have been proposed for unconstrained optimization [8]. An adaptive regularization
algorithm using cubics (ARC) was proposed by Cartis et al. [8]. The trial step in ARC algorithm [8] is computed
by minimizing the following regularization model:

𝑚𝑘(𝑑) = 𝑓(𝑥𝑘) + 𝑔𝑇
𝑘 𝑑 +

1
2
𝑑𝑇 𝐵𝑘𝑑 +

1
3
𝜎𝑘‖𝑑‖3, (2.3)

where 𝐵𝑘 is a symmetric approximation to the Hessian matrix and 𝜎𝑘 > 0 is a regularization parameter. And
the numerical results in [9] indicated that ARC algorithm is quite efficient. More advance about regularization
algorithms can be referred to [4, 5, 34]. Regularization algorithms have become an alternative to trust region
and line search schemes [8]. All of this indicates that when 𝑓 is not close to a quadratic function around 𝑥𝑘,
regularization models might serve better than quadratic models generally.

Motivated by the above observation, we consider the approximation model (2.3), and derive approximately
optimal stepsizes for gradient methods in the following four cases based on the sign of 𝑠𝑇

𝑘−1𝑦𝑘−1 and the condition
(2.2).

Case I. 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0 holds and the condition (2.2) does not hold.
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In the case, the objective function 𝑓 might be not close to a quadratic function on the line segment between
𝑥𝑘−1 and 𝑥𝑘, we thus use the regularization model (2.3) with 𝑑 = −𝛼𝑔𝑘:

𝜑1(𝛼) = 𝑓(𝑥𝑘)− 𝛼𝑔𝑇
𝑘 𝑔𝑘 +

1
2
𝛼2𝑔𝑇

𝑘 𝐵𝑘𝑔𝑘 +
1
3
𝛼3𝜎𝑘‖𝑔𝑘‖3. (2.4)

Taking account of the computational cost and storage, 𝐵𝑘 is generated by imposing the modified Broyden–
Fletcher–Goldfarb–Shanno (BFGS) update formula [38] on a scalar matrix 𝐷𝑘:

𝐵𝑘 = 𝐷𝑘 −
𝐷𝑘𝑠𝑘−1𝑠

𝑇
𝑘−1𝐷𝑘

𝑠𝑇
𝑘−1𝐷𝑘𝑠𝑘−1

+
𝑦𝑘−1𝑦

𝑇
𝑘−1

𝑠𝑇
𝑘−1𝑦𝑘−1

, (2.5)

where 𝑦𝑘−1 = 𝑦𝑘−1 + 𝑟𝑘

‖𝑠𝑘−1‖2
𝑠𝑘−1 and 𝑟𝑘 = 3(𝑔𝑘 + 𝑔𝑘−1)𝑇 𝑠𝑘−1 + 6(𝑓𝑘−1 − 𝑓𝑘). Here we take 𝐷𝑘 as 𝐷𝑘 =

𝜉0
𝑦𝑇

𝑘−1𝑦𝑘−1

𝑠𝑇
𝑘−1𝑦𝑘−1

𝐼, where 𝜉0 ≥ 1. If 𝑓 is twice continuously differentiable, then there exists 𝜇1 ∈ [0, 1] such that

𝑟𝑘 = 3
(︀
𝑠𝑇

𝑘−1𝑦𝑘−1 − 𝑠𝑇
𝑘−1∇2𝑓(𝑥𝑘−1 + 𝜇1𝑠𝑘−1)𝑠𝑘−1

)︀
. (2.6)

Therefore, to improve the numerical performance we restrict 𝑟𝑘 as

𝑟𝑘 = min
{︀

max
{︀
𝑟𝑘,−𝜉1𝑠

𝑇
𝑘−1𝑦𝑘−1

}︀
, 𝜉1𝑠

𝑇
𝑘−1𝑦𝑘−1

}︀
, (2.7)

where 0 < 𝜉1 < 0.1.
As for the choice of regularization parameter 𝜎𝑘 in (2.4), we determine it as follow. The regularization

parameter is significant to the effectiveness of regularization model. However, it is universally acknowledged
that it is challenging to determine a proper regularization parameter 𝜎𝑘. Some ways including the interpolation
condition and the trust-region strategy [8, 17] were developed to determine the regularization parameter 𝜎𝑘.
Here we use the interpolation condition to determine the regularization parameter:

𝑓𝑘−1 = 𝑓𝑘 − 𝑔𝑇
𝑘 𝑠𝑘−1 +

1
2
𝑠𝑇

𝑘−1𝐵𝑘𝑠𝑘−1 +
𝜎𝑘

3
‖𝑠𝑘−1‖3,

which implies that

𝜎𝑘 =
3
(︀
𝑓𝑘−1 − 𝑓𝑘 + 𝑔𝑇

𝑘 𝑠𝑘−1 − 1
2𝑠𝑇

𝑘−1𝑦𝑘−1

)︀
‖𝑠𝑘−1‖3

· (2.8)

To improve the numerical performance and make it to be positive, we take the following truncated form of (2.8):

𝜎𝑘 = max{min{|𝜎𝑘|, 𝜎max}, 𝜎min}, (2.9)

where 0 < 𝜎min < 𝜎max.
It is not difficult to obtain the following lemma.

Lemma 2.1. Suppose that 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0. Then, 𝑠𝑇

𝑘−1𝑦𝑘−1 > 0 and 𝐵𝑘 is symmetric and positive definite.

