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ON THE NUMERICAL APPROXIMATION OF SOME INVERSE PROBLEMS
GOVERNED BY NONLINEAR DELAY DIFFERENTIAL EQUATION

Mourad Nachaoui1,* , Abdeljalil Nachaoui2 and Tamaz Tadumadze3

Abstract. The paper deals with the approximate solving of an inverse problem for the nonlinear
delay differential equation, which consists of finding the initial moment and delay parameter based
on some observed data. The inverse problem is considered as a nonlinear optimal control problem for
which the necessary conditions of optimality are formulated and proved. The obtained optimal control
problem is solved by a method based on an improved parallel evolutionary algorithm. The efficiency of
the proposed approach is demonstrated through various numerical experiments.
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1. Introduction

The recent development of applied mathematics is characterized by increasing attempts to use mathematical
modeling tools in different engineering, biological and medicinal fields. This mathematical modeling, which
generally based on ordinary and partial differential equations, attempt to better our understanding of more and
more complicated phenomena. However, it is becoming clear that the simplest models cannot capture the rich
variety of dynamics observed in natural phenomena. One of the more significant approaches is the inclusion of lag
terms in differential equations. The delays or lags can represent gestation times, incubation periods, transport
delays, or can simply lump complicated biological processes together, accounting only for the time required
for these processes to occur [11]. Such models have the advantage of combining a simple, intuitive derivation
with a wide variety of possible behavior regimes for a single system. Thereby, involving the delay in ordinary
equations equations have been a topic of much interest in the mathematical research literature for more than
50 years. Contributions range from classical applications and theoretical and computational methodologies [9]
to modern applications in biology [10, 15]. A particular interest has been established mathematical models
describing the immune response during infectious diseases which are formulated as systems of nonlinear delay-
differential equations (DDEs) characterized by multiple constant delays, moderate size, and stiffness [4,5]. This
paper deals with a topic that has become increasingly relevant in current research: inverse problems [1–3,20,24].
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In particular these involving nonlinear delay systems [29]. It appears in many applications where parameter
estimation is ubiquitous. Inverse problems arise when our objective is to recover information about a system
from observations of the system. The system is usually closed which refers to the property that the information
we wish to recover cannot be directly observed.

In this work, we consider an inverse problem governed by a nonlinear delay differential system. It consists in
finding the initial time and the delay that appear in the considered system of nonlinear DDE. We propose an
optimal control approach to solve this inverse problem.

The inverse problems are highly ill-posed in Hadamard’s sense [13]. There is no standard way to solve these
kinds of problems. Therefore, the ill-posedness of inverse problems means that it needs to be somewhat modified
to be solved. In this context, the optimal control formulation presents an excellent alternative to handle many
inverse problems for differential equations. Indeed, the optimal controls bring a powerful theoretical framework
and allow deriving optimality conditions as well as convergence rates. This explains the extended studies of
inverse problems using this formulation [7, 18,19,26].

In this work, we study the existence of the optimal solution and we derive the necessary optimal conditions.
In the numerical case, we develop a method based on the evolutionary algorithm (EA) and parallel technique
running on a multiprocessor machine with distributed memory [22]. Indeed, as it’s well known that EA is readily
lending itself to parallel processing because each individual in the population is independent of the others and
therefore can be processed concurrently. Thus, through many concrete problems, we present some numerical
experiments illustrated by the performance study in terms of the approximation quality and time-consuming.

We highlight that the proposed theoretical and numerical parts are complementary. Indeed, to face the ill-
posedness of the considered inverse problem, in the theoretical part we have shown the existence of an optimal
solution and derived the necessary optimal conditions. Obviously, the optimality conditions are given only the
existence of a local solution. By complementary, in the numerical part, we propose a numerical approach based
on (EA) which is a robust algorithm that converges to a global solution [6, 22]. Consequently, the proposed
approach in its entirety is an efficient tool to solve the considered ill-posed problem.

The rest of the paper is organized as follows. The Section 2 is devoted to the statement of the inverse problem.
In Section 3, we derive the necessary optimality conditions. The proof of the main theorem is presented in
Section 4. The numerical approach, the developed parallel algorithm, the numerical experiments with discussions,
and the analysis of the performance of the parallel algorithm are presented in Section 5. The conclusion and
remarks are presented in Section 6.

