On the numerical approximation of some inverse problems governed by nonlinear delay differential equation
RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1553-1569

The paper deals with the approximate solving of an inverse problem for the nonlinear delay differential equation, which consists of finding the initial moment and delay parameter based on some observed data. The inverse problem is considered as a nonlinear optimal control problem for which the necessary conditions of optimality are formulated and proved. The obtained optimal control problem is solved by a method based on an improved parallel evolutionary algorithm. The efficiency of the proposed approach is demonstrated through various numerical experiments.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2022080
Classification : 34K05 (34A12), 34A55, 65Y05, 68W50
Keywords: Inverse problem, Delay differential equation, necessary optimality conditions, numerical approximation, parallel evolutionary algorithms
@article{RO_2022__56_3_1553_0,
     author = {Nachaoui, Mourad and Nachaoui, Abdeljalil and Tadumadze, Tamaz},
     editor = {Mahjoub, A. Ridha and Laghrib, A. and Metrane, A.},
     title = {On the numerical approximation of some inverse problems governed by nonlinear delay differential equation},
     journal = {RAIRO. Operations Research},
     pages = {1553--1569},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/ro/2022080},
     mrnumber = {4445954},
     zbl = {1495.49022},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022080/}
}
TY  - JOUR
AU  - Nachaoui, Mourad
AU  - Nachaoui, Abdeljalil
AU  - Tadumadze, Tamaz
ED  - Mahjoub, A. Ridha
ED  - Laghrib, A.
ED  - Metrane, A.
TI  - On the numerical approximation of some inverse problems governed by nonlinear delay differential equation
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 1553
EP  - 1569
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022080/
DO  - 10.1051/ro/2022080
LA  - en
ID  - RO_2022__56_3_1553_0
ER  - 
%0 Journal Article
%A Nachaoui, Mourad
%A Nachaoui, Abdeljalil
%A Tadumadze, Tamaz
%E Mahjoub, A. Ridha
%E Laghrib, A.
%E Metrane, A.
%T On the numerical approximation of some inverse problems governed by nonlinear delay differential equation
%J RAIRO. Operations Research
%D 2022
%P 1553-1569
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022080/
%R 10.1051/ro/2022080
%G en
%F RO_2022__56_3_1553_0
Nachaoui, Mourad; Nachaoui, Abdeljalil; Tadumadze, Tamaz. On the numerical approximation of some inverse problems governed by nonlinear delay differential equation. RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1553-1569. doi: 10.1051/ro/2022080

[1] L. Afraites, A. Hadri, A. Laghrib and M. Nachaoui, A weighted parameter identification pde-constrained optimization for inverse image denoising problem. The Visual Computer (2021) 1–16. DOI: . | DOI

[2] L. Afraites, C. Masnaoui and M. Nachaoui, Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete Contin. Dyn. Syst. Ser. S 15 (2022) 1–21. | MR | Zbl | DOI

[3] K. A. Berdawood, A. Nachaoui, M. Nachaoui and F. Aboud, An effective relaxed alternating procedure for cauchy problem connected with helmholtz equation. Numer. Methods Part. Differ. Equ. (2021). DOI: . | DOI | MR | Zbl

[4] G. Bocharov and A. Romanyukha, Mathematical modeling of the immune response during acute viral infections. In: Theoretical and Experimental Insights into Immunology. Springer (1992) 309–321. | DOI

[5] G. Bocharov and A. Romanyukha, Numerical treatment of the parameter identification problem for delay-differential systems arising in immune response modelling. Appl. Numer. Math. 15 (1994) 307–326. | MR | Zbl | DOI

[6] A. Chakib, A. Nachaoui and M. Nachaoui, Finite element approximation of an optimal design problem. J. Appl. Comput. Math. 11 (2012) 19–26. | MR | Zbl

[7] A. Chakib, A. Ellabib, A. Nachaoui and M. Nachaoui, A shape optimization formulation of weld pool determination. Appl. Math. Lett. 25 (2012) 374–379. | MR | Zbl | DOI

[8] A. Chakib, A. Nachaoui and M. Nachaoui, Approximation and numerical realization of an optimal design welding problem. Numer. Methods Part. Differ. Equ. 29 (2013) 1563–1586. | MR | Zbl | DOI

