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IMPROVING WEAK EFFICIENCY FRONTIER IN A VARIABLE RETURNS TO
SCALE STOCHASTIC DATA ENVELOPMENT ANALYSIS MODEL

Davood Forghani1 , Mustapha D. Ibrahim2,3,* and Sahand Daneshvar1

Abstract. The conventional stochastic data envelopment analysis (SDEA) model suffers from biased
efficiency scores for units located at the weak efficient frontier or compared to the weak frontier. This
study modifies the weak efficient hyperplane(s) while maintaining the general production function
by restricting the gradients of weak efficient hyperplanes in the original model using facet analysis.
Empirical analysis on environmental efficiency of sustainable development goals validates the results
of the modification. Results of the modified model compared to the conventional model show change
in efficiency scores of weak efficient units and those compared to the weak part of the frontier while
the efficiency scores of the strong efficient frontier remain the same. Furthermore, the proposed model
shows greater discriminatory power compared to the conventional model, hence, providing a reliable
benchmark and improvement strategy post efficiency analysis.
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1. Introduction

Performance management is an important part of operations research and management science. There are
many techniques for performance management in operations research, however, data envelopment analysis
(DEA) is an effective technique [28] that has been applied in key sectors such as finance [20], energy management
and sustainability [16,21] among others. DEA evaluates relative efficiency of entities known as decision-making
units (DMUs) with multiple inputs and outputs. DEA was introduced by Charnes et al. [8] under constant
returns to scale (CRS), and was later enhanced by Banker et al. [4] under variable returns to scale (VRS).
DEA creates a reference technology set called production possibility set (PPS), in which a frontier distinguishes
comparatively the most efficient DMUs. A DMU is categorized as efficient or inefficient depending on its location
relative to the affirmed frontier [17].
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Since the emergence of DEA, notable amounts of research have been carried out on identifying efficient
frontiers and improvement targets [33]. However, there is inadequate attention paid to the weak efficient frontier
and the corresponding DMUs despite their role in estimating efficiency and identifying the level of inefficiency,
which has both technical and managerial implication in performance management, hence, the motivation of this
study. The weak efficient frontier exists due to the mandatory postulate of satisfying the convexity constraint,
which is considered a drawback in basic DEA models [10]. A biased efficiency score can be proposed for units
on the weak part of the frontier and DMUs compared to the weak part of the frontier. This will impact
the interpretation and implementation of the results. Few studies have developed approaches toward handling
weak efficient frontier. Takeda and Nishino [30] adopted inner product norms to assess sensitivity in efficiency
classification based on minimizing the distance to the weak efficient frontier. Daneshvar et al. [10] introduced
a modified VRS model using facet analysis, which results in stability region and a new benchmark for scoring
formerly weak efficient DMUs and inefficient DMUs compared to the weak efficient frontier. Similarly, the
limitation of DEA as a result of weak efficient frontier is observed in stochastic DEA (SDEA). To the best of
our knowledge, this issue is yet to be addressed in SDEA, hence, the gap in literature and novelty of this study.

SDEA is an important extension of DEA in which stochastic models based on the possibility of random
variations in input-output data are considered [6]. In traditional DEA, the data is considered to be deterministic.
Consequently, efficiency measurements do not assume to have stochastic properties. Therefore, the cause of
inefficiency in DEA is only due to technical inefficiency [27]. Huang and Li [15] stated that there is no place
for stochastic variations in the data when using DEA. The sample size in traditional DEA is also a possible
drawback. The frontier is sensitive to the sample size [29]. If the number of observations in the sample increases,
the technical efficiency of the DMUs often decreases because there is a possibility that the DMUs which are
placed close to the frontier increase. Banker [3] stated that for a monotone increasing and concave production
function, under certain conditions, the estimated frontier by DEA can reach the true frontier asymptotically.
By inserting observations into the sample, efficiency scores either decrease or stay constant. Therefore, while
many other statistical methods are affected by sample size, frontier estimation methods that work only based
on extremal points are affected even more severely.

Measurement error has a major impact on efficiency estimation [13, 15]. Frontier estimation methods are in
general are based only on extremal points. Outliers as a result of measurement error can influence the frontier
estimation. Sengupta [29] proposed identifying the outliers and removing them from the data set. This method
is based on central location measures and emphasizes that almost all of the deviation is a result of measurement
errors. The notion of a severely deterministic frontier in which efficiency scores are fixed is logical under certain
conditions [26]. Effects of sampling, the observations quantity, and other error forms makes interpretation
of the deterministic efficiency scores challenging. Consequently, SDEA models are proposed to mitigate such
limitations. Unlike traditional DEA, SDEA accommodates stochastic variations in data, such as data entry and
measurement errors. As a result, SDEA reflects these variations in efficiency scores. A DMU that is rated as
efficient relative to others in DEA, could be inefficient in SDEA, and vice versa [23, 32].

In DEA, there are many cases where DMUs are compared to weak efficient frontier or the whole frontier
is made of only weak efficient units [11]. The weak frontier has significant effect on the final efficiency scores
[31]. When the weight of an input or output becomes zero, this infers the input or outputs has no contribution
to the efficiency of the unit under evaluation, which is not practical. Studies have tried mitigating this by
adding a non-Archimedean value 𝜀 as the lower bound (strict positivity condition) for the weights of the model
[7, 9]. However, this comes with certain drawbacks such as biased efficiency score for units outside the strong
efficient frontier and output improvement restrictions which result to conflicting improvement for units with the
same inputs. Furthermore, the managerial implication of estimating a biased efficiency score include developing
improvement strategies based on inaccurate efficiency scores.

In this study, the weak hyperplanes of a basic SDEA model with the above mentioned drawbacks are modi-
fied to obtain an unbiased efficiency score. In order to modify the model, gradients of weak efficient hyper-
planes are modified by adding constraints. These modifications are made without violating concavity and
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monotonicity, hence the production function properties remain the same. Moreover, the modified model can
easily be implemented using mathematical optimization modeling systems such as GAMS software.

The remainder of the article is organized as follows: Section 2 presents the background of Banker’s SDEA and
technical validation of the proposed model. Section 3 discusses the proposed model with illustrative examples
in Section 3.3. A case study on environmental efficiency analysis of sustainable development goals is used to
validate the proposed model in Section 4. The paper is concluded in Section 5.

2. Banker’s stochastic data envelopment analysis model

There are multiple notions of stochastic DEA that drives the technique in several directions [26]. These
directions are grouped into three categories. The first direction employs DEA to handle estimated deviations
from frontier as random deviations. The second develops DEA to handle random noise in the form of either
measurement errors or specification errors. The third direction utilize DEA to formulate the PPS as a random
PPS, based on the random variation in data. Two important approaches within the field of SDEA contain all the
three directions mentioned above: Stochastic frontier analysis (SFA) and chance-constrained DEA (CCDEA)
[26]. In this research, a proposed model in a work of Banker [2] is studied, which can be considered as the
foundation of SFA models. Banker et al. published some of the results of [2] in [6] and performed sensitivity
and stability analysis. Application of the Banker’s model of SDEA can be found in [5].

Banker [2] introduced a basic model of SDEA. In the model, a symmetric two-sided deviation term peculiar to
random factors (such as model specification and measurement errors) in company with the one-sided deviation
term related to DMU’s inefficiency is developed. As a result, only the single output case is considered because
the multiple output case results in nonlinear programming.

To express the relationship between this model and conventional DEA, consider the assumptions of variable
return to scale model of Banker [4] for estimating the PPS from observed data on output vectors 𝑦𝑗 and
input vectors 𝑥𝑗 , 𝑗 = 1, . . . , 𝑛. For the single output case the postulates for estimating the production frontier
correspondence 𝑦 = 𝑓(𝑥) relating the single output 𝑦 to the input vector 𝑥, 𝑓 : 𝑋 → 𝑅 where 𝑋 is the convex
hull of 𝑥𝑗 , can be specified as with the following postulates:

– Monotonicity of production frontier

if 𝑦 = 𝑓(𝑥), 𝑦′ = 𝑓(𝑥′) and 𝑥 ≥ 𝑥′, then 𝑦 ≥ 𝑦′. (2.1)

– Concavity of production frontier

if 𝑦 = 𝑓(𝑥), 𝑦′ = 𝑓(𝑥′) and 0 ≤ 𝜆 ≤ 1, (2.2)
then (1− 𝜆)𝑦 + 𝜆𝑦′ ≤ 𝑓((1− 𝜆)𝑥 + 𝜆𝑥′). (2.3)

– Envelopment of observed data

for each observation 𝑗 = 1, . . . , 𝑛, 𝑦𝑗 ≤ 𝑓(𝑥𝑗). (2.4)

– Minimum extrapolation

if 𝑔 : 𝑋 → 𝑅 satisfies postulates 1, 2 and 3 then 𝑔(𝑥) ≥ 𝑓(𝑥) for all 𝑥 ∈ 𝑋.

