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AN EFFICIENT GRADIENT METHOD WITH APPROXIMATELY OPTIMAL
STEPSIZES BASED ON REGULARIZATION MODELS FOR UNCONSTRAINED
OPTIMIZATION

ZEXIAN Liut*, WANGLI CHU? AND HONGWEI Liu?

Abstract. It is widely accepted that the stepsize is of great significance to gradient method. An ef-
ficient gradient method with approximately optimal stepsizes mainly based on regularization models
is proposed for unconstrained optimization. More specifically, if the objective function is not close to
a quadratic function on the line segment between the current and latest iterates, regularization model
is exploited carefully to generate approximately optimal stepsize. Otherwise, quadratic approximation
model is used. In addition, when the curvature is non-positive, special regularization model is developed.
The convergence of the proposed method is established under some weak conditions. Extensive numer-
ical experiments indicated the proposed method is very promising. Due to the surprising efficiency, we
believe that gradient methods with approximately optimal stepsizes can become strong candidates for
large-scale unconstrained optimization.
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1. INTRODUCTION

We consider the following unconstrained optimization problem:

min f(x), (1.1)

TER™

where f : R®™ — R is continuously differentiable and its gradient is denoted by g. The gradient method for
solving (1.1) has the following form

Tk41 = Tk — Ok Gk, (1'2)

where «y is the stepsize and gp = V f(zx). Throughout this paper, fr = f(xg), Sk—1 = Tk — Tp—1, Y—1 =
9k — gk—1 and ||.|| denotes the Euclidean norm.

It is widely accepted that the stepsize is of great significance to the theory and numerical performance
of gradient method, and the stepsize is the core problem of gradient method. The classical steepest descent
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method [10], where the stepsize is given by a%D = arg mirolf(xk — agyg), is badly affected by ill conditioning
a>

and thus converges slowly [1]. In 1988, Barzilai and Borwein [3] proposed a two-point gradient method (BB
method), where the famous stepsize (BB stepsize) is given by

T
BBy _ Sk—1Yk—1

BB ||3kfl||2
ap = ———— or ay = 5
lye—al

1.3
5{711/1671 ( )

Due to the simplicity and nice numerical efficiency, the BB method has received extensive attention. The BB
method has been shown to be globally [30] and R-linearly [12] convergent for any dimensional strictly convex
quadratic functions. In 2021, Li and Sun [23] presented an interesting and improved R-linear convergence result
of the BB method. Raydan [31] proposed the global BB method by incorporating the nonmonotone line search
(GLL line search) [19]. Dai et al. [13] presented a quite efficient gradient method by adaptively choosing the
BB stepsizes. Dai et al. [14] viewed the BB stepsize from a new angle and constructed a quadratic model and
a conic model to derive two stepsizes for gradient methods. In 2018, Liu et al. [26] viewed the stepsize aEBl
from the approximation model and introduced a new type of stepsize called approximately optimal stepsize for
gradient method.

Definition 1.1 ([26]). Suppose f is continuously differentiable, and let ¢x(a) be an approximation model of
f(zr — agy). A positive constant a,‘?os is called approzimately optimal stepsize associated to ¢y («) for gradient
method if a4 satisfies

a8 = arg mir& or(a). (1.4)
a>

From (1.4), we can easily obtain the following simple facts:

(i) If ¢r(a) = f(xx — agk), then the resulted approximately optimal stepsize corresponds to Cauchy stepsize.
This is the reason that we call the stepsize (1.4) approximately optimal stepsize.

T
(ii) If g (@) = fr—allgr ||2+%a29,§ (ﬁ]) gk, then the resulted approximately optimal stepsize corresponds
to the BB stepsize aEBl.
1
(iii) For any stepsize oy > 0, let ¢ () = fi — aHgkﬂz + %oﬂgg <I> gk, it is easy to see that the resulted
ag

approximately optimal stepsize is exactly ai. As a result, all existing stepsizes for gradient methods can
be treated as approximately optimal stepsizes in this sense.

Some gradient methods with approximately optimal stepsizes [24,25] were proposed, and the numerical exper-
iments in [24,25] indicated that these gradient methods are very efficient. Gradient methods with approximately
optimal stepsizes have illustrated powerful potentiality for unconstrained optimization.