[9] P. Dvalishvili, A. Nachaoui and T. Tadumadze, Effects of the initial moment and several delays perturbations in the variation formulas for a solution of a functional differential equation with the continuous initial condition. Georgian Math. J. 27 (2020) 53–66. | MR | Zbl | DOI

[10] J. Eastman, J. Sass, J. M. Gomes, R. W. Dos Santos and E. M. Cherry, Using delay differential equations to induce alternans in a model of cardiac electrophysiology, J. Theor. Biol. 404 (2016) 262–272. | MR | DOI

[11] J. E. Forde Delay differential equation models in mathematical biology. Ph.D thesis, University of Michigan, ProQuest LLC, Ann Arbor, MI (2005). | MR

[12] R. V. Gamkrelidze and G. L. Karatishvili, Extremal problems in linear topological spaces. Math. Syst. Theory 1 (1967) 229–256. | MR | Zbl | DOI

[13] J. Hadamard, Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover Publications, New York (1953). | MR | Zbl

[14] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. MIT Press (1992). | MR | Zbl | DOI

[15] M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of wolbachia driven aedes mosquito suppression by delay differential equations. J. Theor. Biol. 440 (2018) 1–11. | MR | Zbl | DOI

[16] J. Kepner, Parallel programming with MatlabMPI. Preprint (2001). | arXiv

[17] G. L. Kharatishvili and T. A. Tadumadze, Formulas for the Variation of a Solution and Optimal Control Problems for Differential Equations with Retarded Arguments. J. Math. Sci. (NY) 140 (2007) 1–175. | Zbl | DOI

[18] S. Lenhart, V. Protopopescu and J. Yong, Solving inverse problems of identification type by optimal control methods. I: AIP Conference Proceedings. Vol. 411.American Institute of Physics (1997) 87–94. | MR

[19] M. Nachaoui, Étude théorique et approximation numérique d’un problème inverse de transfert de la chaleur. Ph.D. thesis, Université de Nantes (2011).

[20] M. Nachaoui, Parameter learning for combined first and second order total variation for image reconstruction. Adv. Math. Models App. 5 (2020) 53–69.

[21] A. Nachaoui, J. Abouchabaka and N. Rafalia, Parallel solvers for the depletion region identification in metal semiconductor field effect transistors. Numer. Algorithms 40 (2005) 187–199. | MR | Zbl | DOI

[22] M. Nachaoui, A. Chakib and A. Nachaoui, An efficient evolutionary algorithm for a shape optimization problem. Appl. Comput. Math. 19 (2020) 220–244. | MR | Zbl

[23] M. Nachaoui, L. Afraites and A. Laghrib, A regularization by denoising super-resolution method based on genetic algorithms. Signal Process. Image Commun. 99 (2021) 116505. | DOI

[24] A. Nachaoui, M. Nachaoui and B. Gasimov, Parallel numerical computation of an analytical method for solving an inverse problem. Adv. Math. Models App. 6 (2021) 162–173.

[25] J. T. Ottesen, Modelling of the baroreflex-feedback mechanism with time-delay. J. Math. Biol. 36 (1997) 41–63. | MR | Zbl | DOI

[26] A. A. Samarskii and P. N. Vabishchevich, Numerical Methods for Solving Inverse Problems of Mathematical Physics. Vol. 52 of Inverse and Ill-posed Problems Series. Walter de Gruyter GmbH & Co. KG, Berlin (2007). | MR | Zbl | DOI

[27] L. F. Shampine and S. Thompson, Solving DDEs in matlab. Appl. Numer. Math. 37 (2001) 441–458. | MR | Zbl | DOI

[28] T. Tadumadze and A. Nachaoui, Variation formulas of solution for a controlled functional-differential equation considering delay perturbation. TWMS J. Appl. Eng. Math. 1 (2011) 58–68. | MR | Zbl

[29] T. Tadumadze, A. Nachaoui and F. Aboud, On one inverse problem for the linear controlled neutral differential equation. In: Qualitative Theory of Differential Equations QUALITDE–2018 (2018) 183–184.

[30] L. Tavernini, Continuous-Time Modeling and Simulation. Vol. 2, CRC Press (1996). | Zbl

Cité par Sources :