By considering these four postulates, the state of monotone increasing and concave production frontier is
satisfied. To estimate this production frontier by stochastic DEA, the possible effect of uncontrolled random
factors must be incorporated. Hence, such deviations caused by random factors and their stochasticity impact
on the specification of the model is represented by the term 𝑢𝑗 which can be expressed as:

𝑢𝑗 = 𝑢+
𝑗 − 𝑢−𝑗 with 𝑢+

𝑗 , 𝑢−𝑗 ≥ 0. (2.5)



2162 D. FORGHANI ET AL.

The random deviations 𝑢𝑗 are supposed to be symmetric. Therefore, it is captured in the constraint below:

𝑛∑︁
𝑗=1

𝑢+
𝑗 =

𝑛∑︁
𝑗=1

𝑢−𝑗 . (2.6)

Along with deviations due to random factors, as in traditional DEA, the inefficiency of the DMU may cause a
shortfall in output compared to the predicted output level. Such deviations due to DMU inefficiency are shown
by a nonnegative term 𝑣𝑗 . To sum up, the actual output level could be represented as follows:

𝑦𝑗 = 𝑓(𝑥𝑗)− 𝑢+
𝑗 + 𝑢−𝑗 − 𝑣𝑗 (2.7)

where 𝑓(𝑥𝑗) is the function of the estimated frontier. Equation (2.7) indicates that an efficient DMU is the one
with 𝑣𝑗 = 0 regardless of being placed under the frontier (𝑢+

𝑗 = 0), or above the frontier (𝑢−𝑗 = 0), or on the
frontier (𝑢+

𝑗 = 𝑢−𝑗 = 0). Then, the production frontier values are approximated by minimizing a weighted sum
of the two deviations subject to the following constraints (for details, see Banker [2], pp. 4–9):

Minimize
𝑛∑︁

𝑗=1

(︀
𝑢+

𝑗 + 𝑢−𝑗 + 𝑐𝑣𝑗

)︀
subject to

for each 𝑗 = 1, . . . , 𝑛 and for all 𝑘 = 1, . . . , 𝑛 and 𝑘 ̸= 𝑗

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 + (𝑣𝑗 − 𝑣𝑘) +
(︀
𝑢+

𝑗 − 𝑢−𝑗 − 𝑢+
𝑘 + 𝑢−𝑘

)︀
≥ 𝑦𝑘 − 𝑦𝑗

𝑛∑︁
𝑗=1

(︀
𝑢+

𝑗 − 𝑢−𝑗
)︀

= 0

𝑤𝑗 ≥ 0, 𝑣𝑗 , 𝑢
+
𝑗 , 𝑢−𝑗 ≥ 0 (2.8)

𝑢+
𝑗 : the deviation of DMU𝑗 from the frontier due to error (negative residual);

𝑢−𝑗 : the deviation of DMU𝑗 from the frontier due to error (positive residual);
𝑣𝑗 : the deviation of DMU𝑗 from the frontier due to technical inefficiency (negative residual);
𝑤𝑗 : the slope of the estimated monotone increasing concave frontier at the point of the efficient output-oriented

DMU𝑗 .

The SDEA model with 𝑚 inputs and 𝑛 observations has (𝑚 + 3)𝑛 variables and 𝑛2 − 𝑛 + 1 constraints and
obviously is not infeasible since a feasible solution can be obtained from basic DEA when 𝑢+

𝑗 = 𝑢−𝑗 = 0.
The weight 𝑐 > 0 in the objective function is a pre-specified constant which by giving different values, different

estimates of the production function may be obtained. The model represents a combination of the minimum
absolute deviation (MAD) model (due to random factors) and the basic DEA model (due to inefficiencies).

The correlation between the constant 𝑐 and the contributions of the MAD and the DEA models are formalized.

Theorem. For any given data set {(𝑥𝑗 , 𝑦𝑗)|𝑗 = 1, . . . , 𝑛}, there exist 𝑐𝑀 and 𝑐𝐷 with 1/𝑛 ≤ 𝑐𝑀 ≤ 𝑐𝐷 ≤ 2 such
that the model reduces to a minimum absolute deviation model (i.e. 𝑣*𝑗 = 0 for all 𝑗) for all 𝑐 > 𝑐𝐷, and to the
basic DEA formulation (i.e. 𝑢+* = 𝑢−* = 0 for all 𝑗) for all 𝑐 < 𝑐𝑀 (for proof, see Banker [2], pp. 9–12).

Lemma 2.1. If 𝑐 > 2 → 𝑣*𝑗 = 0 for all 𝑗 = 1, . . . , 𝑛.

Lemma 2.2. If 𝑐 < 1/𝑛 → 𝑢+
𝑗* = 𝑢−𝑗* = 0 for all 𝑗 = 1, . . . , 𝑛.
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3. Proposed stochastic data envelopment analysis model

Banker’s SDEA model presents two tools for estimating production function (MAD & DEA). Each has its
individual drawbacks when considered separately. However, when combined, they support the drawback asso-
ciated with each individual technique. For example, MAD is a deterministic method that estimates only the
average performance while DEA evaluates efficiency relative to a production frontier that measures the best
obtainable performance. Furthermore, the problem with the regression-based parametric methods is that by
specifying a particular parametric form, a considerable arbitrary and restrictive structure is imposed on the
input-output correspondence. In contrast, DEA imposes a minimal structure of monotonicity and convexity on
the PPS. On the other hand, DEA method only allows for one-sided inefficiency deviations whereas regression
gives the possibility of having a two-sided deviations component due to random errors. Given the above men-
tioned advantages, the model does not account for the effect of weak efficient frontier which tends to affect the
efficiency scores of all related DMUs.

3.1. Weak efficient frontier

In this section, the problem definition which is associated to the weak efficient frontier is discussed. In Banker’s
stochastic model, since all the deviations are measured vertically (the direction of the deviations’ vector due to
MAD and DEA has to be the same so they can be summed for total deviation), starting from each DMU to
the frontier line, the combined DEA model should be considered as output-oriented BCC.

In output-oriented BCC, the weak efficient frontier is the horizontal line projected from the efficient DMU
with the highest amount of input as shown in Figure 1. Multidimensional frontier visualization of production
possibility sets was developed by Afanasiev et al. [1] to visualize the efficiency frontier. Weak efficient frontier
has a significant effect on all DMUs. The relative efficiency will be evaluated only by its output rather than the
ratio of output over input. A biased efficiency score is proposed as a result of that relative comparison. This
has an effect on recommendations and improvement strategies based on the estimated efficiency scores. In this
study, a modified SDEA model is proposed to mitigate the effect of the weak efficient frontier thus presenting
an unbiased efficiency score for all related DMUs. A single-output multiple-input model is considered, although
the presented stochastic model by Banker can be extended to multiple outputs in a similar way. However, the
first set of constraints would include nonlinear terms. Hence, the calculations will be less controllable than for
the single output.

Previous studies [6, 18, 19] pay less attention to the variable 𝑤𝑗 , which shows the slope of the frontier in an one-
input and one-output stochastic model (2D space), or the normal vector of the frontier hyperplane in a multiple
dimensional space. A non-Archimedean value 𝜀 as the lower bound (strict positivity condition) for the weights of
the model has been used to mitigate this effect [7,9]. However, non-Archimedean value 𝜀 results to a strict vertical
frontier for input orientation, and horizontal plane for output orientation. This penalizes DMUs compared to the
weak part of the frontier and estimate biased efficiency score for units outside the strong part of the efficiency frontier.
Furthermore, when improving inefficient DMUs such DMUs A, B, and C in Figure 1, different target outputs will be
proposed for inefficient DMUs with the same input. Similarly for large scale (high input) inefficient DMUs seeking
to decompose, different input targets will be proposed for DMUs with the same outputs. This has major implication
for performance improvement in addition to the biased efficiency score.