By imposing 𝑑𝜑1
𝑑𝛼 = 0, we obtain the equation −𝑔𝑇

𝑘 𝑔𝑘 + 𝛼𝑔𝑇
𝑘 𝐵𝑘𝑔𝑘 + 𝛼2𝜎𝑘‖𝑔𝑘‖3 = 0. Since

∆1 =
(︀
𝑔𝑇

𝑘 𝐵𝑘𝑔𝑘

)︀2
+ 4𝜎𝑘‖𝑔𝑘‖5 > 0, (2.10)

the above equation has a positive root and a negative root. According to Definition 1.1, it is not difficult to
verify that the positive root is the approximately optimal stepsize, namely,

𝛼̄
AOS(1)
𝑘 =

2‖𝑔𝑘‖2√
∆1 + 𝑔𝑇

𝑘 𝐵𝑘𝑔𝑘

(2.11)
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where 𝐵𝑘 is given by (2.5) with (2.7).

It is observed by numerical experiments that the bound
[︁
𝛼BB2

𝑘 , 𝛼BB1
𝑘

]︁
for 𝛼̄

AOS(1)
𝑘 is very preferable. Therefore,

if 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0 holds and the condition (2.2) does not hold, then we take the following truncated approximately

optimal stepsize

𝛼
AOS(1)
𝑘 = max

{︁
min

{︁
𝛼̄

AOS(1)
𝑘 , 𝛼BB1

𝑘

}︁
𝛼BB2

𝑘

}︁
(2.12)

for gradient method.

Case II. 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0 and the condition (2.2) hold.

In the case, the objective function 𝑓 might be close to a quadratic function on the line segment between 𝑥𝑘−1

and 𝑥𝑘, we thus consider the following quadratic approximation model:

𝜑2(𝛼) = 𝑓(𝑥𝑘)− 𝛼𝑔𝑇
𝑘 𝑔𝑘 +

1
2
𝛼2𝑔𝑇

𝑘 𝐵𝑘𝑔𝑘, (2.13)

where 𝐵𝑘 is given by (2.5) with (2.7) for simplicity. It follows from Lemma 2.1 that 𝐵𝑘 is symmetric and positive

definite. By imposing
d𝜑2

d𝛼
= 0, we can easily obtain the approximately optimal stepsize

𝛼̄
AOS(2)
𝑘 =

𝑔𝑇
𝑘 𝑔𝑘

𝑔𝑇
𝑘 𝐵𝑘𝑔𝑘

=
‖𝑔𝑘‖2

𝜉1‖𝑦𝑘−1‖2
𝑠𝑇

𝑘−1𝑦𝑘−1

(︂
‖𝑔𝑘‖2 −

(𝑔𝑇
𝑘 𝑠𝑘−1)2

‖𝑠𝑘−1‖2

)︂
+ (𝑔𝑇

𝑘 𝑦𝑘−1)2

𝑠𝑇
𝑘−1𝑦𝑘−1

· (2.14)

Similar to Case I, if 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0 and the condition (2.2) hold, then we take the truncated approximately

optimal stepsize

𝛼
AOS(2)
𝑘 = max

{︁
min

{︁
𝛼̄

AOS(2)
𝑘 , 𝛼BB1

𝑘

}︁
, 𝛼BB2

𝑘

}︁
(2.15)

for gradient method.

Case III. 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0 and the condition (2.16) hold.

When 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0, the BB stepsizes or the approximately optimal stepsizes described above can not be

used, and thus it is difficult to determine suitable stepsize for gradient method. In some modified BB methods
[6, 14], the stepsize is usually set simply to 𝛼𝑘 = 1030 when 𝑠𝑇

𝑘−1𝑦𝑘−1 ≤ 0. As a result, it will cause large
computational cost for seeking a suitable stepsize in a line search for gradient method.

It follows from 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0 that 0 < ‖𝑔𝑘−1‖

‖𝑔𝑘‖ ≤ 1. Consequently, if the following condition

𝜉2 ≤
‖𝑔𝑘−1‖2

‖𝑔𝑘‖2
≤ 1 (2.16)

holds, where 0 < 𝜉2 < 1 is close to 1, then 𝑔𝑘 and 𝑔𝑘−1 tend to be collinear and are approximately equal. In
the case, we can use 𝑔𝑘−1 to approximate 𝑔𝑘, which will be useful for constructing approximation model, as
described below.

Suppose for the moment that 𝑓 is twice continuously differentiable, we consider the following regularization
model:

𝜑(𝛼) = 𝑓𝑘 − 𝛼𝑔𝑇
𝑘 𝑔𝑘 +

1
2
𝛼2𝑔𝑇

𝑘 ∇2𝑓(𝑥𝑘)𝑔𝑘 +
𝜎𝑘

3
𝛼3‖𝑔𝑘‖3. (2.17)
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When the condition (2.16) holds, we use 𝑔𝑇
𝑘−1∇2𝑓(𝑥𝑘)𝑔𝑘−1 to approximate 𝑔𝑇