In addition, based on a fourth order conic model and some modified secant equations, Biglari and Soliman-
pur [6] presented some modified BB methods. Recently, motivated by Yuan’s stepsize [36], Huang et al. [22]
equipped the Barzilai and Borwein method with two dimensional quadratic termination property and proposed
a novel stepsize for gradient method (HDL, corresponding to Algorithm 3.1 in [22]) for general unconstrained
optimization. More modified BB methods can be found in [15,28,29, 35].

Contributions. According to Definition 1.1, it is not difficult to see that the effectiveness of approximately
optimal stepsize relies heavily on the approximation model ¢ (a). To obtain more efficient gradient methods
with approximately optimal stepsizes, one should take full advantage of the properties of f at xj to exploit
suitable approximation models including quadratic models and non-quadratic models for deriving approximately
optimal stepsize. In the paper, we present an efficient gradient method with approximately optimal stepsizes
based on regularization models for unconstrained optimization. In the proposed method, if the objective function
f is not close to a quadratic function on the line segment between z;_; and x, then a regularization model
is exploited to generate approximately optimal stepsizes. Otherwise, a quadratic approximation model is used
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to derive approximately optimal stepsize. In addition, when s;‘f_lyk,l < 0, a special regularization model is
developed carefully. The global convergence of the proposed method is analyzed. The numerical results indicate
that the proposed method is superior to the HDL method [22] and other efficient gradient methods, and is
competitive to two famous conjugate gradient software packages CGOPT (1.0) [11] and CG_.DESCENT (5.0)
[20] for the 145 test problems in the CUTEr library [18], and has significant improvement over CGOPT (1.0) [11]
and CG_DESCENT (5.0) [20] for the 80 test problems mainly from [2].

The rest of the paper is organized as follows. In Section 2, some approximation models including regularization
models and quadratic models are exploited to generate approximately optimal stepsizes for gradient method.
In Section 3, an efficient gradient method with the approximately optimal stepsizes is described in detail. The
global convergence of the proposed method is analyzed in Section 4. In Section 5, some numerical results are
presented. Conclusion and discussion are given in the last section.

2. DERIVATION OF APPROXIMATELY OPTIMAL STEPSIZES

Based on the properties of f at the current iterate xx, some approximation models including regularization
models and quadratic models are exploited carefully to derive approximately optimal stepsizes for gradient
method in the section.

As mentioned above, the effectiveness of approximately optimal stepsize relies heavily on approximation
model ¢y (). So we design carefully suitable approximation models mainly based on the properties of f at x.
The choices of approximation models are from the following observation.

Define

2(fk—1 — fr+ ggskq)

T
Skp—1Yk—1

L = —1]. (2.1)
According to [26], py is an important criterion for measuring the degree of f to approximate quadratic function.
If the condition [14,25]

pr <cp or  max{ug, pr—1}t < co (2.2)

holds, then f might be close to a quadratic function on the line segment between z;_; and z. Here 0 < ¢; < co.

When f is close to a quadratic function on the line segment between z;_; and xj, quadratic approximation
model is certainly preferable. However, if the objective function f possesses high non-linearity, then quadratic
models might not work very well [32,33], so some nonquadratic approximation models should be considered
in this case. In recent years, regularization algorithms, which are defined as the standard quadratic model
plus a regularization term, have been proposed for unconstrained optimization [8]. An adaptive regularization
algorithm using cubics (ARC) was proposed by Cartis et al. [8]. The trial step in ARC algorithm [8] is computed
by minimizing the following regularization model:

1 1
mi(d) = fzy) +gid + idTBkd + gak\|d||3, (2.3)

where By, is a symmetric approximation to the Hessian matrix and o > 0 is a regularization parameter. And
the numerical results in [9] indicated that ARC algorithm is quite efficient. More advance about regularization
algorithms can be referred to [4,5, 34]. Regularization algorithms have become an alternative to trust region
and line search schemes [8]. All of this indicates that when f is not close to a quadratic function around zy,
regularization models might serve better than quadratic models generally.

Motivated by the above observation, we consider the approximation model (2.3), and derive approximately
optimal stepsizes for gradient methods in the following four cases based on the sign of s{_lyk_l and the condition
(2.2).