2. Statement of the inverse problem

Let R𝑛 be the 𝑛-dimensional vector space of points 𝑥 = (𝑥1, . . . , 𝑥𝑛)𝑇 with |𝑥|2 =
∑︀𝑛

𝑖=1(𝑥𝑖)2, where 𝑇 is
the sign of transposition. Let 𝑡𝑓 > 𝑠2 > 𝑠1 and 𝜃2 > 𝜃𝑓 > 0 be given numbers with 𝑠2 + 𝜃2 < 𝑡𝑓 . Let the
function 𝑓(𝑡, 𝑥, 𝑦) = (𝑓1(𝑡, 𝑥, 𝑦), . . . , 𝑓𝑛(𝑡, 𝑥, 𝑦))𝑇 , (𝑡, 𝑥, 𝑦) ∈ [𝑠1, 𝑡𝑓 ] × R𝑛 × R𝑛 be continuous and continuously
differentiable with respect to (𝑥, 𝑦); there exists a number 𝑀 > 0 such that for all (𝑡, 𝑥, 𝑦) ∈ [𝑠1, 𝑡𝑓 ]× R𝑛 × R𝑛

we have

|𝑓(𝑡, 𝑥, 𝑦)|+
⃒⃒⃒⃒
𝜕𝑓

𝜕𝑥
(𝑡, 𝑥, 𝑦)

⃒⃒⃒⃒
+

⃒⃒⃒⃒
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥, 𝑦)

⃒⃒⃒⃒
≤𝑀.

Next, 𝜙(𝑡) ∈ R𝑛, 𝑡 ∈ [𝜏 , 𝑠2], where 𝜏 = 𝑠1 − 𝜃2, is a given continuously differentiable function.
To each element 𝑤 = (𝑡0, 𝜏) ∈𝑊 = [𝑠1, 𝑠2]× [𝜃𝑓 , 𝜃2] we assign the delay differential equation

𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡− 𝜏)), 𝑡 ∈ [𝑡0, 𝑡𝑓 ], (2.1)

with the initial condition
𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [𝜏 , 𝑡0]. (2.2)
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Definition 2.1. Let 𝑤 = (𝑡0, 𝜏) ∈𝑊, a function 𝑥(𝑡) = 𝑥(𝑡;𝑤) ∈ R𝑛, 𝑡 ∈ [𝜏 , 𝑡𝑓 ] is called a solution of differential
equation (2.1) with the initial condition (2.2) or a solution corresponding to the element 𝑤 if 𝑥(𝑡) satisfies the
initial condition (2.2) is continuously differentiable on the interval [𝑡0, 𝑡𝑓 ] and satisfies equation (2.1) everywhere.

By the step method and Gronwall inequality can be proved that for every element 𝑤 ∈ 𝑊 there exists a
unique solution 𝑥(𝑡;𝑤) of (2.1) and (2.2) defined on the interval [𝜏 , 𝑡𝑓 ] and it is continuous with respect to 𝑤.

Let us introduce the set
𝑍 =

{︁
𝑧 ∈ R𝑛 : ∃𝑤 ∈𝑊, 𝑥(𝑡𝑓 ;𝑤) = 𝑧

}︁
.

2.1. Inverse problem

Let 𝑧 ∈ 𝑍 be a given vector. Find element 𝑤 ∈𝑊 such that the following condition holds 𝑥(𝑡𝑓 ;𝑤) = 𝑧.
The vector 𝑧, as rule, by distinct error is beforehand given. Thus, instead of the vector 𝑧 we have 𝑧 (so called

an observed vector) which is an approximation to the 𝑧 and, in general, 𝑧 /∈ 𝑍. Therefore it is natural to change
posed inverse problem by the following approximate problem.