𝑘 ∇2𝑓(𝑥𝑘)𝑔𝑘 and thus get that

𝑔𝑇
𝑘 ∇2𝑓(𝑥𝑘)𝑔𝑘 ≈ 𝑔𝑇

𝑘−1∇2𝑓(𝑥𝑘)𝑔𝑘−1 ≈

⃒⃒⃒
(𝑔(𝑥𝑘 + 𝛼𝑘−1𝑔𝑘−1)− 𝑔(𝑥𝑘))𝑇

𝑔𝑘−1

⃒⃒⃒
𝛼𝑘−1

=

⃒⃒
𝑠𝑇

𝑘−1𝑦𝑘−1

⃒⃒
𝛼2

𝑘−1

, (2.18)

which yields the following approximation model:

𝜑3(𝛼) = 𝑓𝑘 − 𝛼𝑔𝑇
𝑘 𝑔𝑘 +

1
2
𝛼2

⃒⃒
𝑠𝑇

𝑘−1𝑦𝑘−1

⃒⃒
𝛼2

𝑘−1

+
𝜎𝑘

3
𝛼3‖𝑔𝑘‖3.

As for the choice of regularization parameter in the regularization model, similarly to Case I, we also use the
interpolation condition to determine the regularization parameter 𝜎𝑘:

𝑓𝑘−1 = 𝑓𝑘 − 𝑔𝑇
𝑘 𝑠𝑘−1 +

1
2
𝑠𝑇

𝑘−1𝑦𝑘−1 +
𝜎𝑘

3
‖𝑠𝑘−1‖3,

which implies that

𝜎𝑘 =
3
(︀
𝑓𝑘−1 − 𝑓𝑘 + 𝑔𝑇

𝑘 𝑠𝑘−1 − 1
2𝑠𝑇

𝑘−1𝑦𝑘−1

)︀
‖𝑠𝑘−1‖3

·

To improve the numerical performance and make it to be positive, we take the following truncation form:

𝜎𝑘 = max{min{|𝜎𝑘|, 𝜎max}, 𝜎min}, (2.19)

where 0 < 𝜎min < 𝜎max are the same as that in (2.9).

By imposing 𝑑𝜑3
𝑑𝛼 = 0, we get the equation −‖𝑔𝑘‖2 + 𝛼

|𝑠𝑇
𝑘−1𝑦𝑘−1|
𝛼2

𝑘−1
+ 𝛼2𝜎𝑘‖𝑔𝑘‖3 = 0. Since

∆2 =

⃒⃒
𝑠𝑇

𝑘−1𝑦𝑘−1

⃒⃒2
𝛼4

𝑘−1

+ 4𝜎𝑘‖𝑔𝑘‖5 > 0,

the above equation has a positive root and a negative root. By Definition 1.1, it is not difficult to verify that
the positive root is the approximately optimal stepsize, namely,

𝛼
AOS(3)
𝑘 =

2‖𝑔𝑘‖2𝛼2
𝑘−1√︁⃒⃒

𝑠𝑇
𝑘−1𝑦𝑘−1

⃒⃒2 + 4𝛼4
𝑘−1𝜎𝑘‖𝑔𝑘‖5 +

⃒⃒
𝑠𝑇

𝑘−1𝑦𝑘−1

⃒⃒ · (2.20)

Case IV. 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0 holds and the condition (2.16) does not hold.

It also has been shown that if 𝛼BB1
𝑘 is reused in a cyclic fashion, then the convergence rate is accelerated

[27]. It appears that 𝛼𝑘−1 may be helpful for determining the current stepsize 𝛼𝑘. Therefore, we take 𝜉3𝛼𝑘−1 as
the stepsize, where 𝜉3 > 0. In actual, the stepsize can also be regarded as an approximately optimal stepsize.
Substituting 𝐵𝑘 = 1

𝜉3𝛼𝑘−1
𝐼 into (2.13) yields the following approximation model

𝜑4(𝛼) = 𝑓(𝑥𝑘)− 𝛼𝑔𝑇
𝑘 𝑔𝑘 +

1
2
𝛼2𝑔𝑇

𝑘

(︂
1

𝜉3𝛼𝑘−1
𝐼

)︂
𝑔𝑘. (2.21)

By imposing 𝑑𝜑4
𝑑𝛼 = 0, we obtain the approximately optimal stepsize:

𝛼
AOS(4)
𝑘 = 𝜉3𝛼𝑘−1. (2.22)
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3. Gradient method with approximately optimal stepsizes

We describe the gradient method with approximately optimal stepsizes in the section.
The famous nonmonotone line search (GLL line search) [19] was firstly incorporated into the BB method [31].

Though GLL line search works well in many cases, there are some drawbacks. For example, the numerical
performance depends heavily on the choice of a pre-fixed memory constant 𝑀 . To overcome the above drawbacks,
another nonmonotone Armijo line search (Zhang–Hager line search) was proposed by Zhang and Hager [37],
which is defined as

𝑓(𝑥𝑘 − 𝛼𝑔𝑘) ≤ 𝐶𝑘 − 𝛿𝛼‖𝑔𝑘‖2, (3.1)

where 0 < 𝛿 < 1,

𝑄0 = 1, 𝐶0 = 𝑓(𝑥0), 𝑄𝑘+1 = 𝜂𝑘𝑄𝑘 + 1, 𝐶𝑘+1 = (𝜂𝑘𝑄𝑘𝐶𝑘 + 𝑓(𝑥𝑘+1))/𝑄𝑘+1, 0 < 𝜂𝑘 ≤ 1. (3.2)