Case I. s} yr_1 > 0 holds and the condition (2.2) does not hold.
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In the case, the objective function f might be not close to a quadratic function on the line segment between

xk—1 and g, we thus use the regularization model (2.3) with d = —agy:
1 1
d1(a) = f(wx) = agigr + 50°g¢ Brgr + §a30kllgkll3- (2.4)

Taking account of the computational cost and storage, By is generated by imposing the modified Broyden—
Fletcher—Goldfarb—Shanno (BFGS) update formula [38] on a scalar matrix Dy:

T —
Dysk-18;_ 1Dk Yp—1Yk—1

=B Sh_1Drsi—1 Sh-1Yk—-1 25)
where ¥, 1 = yp_1 + ﬁsk,l and 7y = 3(gr + gx—1)Tsk—1 + 6(fr_1 — fr). Here we take Dy as Dy =
¢ Z%:I#I , where & > 1. If f is twice continuously differentiable, then there exists p1 € [0, 1] such that

Tr = 3(sp_1yk—1— 851 V> f(zr1 + p18K—1)SK—1)- (2.6)
Therefore, to improve the numerical performance we restrict 75 as
7r = min{max {7k, —&15f_1yk—1}, &5k 1Yk—1}, (2.7)

where 0 < & < 0.1.

As for the choice of regularization parameter oy in (2.4), we determine it as follow. The regularization
parameter is significant to the effectiveness of regularization model. However, it is universally acknowledged
that it is challenging to determine a proper regularization parameter oj. Some ways including the interpolation
condition and the trust-region strategy [8,17] were developed to determine the regularization parameter oy.
Here we use the interpolation condition to determine the regularization parameter:

1 O
foe1 = fr — gk sk—1 + 585_131@51@—1 + §||Sk—1||3,

which implies that
C3(feer — fr+ gl s — 554 _1Uk—1) .

g1l

(2.8)

Ok

To improve the numerical performance and make it to be positive, we take the following truncated form of (2.8):
o = max{min{|ok|, omax }, Omin } (2.9)

where 0 < omin < Omax-
It is not difficult to obtain the following lemma.

Lemma 2.1. Suppose that st yx—1 > 0. Then, sk Gx_1 > 0 and By is symmetric and positive definite.

déy

By imposing 2+ = 0, we obtain the equation —9% gk + agi Brgr, + a20k||gk||3 = 0. Since

2
A1 = (9§ Begr)” +4owllgell” > 0, (2.10)

the above equation has a positive root and a negative root. According to Definition 1.1, it is not difficult to
verify that the positive root is the approximately optimal stepsize, namely,

2
_AOS(1) _ 2|\ gxll

| FL1 | N— 2.11
g VAT + gF Brg (2.11)
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where By, is given by (2.5) with (2.7).
BB, BB,

It is observed by numerical experiments that the bound [ak , 00 } for @208(1)

is very preferable. Therefore,

if skr_lyk,l > 0 holds and the condition (2.2) does not hold, then we take the following truncated approximately
optimal stepsize

a?os(l) = max{min{dﬁosu)»aEBl }O‘EBZ} (2.12)

for gradient method.
Case II. s} y;_1 > 0 and the condition (2.2) hold.

In the case, the objective function f might be close to a quadratic function on the line segment between xj_1
and xj, we thus consider the following quadratic approximation model:

1
62(a) = f(zx) = agi gk + 5095 Bigr, (2.13)

where By, is given by (2.5) with (2.7) for simplicity. It follows from Lemma 2.1 that By, is symmetric and positive

definite. By imposing d—2 = 0, we can easily obtain the approximately optimal stepsize
o

AOS(2) ngk ||9k:||2
a, = 2k = - (2.14)

G Bk e (IngII2 ~ (ggsk_1)2> L o)

s{,lykfl llsk—1l? S{,lﬂkﬂ

Similar to Case I, if s ;yx—1 > 0 and the condition (2.2) hold, then we take the truncated approximately
optimal stepsize

a?OS(Q) = max{min{d?os(z), aEBl }, aEBQ} (2.15)
for gradient method.

Case III. sfilyk_l < 0 and the condition (2.16) hold.

When sf_lyk,l < 0, the BB stepsizes or the approximately optimal stepsizes described above can not be
used, and thus it is difficult to determine suitable stepsize for gradient method. In some modified BB methods
[6,14], the stepsize is usually set simply to ap = 103° when S;{,lykq < 0. As a result, it will cause large
computational cost for seeking a suitable stepsize in a line search for gradient method.

