Improving weak efficiency frontier in a variable returns to scale stochastic data envelopment analysis model
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2159-2179

The conventional stochastic data envelopment analysis (SDEA) model suffers from biased efficiency scores for units located at the weak efficient frontier or compared to the weak frontier. This study modifies the weak efficient hyperplane(s) while maintaining the general production function by restricting the gradients of weak efficient hyperplanes in the original model using facet analysis. Empirical analysis on environmental efficiency of sustainable development goals validates the results of the modification. Results of the modified model compared to the conventional model show change in efficiency scores of weak efficient units and those compared to the weak part of the frontier while the efficiency scores of the strong efficient frontier remain the same. Furthermore, the proposed model shows greater discriminatory power compared to the conventional model, hence, providing a reliable benchmark and improvement strategy post efficiency analysis.

DOI : 10.1051/ro/2022100
Classification : 90B50, 90C05, 90C90
Keywords: Efficiency stochastic data envelopment analysis (SDEA), weak efficient frontier, facet analysis, sustainable development goals
@article{RO_2022__56_4_2159_0,
     author = {Forghani, Davood and Ibrahim, Mustapha D. and Daneshvar, Sahand},
     title = {Improving weak efficiency frontier in a variable returns to scale stochastic data envelopment analysis model},
     journal = {RAIRO. Operations Research},
     pages = {2159--2179},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022100},
     mrnumber = {4454167},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022100/}
}
TY  - JOUR
AU  - Forghani, Davood
AU  - Ibrahim, Mustapha D.
AU  - Daneshvar, Sahand
TI  - Improving weak efficiency frontier in a variable returns to scale stochastic data envelopment analysis model
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2159
EP  - 2179
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022100/
DO  - 10.1051/ro/2022100
LA  - en
ID  - RO_2022__56_4_2159_0
ER  - 
%0 Journal Article
%A Forghani, Davood
%A Ibrahim, Mustapha D.
%A Daneshvar, Sahand
%T Improving weak efficiency frontier in a variable returns to scale stochastic data envelopment analysis model
%J RAIRO. Operations Research
%D 2022
%P 2159-2179
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022100/
%R 10.1051/ro/2022100
%G en
%F RO_2022__56_4_2159_0
Forghani, Davood; Ibrahim, Mustapha D.; Daneshvar, Sahand. Improving weak efficiency frontier in a variable returns to scale stochastic data envelopment analysis model. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2159-2179. doi: 10.1051/ro/2022100

[1] A. P. Afanasiev, V. E. Krivonozhko, A. V. Lychev and O. V. Sukhoroslov, Multidimensional frontier visualization based on optimization methods using parallel computations. J. Global Optim. 76 (2020) 563–574. | MR | Zbl | DOI

[2] R. Banker, Stochastic data envelopment analysis. Working Paper. Carnegie Mellon University (1988).

[3] R. D. Banker, Maximum likelihood, consistency and data envelopment analysis: a statistical foundation. Manage. Sci. 39 (1993) 1265–1273. | Zbl | DOI

[4] R. D. Banker, A. Charnes and W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. | Zbl | DOI

[5] R. D. Banker, S. M. Datar and C. F. Kemerer, A model to evaluate variables impacting the productivity of software maintenance projects. Manage. Sci. 37 (1991) 1–18. | DOI

[6] R. Banker, K. Kotarac and L. Neralić, Sensitivity and stability in stochastic data envelopment analysis. J. Oper. Res. Soc. 66 (2015) 134–147. | DOI

[7] A. Charnes and W. W. Cooper, The Non-Archimedean CCR Ratio for Efficiency Analysis: A Rejoinder to Boyd and Färe. Texas Univ at Austin Center for Cybernetic Studies (1984).

[8] A. Charnes, W. W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. | MR | Zbl | DOI

[9] A. Chames, W. Cooper and E. Rhodes, Short communication: measuring the efficiency of decision making units. Eur. J. Oper. Res. 3 (1979) 339. | Zbl | DOI

[10] S. Daneshvar, G. Izbirak and A. Javadi, Sensitivity analysis on modified variable returns to scale model in Data Envelopment Analysis using facet analysis. Comput. Ind. Eng. 76 (2014) 32–39. | DOI

[11] M. Davtalab-Olyaie, I. Roshdi, V. Partovi Nia and M. Asgharian, On characterizing full dimensional weak facets in DEA with variable returns to scale technology. Optimization 64 (2015) 2455–2476. | MR | Zbl | DOI

[12] EPI, Environmental Performance Index (EPI) (2021, 16th May). https://epi.yale.edu/about-epi.