It is observed that Zhang–Hager line search [37] is usually preferable for modified BB methods. To improve
the numerical performance and obtain nice convergence, we take 𝜂𝑘 as :

𝜂𝑘 =
{︂

𝑐, mod(𝑘, 𝑛) = 𝑛− 1,
1, mod(𝑘, 𝑛) ̸= 𝑛− 1,

(3.3)

where 0 < 𝑐 < 1 and mod(𝑘, 𝑛) represents the residue for 𝑘 modulo 𝑛. As a result, Zhang–Hager line search
with (3.3) and the following strategy [7]:

𝛼 =
{︂

𝛼, if 𝛼 > 0.1𝛼
(0)
𝑘 and 𝛼 ∈ [0.1𝛼

(0)
𝑘 , 0.9𝛼],

0.5𝛼, otherwise
(3.4)

is used in the our method. Here 𝛼
(0)
𝑘 is approximately optimal stepsize described in Section 2 and 𝛼 is obtained

by a quadratic interpolation at 𝑥𝑘 and 𝑥𝑘 − 𝛼𝑔𝑘.
We describe the gradient method with approximately optimal stepsizes in detail.

Algorithm 1. Gradient Method with Approximately Optimal Stepsizes (GM AOS (Reg 𝑝 = 3))
Step 0. Initialization. Given 𝑥0 ∈ 𝑅𝑛, 𝜀 > 0, 𝛿, 𝑐, 𝑐1, 𝑐2 𝛼max, 𝛼min, 𝛼0

0, 𝜎min, 𝜎max, 𝜉0, 𝜉1, 𝜉2, 𝜉3. Set
𝑄0 = 1, 𝐶0 = 𝑓0 and 𝑘 = 0.

Step 1. If ‖𝑔𝑘‖∞ ≤ 𝜀, then stop.
Step 2. Compute approximately optimal stepsize.

2.1. If 𝑘 = 0, then set 𝛼 = 𝛼
(0)
0 and go to Step 3.

2.2. If 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0 holds and the condition (2.2) does not hold, then compute 𝛼𝑘 by (2.12).

2.3. If 𝑠𝑇
𝑘−1𝑦𝑘−1 > 0 holds and the condition (2.2) holds, then compute 𝛼𝑘 by (2.15).

2.4. If 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0 holds and the condition (2.16) holds, then compute 𝛼𝑘 by (2.20).

2.5. If 𝑠𝑇
𝑘−1𝑦𝑘−1 ≤ 0 holds and the condition (2.16) does not hold, then compute 𝛼𝑘 by (2.22).

2.6. Set 𝛼
(0)
𝑘 = max{min{𝛼𝑘, 𝛼max}, 𝛼min} and 𝛼 = 𝛼

(0)
𝑘 .

Step 3. Line search. If (3.1) holds, then go to Step 4, otherwise update 𝛼 by (3.4) and go to Step 3.
Step 4. Update 𝑄𝑘+1, 𝐶𝑘+1 and 𝜂𝑘 by (3.2) and (3.3).
Step 5. Set 𝛼𝑘 = 𝛼, 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘, 𝑘 = 𝑘 + 1, and go to Step 1.

4. Convergence analysis

In the section the global convergence of GM AOS (Reg 𝑝 = 3) is analyzed under some weak assumptions:
(D1) 𝑓 is continuously differentiable on 𝑅𝑛; (D2) 𝑓 is bounded below on 𝑅𝑛; (D3) The gradient 𝑔 is uniformly
continuous on 𝑅𝑛.

We first give two lemmas, which are important to the convergence.
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Lemma 4.1. For 𝑄𝑘 in (3.2) , we have 𝑄𝑘+1 ≤ 1 +
𝑛

1− 𝑐
.

Proof. It follows from (3.2) that

𝑄𝑘+1 = 1 +
𝑘∑︁

𝑗=0

𝑗∏︁
𝑖=0

𝜂𝑘−𝑖,

which together with (3.3) suggests that

𝑄𝑘+1 =

⎧⎨⎩ 1 + 𝑛
∑︀(𝑘+1)/𝑛

𝑖=1 𝑐𝑖, if mod (𝑘, 𝑛) = 𝑛− 1,

1 +
(︁

1 + mod(𝑘, 𝑛) + 𝑛
∑︀⌊𝑘/𝑛⌋

𝑖=1 𝑐𝑖
)︁
, if mod (𝑘, 𝑛) ̸= 𝑛− 1,

(4.1)

where ⌊·⌋ is the floor function.
By (4.1) and 0 < 𝑐 < 1, we obtain that

𝑄𝑘+1 6 1 +

⎛⎝𝑛 + 𝑛

⌊𝑘/𝑛⌋+1∑︁
𝑖=1

𝑐𝑖

⎞⎠ 6 1 +

(︃
𝑛 + 𝑛

𝑘+1∑︁
𝑖=1

𝑐𝑖

)︃
= 1 + 𝑛

𝑘+1∑︁
𝑖=0

𝑐𝑖 6 1 +
𝑛

1− 𝑐
,

which completes the proof. �

Lemma 4.2. Suppose that the assumptions (D1), (D2) and (D3) hold. Then,

𝑓𝑘+1 ≤ 𝐶𝑘+1 ≤ 𝐶𝑘. (4.2)