In this study, the focus is made on the variable 𝑤𝑗 and its potential to improve the model. The steps described
in Section 3.3 illustrate the proposed method to modify the weak efficient frontier toward the best practice
frontier as a piecewise linear monotonically increasing and concave production function. But first, Section 3.2
describes facet analysis.

3.2. Facet analysis

Based on the constraints (refer to the classic model), the supporting hyperplanes for PPS of Banker’s stochas-
tic DEA model can be rewritten as follows:
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Figure 1. Stochastic DEA frontier.

(︀
𝑤1𝑗 , 𝑤2𝑗 , . . . , 𝑤𝑛𝑗 , 𝑣𝑗 , 𝑣𝑘, 𝑢+

𝑗 , 𝑢−𝑗 , 𝑢+
𝑘 , 𝑢−𝑘

)︀
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑥1𝑘 − 𝑥1𝑗)
(𝑥2𝑘 − 𝑥2𝑗)

...
(𝑥𝑛𝑘 − 𝑥𝑛𝑗)

1
−1
1
−1
−1
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ 𝑦𝑘 − 𝑦𝑗 . (3.1)

By considering all the deviation terms as one variable 𝑢0 and modifying (3.1), then we have:

(−𝑤1𝑗 ,−𝑤2𝑗 , . . . ,−𝑤𝑛𝑗 , 1)×

⎛⎜⎜⎜⎜⎝
(𝑥1𝑘 − 𝑥1𝑗)
(𝑥2𝑘 − 𝑥2𝑗)

...
(𝑥𝑛𝑘 − 𝑥𝑛𝑗)

𝑦𝑘 − 𝑦𝑗

⎞⎟⎟⎟⎟⎠ ≤ 𝑢0. (3.2)

Let us call the vector (−𝑤1𝑗 ,−𝑤2𝑗 , . . . ,−𝑤𝑛𝑗 , 1), 𝑃𝑗 . 𝑃𝑗 is the normal vector to efficient facet in multiplier side
of output-oriented BCC model which can be interpreted as the scaled price vector associated with a DMU in
the relative interior of an efficient facet [25]. If at least one of the elements of the vector 𝑃𝑗 is equal to zero, then
the corresponding facet is weak facet. Otherwise, it is an efficient facet. For example, if 𝑤11 ≥ 0, then, the price
related to input 1 of DMU 1 could be equal to zero, and if 𝑤11 = 0, it means that no matter how much you
increase that input, the efficiency score will not change. This is the biased result of DEA for DMUs compared
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Figure 2. Possible scenario to modify weak efficient frontier.

with weak efficient frontier. However, assigning a minimum attainable price to 𝑤𝑖𝑗 seems logical to change
full dimensional weak facets (FDWFs) to full dimensional efficient facets (FDEFs). In this way, contribution
of all inputs of all DMUs are guaranteed while assumptions behind DEA method and production function
like concavity are satisfied. Furthermore, the possibility set in this case is expected to expand while frontier
hyperplanes adjust themselves to keep the concavity and monotonically increasing property.

3.2.1. One-input one-output model

The following steps illustrate the modification of the weak efficient frontier in SDEA.

Step 1. Solve the observed set of inputs and output using model 8.
Note: the constant 𝑐 could be defined by the examiner considering the importance of the type of deviations
as well as its limits given before (stochastic possibility: 1

𝑛 < 𝑐 < 2, Definitely MAD: 𝑐 ≥ 2, Definitely Classic
DEA ≤ 1/𝑛). Different values of “𝑐” can be used to investigate the effect.

Step 2. Find the smallest non-zero value for 𝑤𝑗 and naming it 𝛽.
Note: if there are any 𝑤𝑗 with value zero, it shows that the corresponding DMU𝑗 is placed on or compared
with the weak efficient frontier.

Step 3. Adding a constraint stating that 𝑤𝑗 have to be greater than or equal to 𝛽.
Note: To modify the weak efficient frontier in an output-oriented approach, corresponding 𝑤𝑗 which is zero
should not violate the assumptions and constraints made beforehand. Figure 2 shows different scenarios.
However, only one is feasible to be applied. As it is illustrated in Figure 2, line 𝑂𝑇 is the weak efficient
frontier with 𝑤*𝑗 = 𝑤*𝑂𝑇 = 0. To modify the slope, different options are available:

(1) 𝑂𝐶: it violates the assumption of monotonically increasing function.
(2) 𝑂𝐴: it violates the assumption of concavity.
(3) 𝑂𝐵: it doesn’t violate any assumption but it’s subjective to decide which value between zero and 𝑤*𝑗 .
(4) 𝑂𝑂′: It doesn’t violate any assumption. Also, it’s vital to the consistency of the method.
By applying this steps, it will guarantee that the frontier will not be horizontal. Also, since the monotonically
increasing concave frontier is already satisfied by other constraints, it is definite that the so-called weak
efficient frontier will be modified to continue with the same slope as the closest efficient frontier with the
minimum slope.

Step 4. Solve the set of inputs and outputs with the modified SDEA model (3.3) by defining beta as the
minimum strictly positive slope of the frontier.
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Note: the non-negativity constraint for 𝑤𝑗 is redundant. This means that the number of constraints stays
the same.

Minimize
𝑛∑︁

𝑗=1

(︀
𝑢+

𝑗 + 𝑢−𝑗 + 𝑐𝑣𝑗

)︀
subject to

for each 𝑗 = 1, . . . , 𝑛 and for all 𝑘 = 1, . . . , 𝑛 and 𝑘 ̸= 𝑗

(𝑥𝑘 − 𝑥𝑗)𝑤𝑗 + (𝑣𝑗 − 𝑣𝑘) +
(︀
𝑢+

𝑗 − 𝑢−𝑗 − 𝑢+
𝑘 + 𝑢−𝑘

)︀
≥ 𝑦𝑘 − 𝑦𝑗

𝑛∑︁
𝑗=1

(︀
𝑢+

𝑗 − 𝑢−𝑗
)︀

= 0

𝑤𝑗 ≥ 𝛽 for each 𝑗 = 1, . . . , 𝑛

𝑣𝑗 , 𝑢
+
𝑗 , 𝑢−𝑗 ≥ 0. (3.3)

3.2.2. Two-inputs one-output model

The classic SDEA model is also applicable in a one-output multiple-input system. However, the case of
multiple outputs becomes nonlinear [6]. Hence, this study demonstrates the modified SDEA model for multiple-
inputs one-output system.

To begin with, the stochastic model presented by Banker could be developed for two inputs case as bellow:

Minimize
𝑛∑︁

𝑗=1

(︀
𝑢+

𝑗 + 𝑢−𝑗 + 𝑐𝑣𝑗

)︀
subject to

for each 𝑗 = 1, . . . , 𝑛 and for all 𝑘 = 1, . . . , 𝑛 and 𝑘 ̸= 𝑗

2∑︁
𝑖=1

[(𝑥𝑖𝑘 − 𝑥𝑖𝑗)𝑤𝑖𝑗 ] + (𝑣𝑗 − 𝑣𝑘) +
(︀
𝑢+

𝑗 − 𝑢−𝑗 − 𝑢+
𝑘 + 𝑢−𝑘

)︀
≥ 𝑦𝑘 − 𝑦𝑗

𝑛∑︁
𝑗=1

(︀
𝑢+

𝑗 − 𝑢−𝑗
)︀

= 0

𝑤𝑖𝑗 ≥ 0, 𝑣𝑗 , 𝑢
+
𝑗 , 𝑢−𝑗 ≥ 0. (3.4)

𝑢+
𝑗 : the deviation of DMU𝑗 from the frontier due to error (negative residual);

𝑢−𝑗 : the deviation of DMU𝑗 from the frontier due to error (positive residual);
𝑣𝑗 : the deviation of DMU𝑗 from the frontier due to technical inefficiency (negative residual);
𝑤𝑖𝑗 : the element of the normal vector of the estimated monotone increasing concave frontier plane at the point

of the efficient output-oriented DMU𝑗 ;
𝑖: index of inputs (𝑖 = 1, 2);
𝑗: index of the DMUs (𝑗 = 1, 2, . . . , 𝑛).

The implementation steps are similar to one inputs-output system. However, since we have two 𝑤’s for each
DMU𝑗(𝑤1𝑗 , 𝑤2𝑗), two constraints will be added to the base model.