It follows from s{flyk_l <0 that 0 < ”lg";;ﬁu < 1. Consequently, if the following condition

lgx—*
g < WAL

< . (2.16)
[l

holds, where 0 < & < 1 is close to 1, then g; and gr_; tend to be collinear and are approximately equal. In
the case, we can use gp_1 to approximate g, which will be useful for constructing approximation model, as
described below.

Suppose for the moment that f is twice continuously differentiable, we consider the following regularization
model:

1 o
o(a) = fr — aglgr + éazg;fVQf(zk)gk + §a3‘|ng3~ (2.17)
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When the condition (2.16) holds, we use g}, V?f(z;)gr—1 to approximate gi V2 f(x))gr and thus get that

T
‘(9(3«% + ap—19k—1) — 9(ax)) gkq‘ |7 ]

95 V2 (@) gk = gi 1 V2 f(x1)gr-1 = = == ) (2.18)
k-1 A1

which yields the following approximation model:

T 1, ngly’f—1|
¢3(a) = fr — agy gr + Il R +
k-1

LTI
08 gl

As for the choice of regularization parameter in the regularization model, similarly to Case I, we also use the
interpolation condition to determine the regularization parameter oy:

1 Ok E
fo—1=Jr — ggskq + *3571%71 + gﬂsklesa

2

which implies that
3(fu-1 = fu T gl suo1 — 3Si_1yk-1)

lsg—all?

O =
To improve the numerical performance and make it to be positive, we take the following truncation form:
o = max{min{|o|, Omax }, Omin } (2.19)

where 0 < Omin < Omax are the same as that in (2.9).

|5k 1?Jk 1|

By imposing ¢3 =0, we get the equation —||gx | + + 20| gx]|> = 0. Since
T 2
Skp—1Yk-1 5
Ny = ’ o | —|—40’1€Hng > 0,
k—1

the above equation has a positive root and a negative root. By Definition 1.1, it is not difficult to verify that
the positive root is the approximately optimal stepsize, namely,

2 2042
agosw) _ llgrll" a4 ) (2.20)

2
VIS sy [P+ ot oullgel® + |7 vy

Case IV. sl y;_1 <0 holds and the condition (2.16) does not hold.

It also has been shown that if agBl is reused in a cyclic fashion, then the convergence rate is accelerated
[27]. Tt appears that aj_1 may be helpful for determining the current stepsize . Therefore, we take {3a,—1 as
the stepsize, where £5 > 0. In actual, the stepsize can also be regarded as an approximately optimal stepsize.

Substituting By, = Goor s I into (2.13) yields the following approximation model

$a(a) = f(x1) — agi g + ;a295< ! I>gk. (2.21)

§30k—1
By imposing ¢4 = 0, we obtain the approximately optimal stepsize:

a0 = 30, (2.22)
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3. GRADIENT METHOD WITH APPROXIMATELY OPTIMAL STEPSIZES

We describe the gradient method with approximately optimal stepsizes in the section.

The famous nonmonotone line search (GLL line search) [19] was firstly incorporated into the BB method [31].
Though GLL line search works well in many cases, there are some drawbacks. For example, the numerical
performance depends heavily on the choice of a pre-fixed memory constant M. To overcome the above drawbacks,
another nonmonotone Armijo line search (Zhang—Hager line search) was proposed by Zhang and Hager [37],
which is defined as

f(zy, — agr) < Ck, — dallgr |, (3.1)

where 0 < 6 < 1,
Qo =1, Co = f(x0), Qrs1=mQr +1, Cry1 = (QrCr + f(2r41))/Qry1, 0<np <1 (3.2)

It is observed that Zhang—Hager line search [37] is usually preferable for modified BB methods. To improve
the numerical performance and obtain nice convergence, we take 7 as :

_Je¢, mod(k,n)=n-—1,
Mk = { 1, mod(k,n) #n—1, (3.3)

where 0 < ¢ < 1 and mod(k,n) represents the residue for £ modulo n. As a result, Zhang—Hager line search
with (3.3) and the following strategy [7]:

oo Ja ifa>01a anda e [0.1a,0.90], (3.4)
0.5, otherwise ’

is used in the our method. Here a,(co) is approximately optimal stepsize described in Section 2 and @ is obtained
by a quadratic interpolation at z; and z — agy.
We describe the gradient method with approximately optimal stepsizes in detail.