Proof. According to (3.1) and (3.2), we have

𝐶𝑘+1 =
𝜂𝑘𝑄𝑘𝐶𝑘 + 𝑓𝑘+1

𝑄𝑘+1
= 𝐶𝑘 +

𝑓𝑘+1 − 𝐶𝑘

𝑄𝑘+1
≤ 𝐶𝑘

and

𝐶𝑘+1 =
𝜂𝑘𝑄𝑘𝐶𝑘 + 𝑓𝑘+1

𝑄𝑘+1
=

𝜂𝑘𝑄𝑘

𝜂𝑘𝑄𝑘 + 1
𝐶𝑘 +

1
𝜂𝑘𝑄𝑘 + 1

𝑓𝑘+1 ≥
𝜂𝑘𝑄𝑘

𝜂𝑘𝑄𝑘 + 1
𝑓𝑘+1 +

1
𝜂𝑘𝑄𝑘 + 1

𝑓𝑘+1 = 𝑓𝑘+1.

As a result, the inequality (4.2) holds. The proof is completed. �

The above lemma implies that the sequence {𝐶𝑘} is convergent.

Theorem 4.3. Suppose that the assumptions (D1), (D2) and (D3) hold, and let {𝑥𝑘} be the sequence generated
by GM AOS (Reg 𝑝 = 3). Then,

lim
𝑘→∞

‖𝑔𝑘‖ = 0. (4.3)

Proof. By (3.1) and (3.2), we obtain that

𝐶𝑘+1 = 𝐶𝑘 +
𝑓𝑘+1 − 𝐶𝑘

𝑄𝑘+1
≤ 𝐶𝑘 −

𝛿𝛼𝑘‖𝑔𝑘‖2

𝑄𝑘+1
,

which together with Lemma 4.1 implies that

𝛿

1 + 𝑛/(1− 𝑐)
𝛼𝑘‖𝑔𝑘‖2 ≤

𝛿𝛼𝑘‖𝑔𝑘‖2

𝑄𝑘+1
≤ 𝐶𝑘 − 𝐶𝑘+1. (4.4)
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It then follows from Lemma 4.2 and assumptions (D2) that

lim
𝑘→∞

𝛼𝑘‖𝑔𝑘‖2 = 0. (4.5)

We suppose, by way of contradiction, that there exists a subsequence
{︀
𝑥𝑘𝑗

}︀
such that

lim
𝑗→∞

⃦⃦
𝑔𝑘𝑗

⃦⃦
= 𝑙 > 0. (4.6)

Denote

𝜀 =
{︂

𝑙/2, if 𝑙 < +∞,
1/2, otherwise.

It follows from (4.6) that there exists a positive integer 𝑗0 such that⃦⃦
𝑔𝑘𝑗

⃦⃦
> 𝜀, ∀𝑗 > 𝑗0. (4.7)

Therefore, we obtain from (4.5) that lim
𝑗→∞

𝛼𝑘𝑗
= 0 and

lim
𝑗→∞

𝛼2
𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦2 = 0. (4.8)

By (3.4), we know that there exists 𝛿𝑘𝑗
∈ [0.1, 0.9] such that

𝑓

(︂
𝑥𝑘𝑗 −

𝛼𝑘𝑗

𝛿𝑘𝑗

𝑔𝑘𝑗

)︂
> 𝐶𝑘𝑗 − 𝛿

𝛼𝑘𝑗

𝛿𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦2
. (4.9)

Combining (4.9) and 𝑓
(︀
𝑥𝑘𝑗

− 𝛼𝑘𝑗
𝑔𝑘𝑗

)︀
≤ 𝐶𝑘𝑗

− 𝛿𝛼𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦2 yields

𝑓

(︂
𝑥𝑘𝑗

−
𝛼𝑘𝑗

𝛿𝑘𝑗

𝑔𝑘𝑗

)︂
− 𝑓

(︀
𝑥𝑘𝑗

− 𝛼𝑘𝑗
𝑔𝑘𝑗

)︀
> −𝛿

(︂
1

𝛿𝑘𝑗

− 1
)︂

𝛼𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦2
.

It follows from the mean-value theorem that there exists 𝑤𝑘𝑗
∈ [0, 1] such that

𝑓

(︂
𝑥𝑘𝑗 −

𝛼𝑘𝑗

𝛿𝑘𝑗

𝑔𝑘𝑗

)︂
− 𝑓

(︀
𝑥𝑘𝑗 − 𝛼𝑘𝑗 𝑔𝑘𝑗

)︀
= −

(︂
1

𝛿𝑘𝑗

− 1
)︂

𝛼𝑘𝑗 𝑔
(︀
𝑢𝑘𝑗

)︀𝑇
𝑔𝑘𝑗 ,

where 𝑢𝑘𝑗
= 𝑥𝑘𝑗

−
[︀
1 + 𝑤𝑘𝑗

(︀
1/𝛿𝑘𝑗

− 1
)︀]︀

𝛼𝑘𝑗
𝑔𝑘𝑗

. Thus, we get that

−
(︂

1
𝛿𝑘𝑗

− 1
)︂

𝛼𝑘𝑗 𝑔
(︀
𝑢𝑘𝑗

)︀𝑇
𝑔𝑘𝑗 > −𝛿

(︂
1

𝛿𝑘𝑗

− 1
)︂

𝛼𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦2
,

which implies that
(︀
𝑔𝑘𝑗 − 𝑔

(︀
𝑢𝑘𝑗

)︀)︀𝑇 𝑔𝑘𝑗

‖𝑔𝑘𝑗‖
> (1− 𝛿)