Step 1. Solving the model as it is given above with observed inputs and outputs.
Step 2. Find the smallest non-zero values for 𝑤1𝑗 and 𝑤2𝑗 and naming them respectively 𝛽1 and 𝛽2.

Note: if there are any DMU with 𝑤1𝑗 = 𝑤2𝑗 = 0, it shows that the corresponding DMU𝑗 is placed on or
compared with the weak efficient frontier (parallel to the Inputs surface in the coordinate system).
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Step 3. Add the following constraints to the basic model:

𝑤1𝑗 ≥ 𝛽1

𝑤2𝑗 ≥ 𝛽2.

Step 4. Solve the proposed model below:

Minimize
𝑛∑︁

𝑗=1

(︀
𝑢+

𝑗 + 𝑢−𝑗 + 𝑐𝑣𝑗

)︀
subject to

for each 𝑗 = 1, . . . , 𝑛 and for all 𝑘 = 1, . . . , 𝑛 and 𝑘 ̸= 𝑗

2∑︁
𝑖=1

[(𝑥𝑖𝑘 − 𝑥𝑖𝑗)𝑤𝑖𝑗 ] + (𝑣𝑗 − 𝑣𝑘) +
(︀
𝑢+

𝑗 − 𝑢−𝑗 − 𝑢+
𝑘 + 𝑢−𝑘

)︀
≥ 𝑦𝑘 − 𝑦𝑗

𝑛∑︁
𝑗=1

(︀
𝑢+

𝑗 − 𝑢−𝑗
)︀

= 0

𝑤1𝑗 ≥ 𝛽1

𝑤2𝑗 ≥ 𝛽2

𝑣𝑗 , 𝑢
+
𝑗 , 𝑢−𝑗 ≥ 0. (3.5)

3.3. Illustrative examples

To illustrate the practicality of the proposed model, the data set used by Banker [2] is utilized. Banker’s data
set does not have any DMU located at the weak efficient frontier or compared to the weak efficient frontier.
Therefore, new DMUs are added to the PPS.

Example 3.1. Table 1 presents a single input single output data set from a production company. Outputs are
production units and inputs are labor in hours. The first twelve months were given by Banker and the last three
are added to examine the modified model.

Model (2.8) is applied to the data set. Different ranges of “𝑐” are selected. Figure 3 illustrates the sensitivity
of the estimates on deviations caused by inefficiency or random factors. By increasing the weight 𝑐, the estimated
production frontier tends to move further down and as a result, symmetric deviation due to random factors
appears. Concavity and monotonically increasing postulates are reasonably considered since by increasing the
labor hour, the labor productivity tends to decrease due to the traffic and complications at upper capacity
operation, but it doesn’t always mean that the productivity level stops at a point (in this example point
number 4) and from that point by increasing the labor, production doesn’t increase (points 13, 14 and 15 are
evaluated by weak frontier).

By applying the modified SDEA model (3.3), and the steps described. The estimated production function
will continue to increase with the least possible slope giving a more realistic approximation by turning the weak
efficient frontier into an efficient frontier. It is obvious that by increasing the number of DMUs and finding an
appropriate corresponding 𝑐 value, the possibility of having a smooth frontier similar to logarithmic production
functions rises. Figure 4 shows the modified weak frontier.

Points 13, 14, and 15 are not compared to a weak frontier anymore. Moreover, the evaluation criteria have
changed in many cases. For example, in the case 𝑐 = 0.55, after solving the banker’s traditional SDEA model
by GAMS software, the minimum nonzero 𝑤𝑗 equals 0.7. Hence, 𝛽 = 0.7, and by adding the new constraint to
the model, new values for the slope and the deviations will be obtained. As it can be seen in Figures 3 and 4,
and also Appendix A, DMUs 12, 7, and 9 that were strong efficient points, stay the same in the modified model.
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Table 1. One input and one output data.

Month Input Output

1 416.092 2089.51
2 349.785 1919.35
3 399.403 1974.43
4 455.73 2117.16
5 360.803 1792.88
6 396.241 1818.82
7 272.435 1537.66
8 312.949 1598.41
9 314.229 1701.87
10 416.09 1868.95
11 290.686 1554.14
12 260.762 1436.05
13 500 2117.16
14 520 2000
15 475 2050

Figure 3. SDEA estimated production frontier.
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Figure 4. Modified SDEA estimated production frontier.

However, DMUs 1 and 4 which were strong efficient points before, are efficient but with error deviation in the
modified model. Hence, they were located on the frontier because they had some error in their measurement
and the actual frontier passes under points 1 and 4. Although it implies that PPS shrunk, yet for DMUs 14 and
15, which were compared with weak efficient frontier, the PPS has become larger. This assigns them smaller
efficiency scores, but better opportunity to be improved. Weak efficient DMU 13 turns to a strong efficient
point and the other DMUs can be compared with the new frontier. This means that another criterion has been
obtained for comparing or improving the DMUs. The related results for the classic and modified model are given
in Appendix A. The deviation ratio 𝑦𝑗

𝑦𝑗
= 𝑦𝑗

𝑦𝑗+𝑢++𝑣−𝑢− and the efficiency estimates 1−
(︁

𝑣𝑗

𝑦𝑗

)︁
are also reported.

Example 3.2. The following data were generated illustrated the two inputs one output modified model. Table 2
presents the data set. The steps discussed in model development are applied considering four different values
for the weight 𝑐. Table 3 shows the results obtained for 𝑐 = 0.750 and 𝑐 = 0.875. The constant 𝑐 in the model
has changed between Tables 3a and 3b, however, independent change did not affect the outcomes of efficiency
whether it changes between the classic and modified model; leading us to conclude that the modified model
is able to give more realistic result regardless of the 𝑐 value. It could be observed from Table 3a that some of
the efficiency estimates have remained the same. Although, the balance between 𝑢+ and 𝑢− has changed which
is projected in deviation ratio. Nevertheless, some changes similar to DMU 12 show that it is efficient in the
classical model but not in the modified one. This indicates that DMU 12 is actually inefficient and could be
improved because its deviation from the frontier is due to a combination of inefficiency and error not only error.
In DMU 11 the efficiency estimate increases to its maximum value while the distance to the frontier stays almost
the same. The reason is that the deviation due to inefficiency in the classical model is in fact due to errors and
random factors. Considering a higher value for 𝑐 (Tab. 3b), taking DMU 11, compared to Table 3a, an increase
in efficiency of the classical model is detected since by increasing the weight 𝑐, the model moves toward strict
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Table 2. Two input and one output data.

Input 1 Input 2 Output

DMU 1 1 7 2
DMU 2 3 4 2.5
DMU 3 3.5 4.3 3.32
DMU 4 8 1 1
DMU 5 1.5 10 3
DMU 6 4.5 6 5.75
DMU 7 7.5 9 6
DMU 8 12 1.5 2
DMU 9 8 10 6
DMU 10 1.6 6 1.8
DMU 11 8 7 2
DMU 12 6.4 6.7 4
DMU 13 10 11.6 5
DMU 14 4 4.5 3.21
DMU 15 1.5 8 2.12

Table 3. Two input and one output results.

(a)
Classical model Modified model

DMU 𝑤1𝑗 𝑤2𝑗 𝑢+ 𝑢− 𝑣 𝑐
Deviation
Ratio

Efficiency
Estimates

𝛽1 𝛽2 𝑤1𝑗 𝑤2𝑗 𝑢+ 𝑢− 𝑣
Deviation
Ratio

Efficiency
Estimates

1 2.00 0.00 0.00 0.00 0.00

0.750

1.000 1.000

0.139 0.183

0.90 0.18 0.00 0.00 0.00 1.000 1.000
2 0.67 1.62 0.00 0.00 0.00 1.000 1.000 0.67 1.62 0.00 0.00 0.00 1.000 1.000
3 0.14 0.89 0.00 0.00 0.00 1.000 1.000 0.14 0.78 0.00 0.00 0.00 1.000 1.000
4 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.14 0.89 0.00 0.00 0.00 1.000 1.000
5 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.90 0.18 0.00 0.00 0.00 1.000 1.000
6 0.00 0.34 0.00 0.78 0.00 1.156 1.000 0.14 0.18 0.00 0.97 0.00 1.202 1.000
7 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.14 0.18 0.00 0.25 0.00 1.044 1.000
8 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.14 0.89 0.00 0.00 0.00 0.999 0.999
9 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.14 0.18 0.00 0.00 0.00 1.000 1.000
10 5.50 3.50 0.00 0.00 0.00 1.000 1.000 5.50 3.50 0.00 0.00 0.00 1.000 1.000
11 0.00 0.34 0.13 0.00 0.59 0.865 0.873 0.14 0.18 0.85 0.00 0.00 0.844 1.000
12 0.14 0.89 0.64 0.00 0.00 0.861 1.000 0.14 0.78 0.37 0.00 0.17 0.880 0.957
13 0.00 0.00 0.00 0.00 1.00 0.833 0.800 0.14 0.18 0.00 0.00 1.57 0.761 0.686
14 0.14 0.89 0.00 0.00 0.36 0.900 0.888 0.14 0.78 0.00 0.00 0.34 0.906 0.896
15 0.90 0.18 0.00 0.00 0.51 0.805 0.758 0.85 0.19 0.00 0.00 0.50 0.810 0.766