Algorithm 1. Gradient Method with Approximately Optimal Stepsizes (GM_-AOS (Reg p = 3))

Step 0. Initialization. Given zo € R™, € > 0, §, ¢, €1, C2 Qtmax, Qmin, &9, Omin, Tmax, 0, &1, &2, &3. Set
Qozl, C():fo and k = 0.
Step 1. If ||gx||, < ¢, then stop.
Step 2. Compute approximately optimal stepsize.
2.1. If £ =0, then set a = oz((jo) and go to Step 3.
2.2. If s§_;yr—1 > 0 holds and the condition (2.2) does not hold, then compute ax by (2.12).
2.3. If s¥_,yr_1 > 0 holds and the condition (2.2) holds, then compute ay by (2.15).
2.4. If s{_;yr—1 < 0 holds and the condition (2.16) holds, then compute as by (2.20).
2.5. If s{_ yr—1 < 0 holds and the condition (2.16) does not hold, then compute ax by (2.22).
2.6. Set a,(co) = max{min{a, ¥max }, ¥min } and a = a,(cm.
Step 3. Line search. If (3.1) holds, then go to Step 4, otherwise update a by (3.4) and go to Step 3.
Step 4. Update Qi+1, Cr+1 and n by (3.2) and (3.3).
Step 5. Set ar = a, Try1 = Tk — argr, kK = k+ 1, and go to Step 1.

4. CONVERGENCE ANALYSIS

In the section the global convergence of GM_AOS (Reg p = 3) is analyzed under some weak assumptions:
(D1) f is continuously differentiable on R™; (D2) f is bounded below on R™; (D3) The gradient g is uniformly
continuous on R".

We first give two lemmas, which are important to the convergence.
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Lemma 4.1. For Qy in (3.2) , we have Q41 < 1+ 1n .
—c

Proof. Tt follows from (3.2) that

k J
Qrir =1+ [ me—s

§=0i=0
which together with (3.3) suggests that
1+n Zkﬂ/nl if mod (k,n) =n—1,
Qr+1 = lk/n] i (4.1)
1+<1+mod(k,n)+nzi=1 c), if mod (k,n) #n—1,
where |-| is the floor function.
By (4.1) and 0 < ¢ < 1, we obtain that
Lk/n]+1 k1 k+1
Qri1 <1+ [n+n Z c <1+<n+anl>—1+an 1+—
i=1 i=1
which completes the proof. O
Lemma 4.2. Suppose that the assumptions (D1), (D2) and (D3) hold. Then,
Ji+1 < Crp1 < Gy (4.2)
Proof. According to (3.1) and (3.2), we have
C -C
Chrr = MeQuCr + frrr _ Oyt Je+1 — Ck <o
Qr+1 Qr+1
and
MQkCr + fr1 Mk Qk 1 Mk Qk 1
Ciy1 = = Cr+ ——— > — =" +—_— = .
k+1 Ornt O 1 o T ELas! On + 7 fe1 TOn 7Skt = frnn
As a result, the inequality (4.2) holds. The proof is completed. O

The above lemma implies that the sequence {C}} is convergent.

Theorem 4.3. Suppose that the assumptions (D1), (D2) and (D3) hold, and let {x}} be the sequence generated
by GM_AOS (Reg p = 3). Then,

lim [[g[| = 0. (4.3)
k—o0
Proof. By (3.1) and (3.2), we obtain that
C s ’
Chyy = Cp + 1L = C Jit1 — Gy <Cp o gkl 7
Qr+1 Qi1

which together with Lemma 4.1 implies that

s _ Sollgnll

0
_ < — . 4.4
5000 arllgel” < Orer = Cr = Cht1 (4.4)
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It then follows from Lemma 4.2 and assumptions (D2) that

&gaw%W:O (4.5)

We suppose, by way of contradiction, that there exists a subsequence {ka} such that
lim ||g, || =1>0. (4.6)
j—00
Denote

__Jl/2, if [ < 400,
®T11/2, otherwise.

It follows from (4.6) that there exists a positive integer jo such that
lgw; || >, 5 > jo. (4.7)

Therefore, we obtain from (4.5) that lim ag, = 0 and

j—o0
Jlgr;o aﬁj Hgk]. HQ =0. (4.8)