⃦⃦
𝑔𝑘𝑗

⃦⃦
. According to (4.7), we know that⃦⃦

𝑔𝑘𝑗
− 𝑔(𝑢𝑘𝑗

)
⃦⃦
≥
(︀
𝑔𝑘𝑗

− 𝑔(𝑢𝑘𝑗
)
)︀𝑇 𝑔𝑘𝑗⃦⃦

𝑔𝑘𝑗

⃦⃦ > (1− 𝛿)
⃦⃦
𝑔𝑘𝑗

⃦⃦
> (1− 𝛿)𝜀, ∀𝑗 > 𝑗0. (4.10)

It follows from (4.5), (4.8) and 1 ≤ 1 + 𝑤𝑘𝑗

(︀
1/𝛿𝑘𝑗

− 1
)︀
≤ 10 that

lim
𝑗→+∞

[︀
𝑤𝑘𝑗

(︀
1/𝛿𝑘𝑗

− 1
)︀

+ 1
]︀
𝛼𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦
→ 0. (4.11)

Since the gradient 𝑔 is uniformly continuous, for (1−𝛿)𝜀
2 , one can find 𝜁 > 0 depending only on (1−𝛿)𝜀

2 such that⃦⃦
𝑔𝑘𝑗

− 𝑔
(︀
𝑢𝑘𝑗

)︀⃦⃦
≤ (1−𝛿)

2 𝜀 holds whenever
⃦⃦
𝑥𝑘𝑗

− 𝑢𝑘𝑗

⃦⃦
=
[︀
𝑤𝑘𝑗

(︀
1/𝛿𝑘𝑗

− 1
)︀

+ 1
]︀
𝛼𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦
< 𝜁. By (4.11), we know

that there exists an integer 𝑗1 > 0 such that⃦⃦
𝑥𝑘𝑗

− 𝑢𝑘𝑗

⃦⃦
=
[︀
𝑤𝑘𝑗

(︀
1/𝛿𝑘𝑗

− 1
)︀

+ 1
]︀
𝛼𝑘𝑗

⃦⃦
𝑔𝑘𝑗

⃦⃦
< 𝜁

holds for any 𝑗 > 𝑗1. As a result,
⃦⃦
𝑔𝑘𝑗 − 𝑔

(︀
𝑢𝑘𝑗

)︀⃦⃦
≤ (1−𝛿)

2 𝜀 holds for any 𝑗 > 𝑗1, which contradicts (4.10) when
𝑗 ≥ max{𝑗0, 𝑗1}. Therefore, there no exists a subsequence

{︀
𝑥𝑘𝑗

}︀
satisfying (4.6), which implies (4.3). The proof

is completed. �



2412 Z. LIU ET AL.

5. Numerical experiments

We compare GM AOS (Reg 𝑝 = 3) with GM AOS (1.2) [24], the BB method, CGOPT (1.0) [11],
CG DESCENT (5.0) [20] and HDL method [22] (corresponding to Algorithm 3.1 in [22]) in the section. It
is widely accepted that CGOPT [11] and CG DESCENT [20] are the two most famous conjugate gradient
software packages. The BB method, GM AOS (1.2) [24] and GM AOS (Reg 𝑝 = 3) were implemented by C
code, and the C codes of CG DESCENT (5.0) and CGOPT (1.0) can be downloaded from Hager’s homepage:
http://users.clas.ufl.edu/hager/papers/Software and Dai’s homepage: http://lsec.cc.ac.cn/~dyh/
software.html, respectively. The Matlab code of HDL can be also found in Dai’s homepage. Two test sets were
used, which include the 145 test problems in the CUTEr library [18] (we call it CUTEr145 for short) and the
80 test problems mainly from [2] collected by Andrei (we call it Andr80 for short), respectively. The two test
sets can be found in Hager’s homepage: http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt and
Andrei’s homepage: http://camo.ici.ro/neculai/AHYBRIDM, respectively. The dimensions of the test problem
in the test set CUTEr145 are default and the dimension of each test problem in the test set Andr80 is set to
10,000. All numerical experiments were done in Ubuntu 10.04 LTS in a VMware Workstation 10.0 installed in
Win 10.

We choose the following parameters for GM AOS (Reg 𝑝 = 3): 𝜀 = 10−6, 𝛼min = 10−30, 𝛼max = 1030,
𝜉0 = 1.07, 𝜉1 = 5 × 10−5/3, 𝜉2 = 0.8, 𝜉3 = 5, 𝜎min = 10−30, 𝜎max = 103, 𝛿 = 10−4, 𝑐1 = 10−9, 𝑐2 = 10−7,
𝑐 = 0.99 and

𝛼0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2 |𝑓0|
‖𝑔0‖2

, if ‖𝑥0‖∞ < 10−30 and |𝑓0| ≥ 10−30,

1.0, if ‖𝑥0‖∞ < 10−30 and |𝑓0| < 10−30,

min
{︁

1.0, max
{︁
‖𝑥0‖∞
‖𝑔0‖∞

, 1
‖𝑔0‖∞

}︁}︁
, if ‖𝑥0‖∞ ≥ 10−30 and ‖𝑔0‖∞ ≥ 107,

min
{︁

1.0,
‖𝑥0‖∞
‖𝑔0‖∞

}︁
, if ‖𝑥0‖∞ ≥ 10−30 and ‖𝑔0‖∞ < 107.