(b)
1 2.00 0.00 0.00 0.00 0.00

0.875

1.000 1.000

0.045 0.208

0.75 0.21 0.00 0.00 0.00 1.000 1.000
2 0.67 1.62 0.00 0.00 0.00 1.000 1.000 0.49 1.32 0.00 0.00 0.00 1.000 1.000
3 0.05 0.61 0.00 0.00 0.00 1.000 1.000 0.05 0.54 0.00 0.18 0.00 1.058 1.000
4 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.05 1.64 0.00 0.00 0.00 1.000 1.000
5 2.00 0.00 0.00 0.00 0.00 1.000 1.000 0.75 0.21 0.00 0.00 0.00 1.000 1.000
6 0.00 0.53 0.00 1.35 0.00 1.307 1.000 0.05 0.51 0.00 1.64 0.00 1.400 1.000
7 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.05 0.21 0.00 0.23 0.00 1.040 1.000
8 0.00 2.00 0.00 0.00 0.00 1.000 1.000 0.05 1.64 0.00 0.00 0.00 1.000 1.000
9 0.00 0.00 0.00 0.00 0.00 1.000 1.000 0.05 0.21 0.00 0.00 0.00 1.000 1.000
10 5.50 3.50 0.00 0.00 0.00 1.000 1.000 5.50 3.50 0.00 0.00 0.00 1.000 1.000
11 0.00 0.53 0.00 0.00 0.33 0.932 0.928 0.05 0.51 0.17 0.00 0.00 0.964 1.000
12 0.05 0.61 0.24 0.00 0.00 0.943 1.000 0.05 0.54 0.00 0.00 0.00 1.000 1.000
13 0.00 0.00 0.86 0.00 0.15 0.833 0.971 0.05 0.21 1.42 0.00 0.00 0.778 1.000
14 0.05 0.61 0.25 0.00 0.00 0.927 1.000 0.05 0.54 0.01 0.00 0.05 0.982 0.985
15 0.75 0.21 0.00 0.00 0.46 0.820 0.781 0.69 0.22 0.44 0.00 0.00 0.827 1.000

regression and the inefficiency share decreases. For the same reason (less effect of DEA), in DMU 12, only the
balance between error terms changes. Comparing the two models, on the other hand, shows that DMU 14 went
through a decrease in its efficiency score. That leads to the conclusion that it is truly inefficient. If a DMU is
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Table 4. Descriptive statistics of Latin America and Caribbean (LAC) countries.

Labor force
(total)

Capital
($billion)

Energy
Consumption
(TJ)

EPI

2012

Mean 12 703 765.52 52.61 403.74 55.06
Std. Dev. 22 638 542.54 115.15 810.25 5.76
Min 140 788 0.21 2.59 41.15
Max 97 597 798 488.35 3246.74 69.03

2014

Mean 13 023 934.1 53.91 418.40 50.84
Std. Dev. 23 161 740.18 116.19 845.37 9.67
Min 151 507 0.28 2.85 19.01
Max 99 932 834 494.98 3444.85 69.93

2016

Mean 13 460 976.86 48.70 422.82 72.32
Std. Dev. 23 796 036 95.71 823.02 8.05
Min 164 047 0.37 3.09 43.28
Max 102 508 951 374.28 3310.70 80.03

2018

Mean 13 983 141.43 49.81 432.46 57.99
Std. Dev. 24 514 148.16 96.39 833.25 7.17
Min 173 515 0.33 3.05 33.74
Max 105 542 232 378.96 3370.65 67.85

2020

Mean 14 380 421.57 49.08 445.73 45.83
Std. Dev. 25 010 345.34 93.66 846.14 7.21
Min 183 771 0.35 3.25 27.00
Max 107 371 779 362.23 3440.01 55.30

efficient in the standard model and inefficient in the modified model, then it is truly inefficient. If it is inefficient
in the standard model, and efficient in the modified model, then the inefficiency in the standard model is as a
result of random factors such as measurement errors.

4. Environmental efficiency of sustainable development goals case study

In this section, we consider a case study with a comparative example to demonstrate the applicability and
robustness of the proposed model. Environmental efficiency of sustainable development goals (SDGs) of 21 Latin
America and Caribbean (LAC) countries are considered from 2012 to 2020. LAC is a region in transition eco-
nomically [23], and environmentally [24]. The energy and environmental issues facial LAC is crucial to its ability
to attain the SDGs. Furthermore, environmental efficiency is imperative for attainment of SDGs. Studies have
shown direct or indirect relationship between environmental efficiency and other SDGs [14, 22]. Defining envi-
ronmental efficiency is a complex task due to the undesirable output such as environmental degradation which
is a byproduct of human activities. However, environmental performance index (EPI), a composite indicator
that carefully compounds multiple environmental dimensions into an index that articulates the environmen-
tal implication was developed by Yale Center for Environmental Law & Policy and Center for International
Earth Science Information Network Earth Institute, Columbia University [12]. Literature reveals that assessing
environmental efficiency is generating growing attention among researchers. Numerous models have been used
including the conventional DEA models. A drawback of such models includes minimal discriminatory power of
the models, and identifying the units that are weak efficient. An advantage of identifying weak efficient units
is implementing precautionary actions to prevent future possible inefficient performance. Therefore, utilizing
the proposed modified SDEA that presents an opportunity to discriminate between efficient and inefficient
countries, and identify those that appear efficient but are not really efficient.
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Figure 5. Average environmental efficiency of classic and modified SDEA models.

Table 5. Comparison between numbers of efficient units.

Year 2012 2014 2016 2018 2020
SDEA Classic Modified Classic Modified Classic Modified Classic Modified Classic Modified

𝐶 = 0.1 1 1 0 0 7 7 0 0 0 0
𝐶 = 0.3 6 2 0 2 19 18 3 2 0 1
𝐶 = 0.5 7 8 5 7 21 18 15 13 4 3
𝐶 = 0.7 17 15 16 9 21 18 19 15 12 8
𝐶 = 0.85 21 21 19 20 21 21 21 20 18 18

Public available data similar to previous studies of [16] on environmental efficiency are considered. These
countries utilize three inputs Labor (𝑥1), Capital (𝑥2), and Energy consumption (𝑥3) for its general sustain-
ability. Since environmental efficiency is the primary focus, Environmental Performance Index (EPI) (𝑦1) is
considered as output. The composite nature of EPI makes it suitable indicator for environmental sustainability
output. The descriptive statistics of the inputs and outputs are presented in Table 4. The average labor force
shows a steady increase over the evaluated period. Similarly, average capital and energy consumption surge
continuously. Average environmental performance showed a stable increase from 2012 to 2016, with a dip in
performance in 2018 and 2020. An extended three input and output version of model (3.4) for the classic SDEA,
and model (3.5) for the modified SDEA are employed. 𝐶 = 0.1, 𝐶 = 0.3, 𝐶 = 0.5, 𝐶 = 0.7, and 𝐶 = 0.85 are
used in the evaluation.

Using GAMS and the data in the data in brief package attached to this paper. The environmental efficiency
of LAC countries were estimated. Figure 5 presents the average efficiency scores as a summary comparison
between the classic SDEA and the modified SDEA model. Results show 2016 to be the most efficient period. In
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Table 6. Environmental efficiency of Latin America and the Caribbean countries.