2.2. The approximate inverse problem

Find an element 𝑤 ∈𝑊 such that the deviation

𝐽(𝑤) =
1
2
|𝑥(𝑡𝑓 ;𝑤)− 𝑧|2,

takes the minimal value. Where 𝑥(𝑡), 𝑡 ∈ [𝑡0, 𝑡𝑓 ] is a solution of (2.1) and (2.2).
It is clear that the approximate inverse problem is equivalent to the following optimal control problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
𝑤∈𝑊

𝐽(𝑤) :=
1
2
|𝑥(𝑡𝑓 ;𝑤)− 𝑧|2

where 𝑥(𝑡) is solution of
𝑥̇(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑥(𝑡− 𝜏)), 𝑡 ∈ [𝑡0, 𝑡𝑓 ],
𝑥(𝑡) = 𝜙(𝑡), 𝑡 ∈ [𝜏 , 𝑡0].

(2.3)

The problem (2.3) is called optimal control problem corresponding to the approximate inverse problem. The
element 𝑤0 = (𝑡00, 𝜏0) ∈𝑊 is called optimal if

𝐽(𝑤0) = min
𝑤∈𝑊

𝐽(𝑤).

For the equivalence, if 𝑤* ∈ 𝑊 is a solution of the approximate inverse problem, then there exists 𝑥(𝑡), 𝑡 ∈
[𝑡0, 𝑡𝑓 ] solution of (2.1) and (2.2) such that 𝐽(𝑤*) ≤ 𝐽(𝑤) ∀ 𝑤 ∈𝑊. This means that 𝑤 is a solution of (2.3).

Conversely, if 𝑤̂ is a solution of the optimal control problem (2.3), then we have

𝐽(𝑤̂) ≤ 𝐽(𝑤) ∀ 𝑤 ∈𝑊,
≤ 𝐽(𝑤*)

which means that 𝑤̂ is a solution of the approximate inverse problem.
From continuity of the function 𝐽(𝑤), 𝑤 ∈𝑊 it follows the existence of an optimal element 𝑤0.

3. Necessary optimality conditions

In this section we give some results allow to give the necessary optimality conditions of the control prob-
lem (2.3).

Theorem 3.1. Let 𝑤0 = (𝑡00, 𝜏0) ∈ (𝑠1, 𝑠2) × (𝜃𝑓 , 𝜃2) be an optimal element. Then the following conditions
hold:
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(1) the condition for the optimal initial moment 𝑡00

𝜓(𝑡00)[𝜙̇(𝑡00)− 𝑓(𝑡00, 𝜙(𝑡00), 𝜙(𝑡00 − 𝜏0))] = 0;

(2) the condition for the optimal delay parameter 𝜏0∫︁ 𝑡𝑓

𝑡00

𝜓(𝑡)𝑓𝑦(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))𝑥̇0(𝑡− 𝜏0) d𝑡 = 0,

where 𝑥0(𝑡) = 𝑥(𝑡;𝑤0); Here 𝜓(𝑡) is a solution of the system

𝜓̇(𝑡) = −𝜓(𝑡)
𝜕𝑓

𝜕𝑥
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))

− 𝜓(𝑡+ 𝜏0)𝑓𝑦(𝑡+ 𝜏0, 𝑥0(𝑡+ 𝜏0), 𝑥0(𝑡)), 𝑡 ∈ [𝑡00, 𝑡𝑓 ] (3.1)

with the initial condition
𝜓(𝑡𝑓 ) = −(𝑥0(𝑡𝑓 )− 𝑧)𝑇 , 𝜓(𝑡) = 0, 𝑡 > 𝑡𝑓 . (3.2)

Remark 3.2. It is clear that the condition (2) is equivalent to the following relation∫︁ 𝑡00+𝜏0

𝑡00

𝜓(𝑡)𝑓𝑦(𝑡, 𝑥0(𝑡), 𝜙(𝑡− 𝜏0))𝜙̇(𝑡− 𝜏0) d𝑡

+
∫︁ 𝑡1

𝑡00+𝜏0

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))𝑓(𝑡− 𝜏0, 𝑥0(𝑡− 𝜏0), 𝑥0(𝑡− 2𝜏0)) d𝑡 = 0.