GM AOS (1.2) [24] and the BB method used the same line search as that in GM AOS (Reg 𝑝 = 3). CGOPT
(1.0), CG DESCENT (5.0) and the HDL method used all default settings of parameters but the stopping
conditions. Each test method is terminated if ‖𝑔𝑘‖∞ ≤ 10−6 or the iterations exceeds 140 000.

The performance profiles introduced by Dolan and Moré [16] were used to display the performance of these
methods. In the following figures, “𝑁iter”, “𝑁𝑓 ”, “𝑁𝑔” and “𝑇cpu” represent the number of iterations, the
number of function evaluations, the number of gradient evaluations and CPU time(s), respectively.

The numerical experiments are divided into the following four groups.
In the first group of the numerical experiments, we compare the performance of GM AOS (Reg 𝑝 = 3) with

that of GM AOS (1.2) [24] and the BB method on the test set CUTEr145. Figures 1–4 present the performance
profiles on the test set CUTEr145. As shown in Figures 1–4, we can observe that GM AOS (Reg 𝑝 = 3) performs
better than GM AOS (1.2) and is superior very much to the BB method, and GM AOS (1.2) outperforms the
BB method. The first group of the numerical experiments indicates that the approximately optimal stepsizes
described in Section 2 are quite efficient.

In the second group of the numerical experiments, we compare the numerical performance of GM AOS (Reg
𝑝 = 3) with that of the HDL method [22] on the same 147 test problems from the CUTEst library, which can
be found in Dai’s homepage. We do not compare the performance about the running time due to the fact that
the HDL method was implemented by Matlab code and GM AOS (Reg 𝑝 = 3) was implemented by C code.
As shown in Figures 5–7, we can observed that GM AOS (Reg 𝑝 = 3) is superior to the HDL method in term
of the number of iteration, the number of function evaluation and the number of gradient evaluation, while the
HDL method has been regarded as an import advance of gradient method.

In the third group of the numerical experiments, we compare the performance of GM AOS (Reg 𝑝 = 3) with
that of CGOPT (1.0) on the two test sets CUTEr145 and Andr80. Figures 8–11 present the performance profiles
on the test set CUTEr145. As shown in Figure 8, we see that GM AOS (Reg 𝑝 = 3) performs much better

http://users.clas.ufl.edu/hager/papers/Software
http://lsec.cc.ac.cn/~dyh/software.html
http://lsec.cc.ac.cn/~dyh/software.html
http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt
http://camo.ici.ro/neculai/AHYBRIDM
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Figure 1. 𝑁iter (CUTEr145).

Figure 2. 𝑁𝑓 (CUTEr145).

CGOPT (1.0) in term of 𝑁𝑓 , since GM AOS (Reg 𝑝 = 3) solves successfully about 79% test problems with the
least function evaluations, while the percentage of CGOPT (1.0) is only about 38%. Figure 9 indicates that
GM AOS (Reg 𝑝 = 3) is at a disadvantage over CGOPT (1.0) in term of 𝑁𝑔, and Figure 10 shows that GM AOS
(Reg 𝑝 = 3) outperforms slightly CGOPT (1.0) in term of 𝑁𝑓 + 3𝑁𝑔 [21]. We can observe from Figure 11 that
GM AOS (Reg 𝑝 = 3) is as fast as CGOPT (1.0). Figures 12–15 present the performance profiles on the test
set Andr80. As shown in Figures 12–15, we observe that GM AOS (Reg 𝑝 = 3) illustrates huge advantage over
CGOPT (1.0) on the test set Andr80. The third group of the numerical experiments indicates that GM AOS
(Reg 𝑝 = 3) is competitive to CGOPT (1.0) on the test set CUTEr145, and has a significant advantage over
CGOPT (1.0) on the test set Andr80.

In the fourth group of the numerical experiments, we compare the performance of GM AOS (Reg 𝑝 = 3)
with that of CG DESCENT (5.0) on the two test sets CUTEr145 and Andr80. Figures 16–19 present the
performance profiles on the test set CUTEr145. As shown in Figure 16, we see that GM AOS (Reg 𝑝 = 3)
performs better than CG DESCENT (5.0) in term of 𝑁𝑓 , since GM AOS (Reg 𝑝 = 3) solves successfully about
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Figure 3. 𝑁𝑔 (CUTEr145).

Figure 4. 𝑇cpu (CUTEr145).

65% test problems with the least function evaluations, while the percentage of CG DESCENT (5.0) is only
about 39%. Figure 17 shows that GM AOS (Reg 𝑝 = 3) is at a disadvantage over than CG DESCENT (5.0) in
term of 𝑁𝑔, and Figure 18 indicates that GM AOS (Reg 𝑝 = 3) outperforms slightly CG DESCENT (5.0) in
term of 𝑁𝑓 + 3𝑁𝑔 [21]. We can observe from Figure 19 that GM AOS (Reg 𝑝 = 3) is as fast as CG DESCENT
(5.0). Figures 20–23 present the performance profiles on the test set Andr80. As shown in Figures 20–22, we
see that GM AOS (Reg 𝑝 = 3) is at a little disadvantage over CG DESCENT (5.0) in term of 𝑁iter, and
has a significant performance boost over CG DESCENT (5.0) in term of 𝑁𝑓 and 𝑁𝑔. We also can see that
GM AOS (Reg 𝑝 = 3) is faster much than CG DESCENT (5.0). The fourth group of the numerical experiments
indicates that GM AOS (Reg 𝑝 = 3) is competitive to CG DESCENT (5.0) on the test set CUTEr145, and has
a significant advantage over CG DESCENT (5.0) on the test set Andr80.