2012 (𝐶 = 0.7) 2014 (𝐶 = 0.85) 2016 (𝐶 = 0.7) 2018 (0.85)
Country Name Classic Modified Classic Modified Classic Modified Classic Modified

Argentina 1.00 0.71 1.00 1.00 1.00 1.00 1.00 1.00
Belize 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00
Bolivia 0.94 0.94 1.00 0.93 1.00 1.00 1.00 0.99
Brazil 1.00 0.78 1.00 1.00 1.00 0.09 1.00 0.63
Chile 1.00 0.83 1.00 1.00 1.00 1.00 1.00 0.94
Colombia 0.97 0.86 1.00 1.00 1.00 1.00 1.00 1.00
Costa Rica 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Cuba 0.94 0.96 1.00 0.97 1.00 1.00 1.00 1.00
Dominican Republic 0.88 0.92 1.00 0.93 1.00 1.00 1.00 1.00
Ecuador 0.95 0.98 1.00 0.99 1.00 1.00 1.00 1.00
El Salvador 0.92 0.93 1.00 1.00 1.00 1.00 1.00 1.00
Guatemala 1.00 0.91 1.00 1.00 1.00 1.00 1.00 1.00
Haiti 0.81 0.79 1.00 0.57 0.83 0.81 1.00 0.74
Honduras 1.00 0.93 1.00 1.00 1.00 1.00 1.00 0.94
Jamaica 1.00 0.96 1.00 1.00 1.00 1.00 1.00 1.00
Mexico 1.00 1.00 1.00 1.00 1.00 0.44 1.00 1.00
Nicaragua 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00
Panama 1.00 0.98 1.00 0.98 1.00 1.00 1.00 1.00
Paraguay 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.96
Peru 1.00 0.79 0.78 1.00 1.00 1.00 1.00 1.00
Uruguay 1.00 0.98 1.00 0.95 1.00 1.00 1.00 1.00

all evaluated period and different version of “𝐶”. The modified SDEA model present a lesser average efficiency
compared to the conventional SDEA model.

The discriminatory power of the proposed modified SDEA model is illustrated in Table 5, showing the number
of units identified as efficient across the evaluated periods out of the 21 countries evaluated. Number of DMUs
identified as inefficient consistently decreased for most periods in the modified SDEA model compared to the
classic model, with the exception of 𝐶 = 0.5 (2012 and 2014), and 𝐶 = 0.85 (2016). To numerically illustrate the
robustness and discriminatory power of the model, Table 6 presents the estimated efficiency for 2012 (𝐶 = 0.7),
2014 (𝐶 = 0.85), 2016 (𝐶 = 0.7), 2018 (𝐶 = 0.85), and 2020 (𝐶 = 0.7). For detail efficiency scores of all values
of 𝐶 across all periods for classic and model, see Appendix B.

5. Conclusion

Efficiency evaluation in DEA infers inefficiency to be purely technical. The conventional DEA models requires
inputs/outputs to be relatively perfect. In reality, errors in data collection or entry occur which has an effect on
efficiency evaluation and improvement strategies. An important part is SDEA in which various stochastic models
are studied according to the possibility of random deviations in observations. Among different approaches to
SDEA, Banker’s SDEA model is the foundation. Effects of the weak efficient frontier that persist in conventional
DEA still exists in SDEA. Biased efficiency scores are allocated to DMUs located at the weak frontier or DMUs
compared to the weak part of the frontier. This has significant effect on interpretation of results.

The main goal of this study is to address the weak efficient frontier considering the production function
postulates in order to imitate the underlying true frontier. Facet analysis was employed to generate constraints
for the weak efficient hyperplanes. Results of the numerical example show a new benchmark for estimating rela-
tive efficiency that not only follows general production function properties such as nonnegativity, monotonicity
(nondecreasing), and concavity but also seems to be able to show a smoother frontier, especially in the weak
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efficient area. Compared to the conventional SDEA model, if a DMU is efficient in the standard model and
inefficient in modified model, then it is truly inefficient. If it is inefficient in the standard model, and efficient
in the modified model, then the inefficiency in the standard model is as a result of random factors such as
measurement errors. Thus, results should be interpreted carefully. An empirical study on environmental effi-
ciency of SDGs for LAC countries was performed which further validates the proposed model. Environmental
efficiency is a typical example of stochastic data due to the nature of data collection. Results of the study shows
an improved discriminatory power of the modified model. The empirical application of the model is limited to
single output for the definition of environmental efficiency inspite of the robustness of EPI. Future study could
consider multiple outputs for environmental efficiency and undesirable outputs such as CO2 emissions. As a
preface to the future research direction, Banker [2] introduced alternative models and extensions to deal with
multiple outputs case which can be examined by applying the proposed method. However, the model becomes a
nonlinear programming problem when multiple outputs are considered. Thus, the linearization methods could
be helpful to address this issue. Another potential area of investigation is sensitivity and stability analysis. The
situation of perturbations of all inputs, output, and simultaneously all inputs and output could be studied on
the modified models. Moreover, finding a method for specifying the weight “𝑐” based on the importance of the
deviations, and a specific desired estimate of the frontier could be studied as well.

Data availability statement

The datasets analyzed during the current study are available in the [NAME] repository, [M.D. Ibrahim,
Environmental SDG. Mendeley Data, V1 (2021). DOI: 10.17632/969b2ybwrj.1].

Appendix A. 1 input 1 output illustrated application of Banker’s SDEA and
suggested modified model for different values of the weight “𝑐”

Observations Classic Model Modified Model

DMU 𝑋 𝑌 𝑤 𝑢+ 𝑢− 𝑣 𝑐 𝑧
Deviation
Ratio

Efficiency
Estimates

𝛽 𝑤 𝑢+ 𝑢− 𝑣 𝑧
Deviation
Ratio

Efficiency
Estimates

1 416.09 2089.51 0.70 0.00 0.00 0.00

0.00 0.00

1.000 1.000

0.70

2.57 0.00 0.00 0.00

0.00

1.000 1.000
2 349.79 1919.35 2.57 0.00 0.00 0.00 1.000 1.000 2.57 0.00 0.00 0.00 1.000 1.000
3 399.40 1974.43 2.57 0.00 0.00 72.25 0.965 0.963 2.57 0.00 0.00 72.25 0.965 0.963
4 455.73 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 0.00 0.00 1.000 1.000
5 360.80 1792.88 2.57 0.00 0.00 154.75 0.921 0.914 2.57 0.00 0.00 154.75 0.921 0.914
6 396.24 1818.82 2.57 0.00 0.00 219.75 0.892 0.879 2.57 0.00 0.00 219.75 0.892 0.879
7 272.44 1537.66 4.94 0.00 0.00 0.00 1.000 1.000 4.94 0.00 0.00 0.00 1.000 1.000
8 312.95 1598.41 4.94 0.00 0.00 139.17 0.920 0.913 4.94 0.00 0.00 139.17 0.920 0.913
9 314.23 1701.87 4.94 0.00 0.00 42.03 0.976 0.975 4.94 0.00 0.00 42.03 0.976 0.975
10 416.09 1868.95 2.57 0.00 0.00 220.56 0.894 0.882 2.57 0.00 0.00 220.56 0.894 0.882
11 290.69 1554.14 4.94 0.00 0.00 73.58 0.955 0.953 4.94 0.00 0.00 73.58 0.955 0.953
12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 8.71 0.00 0.00 0.00 1.000 1.000
13 500.00 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 0.00 30.92 0.986 0.985
14 520.00 2000.00 0.00 0.00 0.00 117.16 0.945 0.941 0.70 0.00 0.00 162.04 0.925 0.919
15 475.00 2050.00 0.00 0.00 0.00 67.16 0.968 0.967 0.70 0.00 0.00 80.63 0.962 0.961