By (3.4), we know that there exists dx, € [0.1,0.9] such that

d ( -1 9) > Gy =35 o, | (4.9)
Combining (4.9) and f(a:kj - ozkjgkj) < Gy, —da, ||gkj H2 yields
Q. 1
f<xkj - S:J gkj) - f(x’fj - O‘kjgkj) > _5<% - 1>O"f:‘||gk:‘“2'
J J
It follows from the mean-value theorem that there exists wy; € [0, 1] such that
Qay. 1
f<93kj - (fgkj) — f(ar, — onygn,) = (gk - 1> akjg(ukj)Tgkj7
J J
where ug; = x5, — [1 + wy,; (l/gkj - 1)]akjgkj. Thus, we get that
1 1
(& - l)akjg(ukj)Tgkj > 6<5k - 1>o‘ky‘ ||9k,- HQ’
J J
which implies that (gi, — g(ukj))T ”zi’ I > (1- 5)H9kj || According to (4.7), we know that
lgx, — (k)| = (a5, — glur,))” Hiif” > (1=0)|gi, | > =08) Vi>jo. (4.10)
It follows from (4.5), (4.8) and 1 < 1+ wy, (1/6;, — 1) < 10 that
jETOO [wi; (1/0k; = 1) + 1] e, Hgkj H — 0. (4.11)
Since the gradient ¢ is uniformly continuous, for (1_26)5, one can find ¢ > 0 depending only on % such that
||gkj — g(ukj)H < (1—;5)5 holds whenever Hkaj — uij = [wkj (1/5kj — 1) + 1}ozkj|’gkjf| < (. By (4.11), we know

that there exists an integer j; > 0 such that

HI’% - ukJH = [wkj (1/5’% - 1) + 1]0”%'“9’%'“ <¢

holds for any j > ji. As a result, ||gr, — g(ux,)|| < (155)5 holds for any j > ji, which contradicts (4.10) when

J > max{jo, j1}. Therefore, there no exists a subsequence {xk7} satisfying (4.6), which implies (4.3). The proof
is completed. O
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5. NUMERICAL EXPERIMENTS

We compare GM_AOS (Reg p = 3) with GM_AOS (1.2) [24], the BB method, CGOPT (1.0) [11],
CG_DESCENT (5.0) [20] and HDL method [22] (corresponding to Algorithm 3.1 in [22]) in the section. It
is widely accepted that CGOPT [11] and CG_DESCENT [20] are the two most famous conjugate gradient
software packages. The BB method, GM_AOS (1.2) [24] and GM_AOS (Reg p = 3) were implemented by C
code, and the C codes of CG.DESCENT (5.0) and CGOPT (1.0) can be downloaded from Hager’s homepage:
http://users.clas.ufl.edu/hager/papers/Software and Dai’s homepage: http://lsec.cc.ac.cn/~dyh/
software.html, respectively. The Matlab code of HDL can be also found in Dai’s homepage. Two test sets were
used, which include the 145 test problems in the CUTEr library [18] (we call it CUTEr145 for short) and the
80 test problems mainly from [2] collected by Andrei (we call it Andr80 for short), respectively. The two test
sets can be found in Hager’s homepage: http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt and
Andrei’s homepage: http://camo.ici.ro/neculai/AHYBRIDM, respectively. The dimensions of the test problem
in the test set CUTEr145 are default and the dimension of each test problem in the test set Andr80 is set to
10,000. All numerical experiments were done in Ubuntu 10.04 LTS in a VMware Workstation 10.0 installed in
Win 10.

We choose the following parameters for GM_AOS (Reg p = 3): ¢ = 1075, amin = 1072, appax = 10%°,
& =107, & =5x107°/3, & = 0.8, &3 = 5, oin = 10739, 00y = 103, 6 = 1074, ¢; = 1079, ¢ = 1077,
c=10.99 and

|fol i —30 -30
2”90”2, if ||J,‘o||oo < 10 and |f0| > 10 s
1.0, if [|zof, <1073 and |fo| < 10730,
Qo = . . _
mm{l.O,max{%, m}}, if ||zoll, > 1073 and ||goll, > 107,
min{l.O, e } if ||zoll. > 102 and |go|l. < 10.