As for the reason that GM AOS (Reg 𝑝 = 3) has so important improvement over CG DESCENT (5.0) and
CGOPT (1.0) on Andr80 and is only competitive to CG DESCENT (5.0) and CGOPT (1.0) on CUTEr145,
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Figure 5. 𝑁iter.
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Figure 6. 𝑁𝑓 .

I think that it lies mainly in that most test problems in CUTEr145 is relatively difficult to solve compared
to the test problems in Andr80. It seems that one can draw the following conclusion: Gradient methods with
approximately optimal stepsize are sufficient for those test problems that are not very ill-conditioned.

As for the reasons for the surprising numerical performance of GM AOS (Reg 𝑝 = 3), we think that it lies
in two aspects: (i) The approximately optimal stepsizes are generated by the approximation models including
regularization models and quadratic models at the current iterate 𝑥𝑘. Since these approximation models pos-
sess rich second or higher order information of the objection function at the current iterate 𝑥𝑘, the resulted
approximately optimal stepsize is integrated into rich second or higher order information properly and thus is
very efficient. (ii) The approximately optimal stepsize can readily satisfy Zhang–Hager line search directly in
most cases compared to other stepsizes in gradient method, which implies that it requires less much function
evaluations and thus save much computational cost. This can be observed in Figures 2, 8, 13, 16 and 21. Some
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Figure 7. 𝑁𝑔.

Figure 8. 𝑁𝑓 (CUTEr145).

Table 1. The number of test problems.

Method 𝑁linsear = 0 𝑁linsear ≤ 1 𝑁linsear ≤ 2 𝑁linsear ≤ 3 Total problems

BB 41 46 48 50 145 (CUTEr145)
GM AOS (Reg 𝑝 = 3) 68 81 85 90 145 (CUTEr145)



GRADIENT METHOD WITH APPROXIMATELY OPTIMAL STEPSIZES BASED ON REGULARIZATION MODELS 2417

Figure 9. 𝑁𝑔 (CUTEr145).

Figure 10. 𝑁𝑓 + 3𝑁𝑔 (CUTEr145).

statistical results can be seen in Table 1, where 𝑁linsear denotes the times that the stepsize is updated by (3.4)
during all iterations of solving a test problem. 𝑁linsear = 0 indicates the initial stepsize (approximately optimal
stepsize or BB stepsize) satisfies (3.1) directly at all iterations and thus Zhang–Hager line search is not invoked
at all. As shown in Table 1, we can see that there are 68 (out of 145) problems for which Zhang–Hager line
search is not invoked at all during the solving process, while the number for the BB method is only 41, and
there are 90 (out of 145) problems for each of which the times that Zhang–Hager line search is invoked is less
than or equal to 3, while the number for the BB method is only 50. It is observed from the Table 1 that the
approximately optimal stepsizes described in Section 2 satisfy (3.1) in most cases and thus the proposed method
requires less much function evaluations.
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Figure 11. 𝑇cpu (CUTEr145).

Figure 12. 𝑁iter (Andr80).

6. Conclusion and discussion

In this paper, we present an efficient gradient method with approximately optimal stepsizes for uncon-
strained optimization. In the proposed method, some approximation models including regularization models
and quadratic models are exploited carefully to derive approximately optimal stepsizes. The convergence of the
proposed methods is analyzed. Extensive numerical results indicates that the proposed method GM AOS (Reg
𝑝 = 3) is very promising.
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Figure 13. 𝑁𝑓 (Andr80).

Figure 14. 𝑁𝑔 (Andr80).

Due to the surprising numerical performance, gradient methods with approximately optimal stepsizes can
become strong candidates for large scale unconstrained optimization and has potential in constrained optimiza-
tion and some fields such as machine learning.

Though gradient methods with approximately optimal stepsize is surprisingly efficient, there are still some
questions under investigation:

(i) Like the BB method, it is very challenging to explain that gradient methods with approximately optimal
stepsizes converge so fast in theory. Does gradient method with approximately optimal stepsize based on
quadratic approximation model (2.13) possess Q-linear convergence for convex quadratic minimization? If
yes, what conditions should be imposed on the distance ‖𝐵𝑘 −𝐴‖? Here 𝐴 is the Hessian matrix for strictly
convex quadratic function.
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Figure 15. 𝑇cpu (Andr80).

Figure 16. 𝑁𝑓 (CUTEr145).

Figure 17. 𝑁𝑔 (CUTEr145).
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Figure 18. 𝑁𝑓 + 3𝑁𝑔 (CUTEr145).

Figure 19. 𝑇cpu (CUTEr145).

Figure 20. 𝑁iter (Andr80).
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Figure 21. 𝑁𝑓 (Andr80).

Figure 22. 𝑁𝑔 (Andr80).

Figure 23. 𝑇cpu (Andr80).
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(ii) Can the type of gradient method with approximately optimal stepsize possess local R-linear convergence
or better convergence rate when it is applied to general unconstrained optimization?
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