Observations Classic Model Modified Model

DMU 𝑋 𝑌 𝑤 𝑢+ 𝑢− 𝑣 𝑐 𝑧
Deviation
Ratio

Efficiency
Estimates

𝛽 𝑤 𝑢+ 𝑢− 𝑣 𝑧
Deviation
Ratio

Efficiency
Estimates

1 416.09 2089.51 0.70 0.00 0.00 0.00

0.55 606.44

1.000 1.000

0.70

0.70 0.00 30.92 0.00

649.69

1.015 1.000
2 349.79 1919.35 3.74 0.00 77.78 0.00 1.042 1.000 3.27 0.00 77.78 0.00 1.042 1.000
3 399.40 1974.43 3.74 0.00 0.00 52.68 0.974 0.973 3.27 0.00 0.00 29.54 0.985 0.985
4 455.73 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 30.90 0.00 1.015 1.000
5 360.80 1792.88 3.74 0.00 0.00 89.89 0.952 0.950 3.27 0.00 0.00 84.75 0.955 0.953
6 396.24 1818.82 3.74 77.78 0.00 118.68 0.903 0.935 3.27 0.00 0.00 174.80 0.912 0.904
7 272.44 1537.66 3.93 0.00 0.00 0.00 1.000 1.000 3.93 0.00 0.00 0.00 1.000 1.000
8 312.95 1598.41 3.93 0.00 0.00 98.43 0.942 0.938 3.93 0.00 0.00 98.43 0.942 0.938
9 314.23 1701.87 3.93 0.00 0.00 0.00 1.000 1.000 3.93 0.00 0.00 0.00 1.000 1.000
10 416.09 1868.95 3.74 0.00 0.00 220.55 0.894 0.882 3.27 139.60 0.00 50.04 0.908 0.973
11 290.69 1554.14 3.93 0.00 0.00 55.23 0.966 0.964 3.93 0.00 0.00 55.23 0.966 0.964
12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 8.71 0.00 0.00 0.00 1.000 1.000
13 500.00 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 0.70 0.00 0.00 0.00 1.000 1.000
14 520.00 2000.00 0.00 0.00 0.00 117.16 0.945 0.941 0.70 0.00 0.00 131.12 0.938 0.934
15 475.00 2050.00 0.00 0.00 0.00 67.16 0.968 0.967 0.70 0.00 0.00 49.71 0.976 0.976
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Observations Classic Model Modified Model

DMU 𝑋 𝑌 𝑤 𝑢+ 𝑢− 𝑣 𝑐 𝑧
Deviation
Ratio

Efficiency
Estimates

𝛽 𝑤 𝑢+ 𝑢− 𝑣 𝑧
Deviation
Ratio

Efficiency
Estimates

1 416.09 2089.51 2.47 0.00 70.39 0.00

0.875 790.99

1.035 1.000

2.47

2.47 0.00 156.71 0.00

994.92

1.081 1.000
2 349.79 1919.35 2.68 0.00 77.78 0.00 1.042 1.000 2.47 0.00 150.53 0.00 1.085 1.000
3 399.40 1974.43 2.68 0.00 0.00 0.00 1.000 1.000 2.47 0.00 82.90 0.00 1.044 1.000
4 455.73 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 2.47 0.00 86.34 0.00 1.043 1.000
5 360.80 1792.88 2.68 0.00 0.00 78.19 0.958 0.956 2.47 3.19 0.00 0.00 0.998 1.000
6 396.24 1818.82 2.68 147.14 0.00 0.00 0.925 1.000 2.47 64.89 0.00 0.00 0.966 1.000
7 272.44 1537.66 3.93 0.00 0.00 0.00 1.000 1.000 3.43 0.00 0.00 0.00 1.000 1.000
8 312.95 1598.41 3.93 0.00 0.00 98.43 0.942 0.938 3.43 78.09 0.00 0.00 0.953 1.000
9 314.23 1701.87 3.93 0.00 0.00 0.00 1.000 1.000 3.43 0.00 20.98 0.00 1.012 1.000
10 416.09 1868.95 2.68 1.03 0.00 149.13 0.926 0.920 2.47 63.84 0.00 0.00 0.967 1.000
11 290.69 1554.14 3.93 0.00 0.00 55.23 0.966 0.964 3.43 46.07 0.00 0.00 0.971 1.000
12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 8.71 0.00 0.00 0.00 1.000 1.000
13 500.00 2117.16 0.00 0.00 0.00 0.00 1.000 1.000 2.47 23.14 0.00 0.00 0.989 1.000
14 520.00 2000.00 0.00 0.00 0.00 117.16 0.945 0.941 2.47 189.76 0.00 0.00 0.913 1.000
15 475.00 2050.00 0.00 0.00 0.00 67.16 0.968 0.967 2.47 28.48 0.00 0.00 0.986 1.000

Observations Classic Model Modified Model

DMU 𝑋 𝑌 𝑤 𝑢+ 𝑢− 𝑣 𝑐 𝑧
Deviation
Ratio

Efficiency
Estimates

𝛽 𝑤 𝑢+ 𝑢− 𝑣 𝑧
Deviation
Ratio

Efficiency
Estimates

1 416.09 2089.51 3.00 0.00 120.84 0.00

1.00 848.42

1.061 1.000

3.00

3.00 0.00 148.23 0.00

1152.85

1.076 1.000
2 349.79 1919.35 3.00 0.00 149.62 0.00 1.085 1.000 3.00 0.00 176.99 0.00 1.102 1.000
3 399.40 1974.43 3.00 0.00 55.83 0.00 1.029 1.000 3.00 0.00 83.22 0.00 1.044 1.000
4 455.73 2117.16 0.00 0.00 29.56 0.00 1.014 1.000 3.00 0.00 56.70 0.00 1.028 1.000
5 360.80 1792.88 3.00 9.91 0.00 0.00 0.995 1.000 3.00 0.00 17.47 0.00 1.010 1.000
6 396.24 1818.82 3.00 90.30 0.00 0.00 0.953 1.000 3.00 62.90 0.00 0.00 0.967 1.000
7 272.44 1537.66 3.00 0.00 0.00 0.00 1.000 1.000 3.00 0.00 27.35 0.00 1.018 1.000
8 312.95 1598.41 3.00 60.80 0.00 0.00 0.963 1.000 3.00 33.44 0.00 0.00 0.980 1.000
9 314.23 1701.87 3.00 0.00 38.82 0.00 1.023 1.000 3.00 0.00 66.18 0.00 1.040 1.000
10 416.09 1868.95 3.00 99.72 0.00 0.00 0.949 1.000 3.00 72.32 0.00 0.00 0.963 1.000
11 290.69 1554.14 3.00 38.28 0.00 0.00 0.976 1.000 3.00 10.92 0.00 0.00 0.993 1.000
12 260.76 1436.05 8.71 0.00 0.00 0.00 1.000 1.000 6.36 0.00 0.00 0.00 1.000 1.000
13 500.00 2117.16 0.00 0.00 29.56 0.00 1.014 1.000 3.00 75.84 0.00 0.00 0.965 1.000
14 520.00 2000.00 0.00 87.60 0.00 0.00 0.958 1.000 3.00 253.00 0.00 0.00 0.888 1.000
15 475.00 2050.00 0.00 37.60 0.00 0.00 0.982 1.000 3.00 68.00 0.00 0.00 0.968 1.000

Appendix B. Detail environmental efficiency of Latin America and the
Caribbean countries

B.1. 𝐶 = 0.1

2012 2014 2016 2018 2020

Country Name Classic Modified Classic Modified Classic Modified Classic Modified Classic Modified

Argentina 0.721 0.709 0.634 0.622 1 1 0.755 0.743 0.667 0.655

Belize 1 1 0.883 0.935 1 1 0.882 0.882 0.65 0.65

Bolivia 0.735 0.734 0.677 0.676 0.931 0.931 0.736 0.736 0.587 0.587

Brazil 0.775 0.667 0.676 0.564 1 0.901 0.773 0.671 0.654 0.553

Chile 0.713 0.707 0.896 0.889 0.992 1 0.739 0.733 0.712 0.705

Colombia 0.8 0.787 0.655 0.641 0.969 0.955 0.835 0.82 0.681 0.665

Costa Rica 0.895 0.896 0.762 0.763 1 1 0.874 0.875 0.682 0.683

Cuba 0.744 0.743 0.724 0.724 1 1 0.818 0.818 0.63 0.63

Dominican

Republic 0.709 0.708 0.706 0.705 0.99 0.988 0.857 0.855 0.623 0.62

Ecuador 0.781 0.779 0.756 0.754 0.857 0.854 0.742 0.739 0.661 0.659

El Salvador 0.712 0.712 0.609 0.609 0.91 0.909 0.731 0.731 0.453 0.453

Guatemala 0.687 0.686 0.636 0.636 0.905 0.905 0.685 0.684 0.499 0.498

Haiti 0.588 0.587 0.31 0.309 0.611 0.61 0.489 0.488 0.403 0.402

Honduras 0.712 0.712 0.666 0.666 0.924 0.923 0.693 0.693 0.651 0.651

Jamaica 0.743 0.744 0.791 0.791 1 1 0.793 0.793 0.719 0.719

Mexico 0.628 0.573 0.702 0.646 0.934 0.876 0.76 0.701 0.504 0.445

Nicaragua 0.806 0.805 0.693 0.692 0.863 0.862 0.752 0.751 0.659 0.659

Panama 0.759 0.759 0.741 0.741 1 1 0.809 0.809 0.575 0.574

Paraguay 0.699 0.697 0.53 0.529 0.994 0.916 0.708 0.706 0.613 0.611

Peru 0.652 0.645 0.586 0.579 0.935 0.927 0.797 0.789 0.561 0.553

Uruguay 0.752 0.752 0.707 0.707 0.962 0.962 0.847 0.847 0.653 0.654
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B.2. 𝐶 = 0.3