GM_AOS (1.2) [24] and the BB method used the same line search as that in GM_AOS (Reg p = 3). CGOPT
(1.0), CG.DESCENT (5.0) and the HDL method used all default settings of parameters but the stopping
conditions. Each test method is terminated if ||gx||, < 107¢ or the iterations exceeds 140 000.

The performance profiles introduced by Dolan and Moré [16] were used to display the performance of these
methods. In the following figures, “Nite:”, “N;”, “Ny” and “Icp,” represent the number of iterations, the
number of function evaluations, the number of gradient evaluations and CPU time(s), respectively.

The numerical experiments are divided into the following four groups.

In the first group of the numerical experiments, we compare the performance of GM_AOS (Reg p = 3) with
that of GM_AOS (1.2) [24] and the BB method on the test set CUTEr145. Figures 1-4 present the performance
profiles on the test set CUTEr145. As shown in Figures 1-4, we can observe that GM_AOS (Reg p = 3) performs
better than GM_AOS (1.2) and is superior very much to the BB method, and GM_AOS (1.2) outperforms the
BB method. The first group of the numerical experiments indicates that the approximately optimal stepsizes
described in Section 2 are quite efficient.

In the second group of the numerical experiments, we compare the numerical performance of GM_AOS (Reg
p = 3) with that of the HDL method [22] on the same 147 test problems from the CUTEst library, which can
be found in Dai’s homepage. We do not compare the performance about the running time due to the fact that
the HDL method was implemented by Matlab code and GM_-AOS (Reg p = 3) was implemented by C code.
As shown in Figures 5-7, we can observed that GM_AOS (Reg p = 3) is superior to the HDL method in term
of the number of iteration, the number of function evaluation and the number of gradient evaluation, while the
HDL method has been regarded as an import advance of gradient method.

In the third group of the numerical experiments, we compare the performance of GM_AOS (Reg p = 3) with
that of CGOPT (1.0) on the two test sets CUTEr145 and Andr80. Figures 8-11 present the performance profiles
on the test set CUTEr145. As shown in Figure 8, we see that GM_AOS (Reg p = 3) performs much better


http://users.clas.ufl.edu/hager/papers/Software
http://lsec.cc.ac.cn/~dyh/software.html
http://lsec.cc.ac.cn/~dyh/software.html
http://users.clas.ufl.edu/hager/papers/CG/results6.0.txt
http://camo.ici.ro/neculai/AHYBRIDM
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FIGURE 2. Ny (CUTEr145).

CGOPT (1.0) in term of Ny, since GM_AOS (Reg p = 3) solves successfully about 79% test problems with the
least function evaluations, while the percentage of CGOPT (1.0) is only about 38%. Figure 9 indicates that
GM_AOS (Reg p = 3) is at a disadvantage over CGOPT (1.0) in term of Ny, and Figure 10 shows that GM_AOS
(Reg p = 3) outperforms slightly CGOPT (1.0) in term of Ny + 3N, [21]. We can observe from Figure 11 that
GM_AOS (Reg p = 3) is as fast as CGOPT (1.0). Figures 12-15 present the performance profiles on the test
set Andr80. As shown in Figures 12-15, we observe that GM_AOS (Reg p = 3) illustrates huge advantage over
CGOPT (1.0) on the test set Andr80. The third group of the numerical experiments indicates that GM_AOS
(Reg p = 3) is competitive to CGOPT (1.0) on the test set CUTEr145, and has a significant advantage over
CGOPT (1.0) on the test set Andr80.

In the fourth group of the numerical experiments, we compare the performance of GM_AOS (Reg p = 3)
with that of CG.DESCENT (5.0) on the two test sets CUTEri45 and Andr80. Figures 16-19 present the
performance profiles on the test set CUTEr145. As shown in Figure 16, we see that GM_AOS (Reg p = 3)
performs better than CG_DESCENT (5.0) in term of N, since GM_AOS (Reg p = 3) solves successfully about
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65% test problems with the least function evaluations, while the percentage of CG_.DESCENT (5.0) is only
about 39%. Figure 17 shows that GM_AOS (Reg p = 3) is at a disadvantage over than CG_DESCENT (5.0) in
term of Ny, and Figure 18 indicates that GM_AOS (Reg p = 3) outperforms slightly CG_DESCENT (5.0) in
term of Ny + 3N, [21]. We can observe from Figure 19 that GM_AOS (Reg p = 3) is as fast as CG_DESCENT
(5.0). Figures 20-23 present the performance profiles on the test set Andr80. As shown in Figures 20-22, we
see that GM_AOS (Reg p = 3) is at a little disadvantage over CG_.DESCENT (5.0) in term of Niter, and
has a significant performance boost over CG.DESCENT (5.0) in term of Ny and N,. We also can see that
GM_AOS (Reg p = 3) is faster much than CG_.DESCENT (5.0). The fourth group of the numerical experiments
indicates that GM_AOS (Reg p = 3) is competitive to CG_.DESCENT (5.0) on the test set CUTEr145, and has
a significant advantage over CG_.DESCENT (5.0) on the test set Andr80.