[13] M. K. Epstein and J. C. Henderson, Data envelopment analysis for managerial control and diagnosis. Decis. Sci. 20 (1989) 90–119. | DOI

[14] L. M. Fonseca, J. P. Domingues and A. M. Dima, Mapping the sustainable development goals relationships. Sustainability 12 (2020) 3359. | DOI

[15] Z. Huang and S. X. Li, Dominance stochastic models in data envelopment analysis. Eur. J. Oper. Res. 95 (1996) 390–403. | Zbl | DOI

[16] M. D. Ibrahim and A. A. Alola, Integrated analysis of energy-economic development-environmental sustainability nexus: case study of MENA countries. Sci. Total Environ. 737 (2020) 139768. | DOI

[17] M. Ibrahim, S. Daneshvar, H. Güden and B. Vizvari, Target setting in data envelopment analysis: efficiency improvement models with predefined inputs/outputs. OPSEARCH 57 (2020) 1319–1336. | MR | Zbl | DOI

[18] S. Jradi and J. Ruggiero, Stochastic data envelopment analysis: a quantile regression approach to estimate the production frontier. Eur. J. Oper. Res. 278 (2019) 385–393. | MR | Zbl | DOI

[19] S. Jradi, C. F. Parmeter and J. Ruggiero, Quantile estimation of the stochastic frontier model. Econ. Lett. 182 (2019) 15–18. | MR | Zbl | DOI

[20] S. Kazemi, M. Tavana, M. Toloo and N. A. Zenkevich, A common weights model for investigating efficiency-based leadership in the russian banking industry. RAIRO: Oper. Res. 55 (2021) 213–229. | MR | Numdam | DOI

[21] E. Kazemzadeh, J. A. Fuinhas, M. Koengkan, F. Osmani and N. Silva, Do energy efficiency and export quality affect the ecological footprint in emerging countries? A two-step approach using the SBM–DEA model and panel quantile regression. Environ. Syst. Decis. (2022) 1–18. DOI: . | DOI

[22] E. Koçak, H. K. Kınacı and K. Shehzad, Environmental efficiency of disaggregated energy R&D expenditures in OECD: a bootstrap DEA approach. Environ. Sci. Pollut. Res. 28 (2021) 19381–19390. | DOI

[23] M. Koengkan, J. A. Fuinhas, E. Kazemzadeh, F. Osmani, N. K. Alavijeh, A. Auza and M. Teixeira, Measuring the economic efficiency performance in Latin American and Caribbean countries: an empirical evidence from stochastic production frontier and data envelopment analysis. Int. Econ. 169 (2022) 43–54. | DOI

[24] V. Moutinho, J. A. Fuinhas, A. C. Marques and R. Santiago, Assessing eco-efficiency through the DEA analysis and decoupling index in the Latin America countries. J. Cleaner Prod. 205 (2018) 512–524. | DOI

[25] O. B. Olesen and N. C. Petersen, Facet analysis in data envelopment analysis. In: Data Envelopment Analysis, edited by J. Zhu. Springer US (2015). | MR | DOI

[26] O. B. Olesen and, N. C. Petersen, Stochastic data envelopment analysis – a review. Eur. J. Oper. Res. 251 (2016) 2–21. | MR | Zbl | DOI

[27] J. Ondrich and J. Ruggiero, Efficiency measurement in the stochastic frontier model. Eur. J. Oper. Res. 129 (2001) 434–442. | Zbl | DOI

[28] S. Sarkar, Performance measurement using a novel directional distance function based super efficiency model and neighbourhood theory. RAIRO: Oper. Res. 55 (2021) 3617–3638. | MR | Zbl | Numdam | DOI

[29] J. K. Sengupta, Theory of DEA models. In: Dynamics of Data Envelopment Analysis, Springer (1995) 1–37.

[30] A. Takeda and H. Nishino, On measuring the inefficiency with the inner-product norm in data envelopment analysis. Eur. J. Oper. Res. 133 (2001) 377–393. | MR | Zbl | DOI

[31] H. Yang and M. Pollitt, The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: environmental performance of Chinese coal-fired power plants. Energy Policy 38 (2010) 4440–4444. | DOI

[32] Z. Zhou, W. Sun, H. Xiao, Q. Jin and W. Liu, Stochastic leader–follower DEA models for two-stage systems. J. Manage. Sci. Eng. 6 (2021) 413–434.

[33] Q. Zhu, J. Aparicio, F. Li, J. Wu and G. Kou, Determining closest targets on the extended facet production possibility set in data envelopment analysis: modeling and computational aspects. Eur. J. Oper. Res. 296 (2022) 927–939. | MR | Zbl | DOI

Cité par Sources :