2012 2014 2016 2018 2020

Country Name Classic Modified Classic Modified Classic Modified Classic Modified Classic Modified

Argentina 0.786 0.79 0.7 0.703 1 1 0.821 0.825 0.733 1

Belize 1 1 0.963 1 1 1 1 1 0.801 0.801

Bolivia 1 0.831 0.756 0.755 1 1 0.809 0.807 0.66 0.658

Brazil 0.841 0.802 0.742 0.702 1 1 0.839 0.807 0.72 0.689

Chile 0.776 0.779 0.958 0.961 1 1 0.802 0.806 0.775 0.778

Colombia 0.861 0.864 0.716 0.718 1 1 0.895 0.898 0.741 0.744

Costa Rica 1 0.99 0.856 1 1 1 0.959 0.958 0.767 0.766

Cuba 0.815 0.813 0.796 0.793 1 1 0.889 0.885 0.701 0.697

Dominican

Republic 0.793 0.791 0.772 0.77 1 1 0.902 0.9 0.672 0.67

Ecuador 0.85 0.848 0.824 0.822 0.925 1 0.81 0.808 0.73 0.728

El Salvador 0.835 0.835 0.732 0.732 1 1 0.842 0.842 0.561 0.562

Guatemala 0.773 1 0.719 0.718 1 0.98 0.762 0.76 0.575 0.572

Haiti 0.765 0.764 0.483 0.483 0.779 0.779 0.651 0.65 0.558 0.558

Honduras 1 0.821 0.77 0.771 1 1 0.784 0.784 0.958 0.74

Jamaica 1 0.882 0.925 0.925 1 1 1 0.923 0.847 0.847

Mexico 0.694 0.679 0.768 0.753 1 0.983 0.826 0.809 0.57 0.553

Nicaragua 1 0.957 0.837 0.837 1 1 0.887 0.887 0.809 0.857

Panama 0.837 0.836 0.814 0.812 1 1 1 1 0.644 0.641

Paraguay 0.79 0.79 0.615 0.614 1 1 0.787 0.786 0.693 0.691

Peru 0.717 0.717 0.651 0.651 1 1 0.862 0.862 0.627 0.627

Uruguay 0.843 0.841 0.787 0.786 1 1 0.939 0.938 0.75 0.749

B.3. 𝐶 = 0.5

2012 2014 2016 2018 2020

Country Name Classic Modified Classic Modified Classic Modified Classic Modified Classic Modified

Argentina 0.88 0.808 0.794 0.724 1 1 0.916 1 0.827 0.758

Belize 1 1 0.984 0.974 1 1 1 1 1 0.826

Bolivia 0.925 0.928 0.854 1 1 1 1 1 0.747 1

Brazil 0.936 0.256 0.837 0.143 1 0.583 1 0.343 0.814 0.241

Chile 1 0.837 1 1 1 1 1 1 1 0.835

Colombia 0.953 1 0.809 0.717 1 1 1 0.891 0.836 0.729

Costa Rica 1 1 0.913 1 1 1 1 1 0.831 0.87

Cuba 0.907 0.929 0.886 0.909 1 1 1 1 0.779 0.812

Dominican

Republic 0.876 0.878 0.853 0.87 1 1 1 1 0.767 0.771

Ecuador 0.931 1 0.906 0.918 1 1 0.892 1 0.812 0.823

El Salvador 1 0.915 0.813 0.881 1 1 0.926 0.929 1 0.651

Guatemala 0.849 0.868 0.794 1 1 1 0.838 0.863 0.648 0.677

Haiti 1 0.794 0.538 0.515 1 0.814 0.707 0.69 0.615 0.602

Honduras 1 0.907 0.856 0.86 1 1 1 1 0.83 0.84

Jamaica 0.955 1 1 0.998 1 1 1 1 1 0.925

Mexico 0.788 0.452 1 0.524 1 0.737 1 0.56 0.664 0.301

Nicaragua 1 1 0.897 1 1 1 1 1 0.887 1

Panama 0.91 1 1 1 1 1 1 1 0.724 0.752

Paraguay 0.87 1 1 1 1 1 1 0.892 0.768 0.797

Peru 0.803 0.774 0.738 0.707 1 1 0.948 0.916 0.713 0.681

Uruguay 0.911 0.939 0.859 0.891 1 1 1 1 0.813 1
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B.4. 𝐶 = 0.7

2012 2014 2016 2018 2020

Country Name Classic Modified Classic Modified Classic Modified Classic Modified Classic Modified

Argentina 1 0.629 0.858 0.545 1 0.921 1 0.65 1 0.576

Belize 1 1 1 1 1 1 1 1 1 1

Bolivia 1 1 0.93 0.943 1 1 1 1 0.838 0.856

Brazil 1 1 1 0.729 1 0.637 1 0.91 1 0.99

Chile 1 0.794 1 0.979 1 1 0.957 0.811 1 0.78

Colombia 1 0.771 1 0.584 1 1 1 1 0.9 0.566

Costa Rica 1 1 1 1 1 1 1 1 0.981 1

Cuba 1 1 1 1 1 1 1 1 0.866 1

Dominican

Republic 1 0.961 1 1 1 1 1 1 1 1

Ecuador 0.996 1 0.971 1 1 1 0.957 1 0.876 1

El Salvador 1 1 0.864 0.885 1 1 1 1 1 0.731

Guatemala 0.932 0.956 1 1 1 1 1 1 1 0.765

Haiti 1 1 1 0.572 1 1 1 1 1 0.667

Honduras 1 1 1 1 1 1 1 1 0.901 1

Jamaica 1 1 1 1 1 1 1 1 1 1

Mexico 0.853 0.725 0.927 0.797 1 0.98 1 0.797 0.729 0.532

Nicaragua 1 1 1 0.968 1 1 1 1 1 1

Panama 0.987 1 1 1 1 1 1 1 1 0.826

Paraguay 1 1 1 0.794 1 1 1 0.962 0.861 0.863

Peru 1 1 1 0.689 1 1 1 0.979 1 0.652

Uruguay 1 1 1 0.989 1 1 1 1 0.894 0.939

B.5. 𝐶 = 0.85

2012 2014 2016 2018 2020
Country Name Classic Modified Classic Modified Classic Modified Classic Modified Classic Modified

Argentina 1 1 1 1 1 1 1 1 1 0.911
Belize 1 1 1 1 1 1 1 1 1 1
Bolivia 1 1 1 1 1 1 1 1 1 1
Brazil 1 1 1 1 1 1 1 1 1 1
Chile 1 1 1 1 1 1 1 1 1 1
Colombia 1 1 1 1 1 1 1 1 1 1
Costa Rica 1 1 1 1 1 1 1 1 0.933 0.933
Cuba 1 1 0.988 1 1 1 1 1 1 1
Dominican
Republic 1 1 1 1 1 1 1 1 1 1
Ecuador 1 1 1 1 1 1 1 1 1 1
El Salvador 1 1 1 1 1 1 1 0.998 1 1
Guatemala 1 1 1 1 1 1 1 1 1 1
Haiti 1 1 1 1 1 1 1 1 1 1
Honduras 1 1 1 1 1 1 1 1 1 0.915
Jamaica 1 1 1 1 1 1 1 1 0.989 1
Mexico 1 1 1 1 1 1 1 1 0.792 1
Nicaragua 1 1 1 1 1 1 1 1 1 1
Panama 1 1 1 1 1 1 1 1 1 1
Paraguay 1 1 1 1 1 1 1 1 1 1
Peru 1 1 1 0.896 1 1 1 1 1 1
Uruguay 1 1 0.95 1 1 1 1 1 1 1
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