As for the reason that GM_AOS (Reg p = 3) has so important improvement over CG_.DESCENT (5.0) and
CGOPT (1.0) on Andr80 and is only competitive to CG.DESCENT (5.0) and CGOPT (1.0) on CUTEr145,
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I think that it lies mainly in that most test problems in CUTEr145 is relatively difficult to solve compared
to the test problems in Andr80. It seems that one can draw the following conclusion: Gradient methods with
approximately optimal stepsize are sufficient for those test problems that are not very ill-conditioned.

As for the reasons for the surprising numerical performance of GM_AOS (Reg p = 3), we think that it lies
in two aspects: (i) The approximately optimal stepsizes are generated by the approximation models including
regularization models and quadratic models at the current iterate xj. Since these approximation models pos-
sess rich second or higher order information of the objection function at the current iterate zy, the resulted
approximately optimal stepsize is integrated into rich second or higher order information properly and thus is
very efficient. (ii) The approximately optimal stepsize can readily satisfy Zhang-Hager line search directly in
most cases compared to other stepsizes in gradient method, which implies that it requires less much function
evaluations and thus save much computational cost. This can be observed in Figures 2, 8, 13, 16 and 21. Some
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TABLE 1. The number of test problems.

Method Nlinsear =0 Nlinsear < 1 Nlinsear < 2 Nlinsear < 3 Total PrOblemS

BB 41 46 48 50 145 (CUTEr145)
GM_AOS (Regp=3) 68 81 85 90 145 (CUTEr145)
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statistical results can be seen in Table 1, where Njjpsear denotes the times that the stepsize is updated by (3.4)
during all iterations of solving a test problem. Njjsear = 0 indicates the initial stepsize (approximately optimal
stepsize or BB stepsize) satisfies (3.1) directly at all iterations and thus Zhang—Hager line search is not invoked
at all. As shown in Table 1, we can see that there are 68 (out of 145) problems for which Zhang—Hager line
search is not invoked at all during the solving process, while the number for the BB method is only 41, and
there are 90 (out of 145) problems for each of which the times that Zhang—Hager line search is invoked is less
than or equal to 3, while the number for the BB method is only 50. It is observed from the Table 1 that the
approximately optimal stepsizes described in Section 2 satisfy (3.1) in most cases and thus the proposed method
requires less much function evaluations.
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6. CONCLUSION AND DISCUSSION

In this paper, we present an efficient gradient method with approximately optimal stepsizes for uncon-
strained optimization. In the proposed method, some approximation models including regularization models
and quadratic models are exploited carefully to derive approximately optimal stepsizes. The convergence of the
proposed methods is analyzed. Extensive numerical results indicates that the proposed method GM_AOS (Reg
p = 3) is very promising.
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Due to the surprising numerical performance, gradient methods with approximately optimal stepsizes can
become strong candidates for large scale unconstrained optimization and has potential in constrained optimiza-
tion and some fields such as machine learning.

Though gradient methods with approximately optimal stepsize is surprisingly efficient, there are still some
questions under investigation:

(i) Like the BB method, it is very challenging to explain that gradient methods with approximately optimal
stepsizes converge so fast in theory. Does gradient method with approximately optimal stepsize based on
quadratic approximation model (2.13) possess Q-linear convergence for convex quadratic minimization? If
yes, what conditions should be imposed on the distance || By — A||? Here A is the Hessian matrix for strictly
convex quadratic function.
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(ii) Can the type of gradient method with approximately optimal stepsize possess local R-linear convergence

or better convergence rate when it is applied to general unconstrained optimization?
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