Theorem 3.3. Let 𝑤0 = (𝑠1, 𝜃𝑓 ) ∈𝑊 be an optimal element. Then the following conditions hold:

(3) the condition for the optimal initial moment 𝑠1

𝜓(𝑠1)[𝜙̇(𝑠1)− 𝑓(𝑠1, 𝜙(𝑠1), 𝜙(𝑠1 − 𝜃𝑓 ))] ≤ 0,

(4) the condition for the delay parameter 𝜏0∫︁ 𝑡𝑓

𝑠1

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜃𝑓 ))𝑥̇0(𝑡− 𝜏0) d𝑡 ≥ 0.

Here 𝜓(𝑡) satisfies the equation (3.1) and the condition (3.2), where 𝑡00 = 𝑠1 and 𝜏0 = 𝜃𝑓 .

Theorem 3.4. Let 𝑤0 = (𝑠2, 𝜃2) ∈𝑊 be an optimal element. Then the following conditions hold:

(5) the condition for the optimal initial moment 𝑠2

𝜓(𝑠2)[𝜙̇(𝑠2)− 𝑓(𝑠2, 𝜙(𝑠2), 𝜙(𝑠2 − 𝜃2))] ≥ 0,

(6) the condition for the optimal delay parameter 𝜏0∫︁ 𝑡𝑓

𝑠2

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜃2))𝑥̇0(𝑡− 𝜏0) d𝑡 ≤ 0.

Here 𝜓(𝑡) satisfies the equation (3.1) and the condition (3.2), where 𝑡00 = 𝑠2 and 𝜏0 = 𝜃2.
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Remark 3.5. The conditions (4) and (5) are equivalent to the following relations∫︁ 𝑠1+𝜃𝑓

𝑠1

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝜙(𝑡− 𝜃𝑓 ))𝜙̇(𝑡− 𝜃𝑓 ) d𝑡

+
∫︁ 𝑡1

𝑠1+𝜃𝑓

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜃𝑓 ))𝑓(𝑡− 𝜃𝑓 , 𝑥0(𝑡− 𝜃𝑓 ), 𝑥0(𝑡− 2𝜃𝑓 )) d𝑡 ≥ 0.

and ∫︁ 𝑠2+𝜃2

𝑠2

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝜙(𝑡− 𝜃2))𝜙̇(𝑡− 𝜃2) d𝑡

+
∫︁ 𝑡1

𝑠2+𝜃2

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜃2))𝑓(𝑡− 𝜃2, 𝑥0(𝑡− 𝜃2), 𝑥0(𝑡− 2𝜃2)) d𝑡 ≤ 0

respectively.

Theorem 3.6. Let 𝑤0 = (𝑠1, 𝜃2) ∈𝑊 be an optimal element. Then the conditions (3) and (6) hold.

Theorem 3.7. Let 𝑤0 = (𝑠2, 𝜃𝑓 ) ∈𝑊 be an optimal element. Then the conditions (5) and (4) hold.

4. Proof of main theorems

In this section we give the proof of the theorems presented in the preview section. We will give the proof of
the Theorems 3.1 and 3.3, for other theorems they are proved by the analogous scheme.

On the convex set 𝐷 = R+ ×𝑊, where R+ = [0,∞), let us define the mapping

𝑃 : 𝐷 → R (4.1)

by the formula

𝑃 (𝑣) =
1
2
|𝑥(𝑡𝑓 ;𝑤)− 𝑧|2 + 𝜉, 𝑣 = (𝜉, 𝑤) ∈ 𝐷.

It is clear that
𝑃 (𝑣0) ≤ 𝑃 (𝑣),∀𝑣 ∈ 𝐷,

where 𝑣0 = (0, 𝑤0).
Thus the point 𝑣0 = (0, 𝑤0) ∈ 𝐷 is a critical point (see [12, 17]), since 𝑃 (𝑣0) ∈ 𝜕𝑃 (𝐷). Where 𝜕𝑃 (𝐷) is the

boundary of the 𝑃 (𝐷). Moreover, the mapping (4.1) is continuous.
There exists a small 𝜀0 > 0 such that for an arbitrary 𝜀 ∈ (0, 𝜀0) and 𝛿𝑣 = (𝛿𝜉, 𝛿𝑤) ∈ 𝑉𝑣0 ⊂ 𝐷 − 𝑣0, where

𝛿𝑤 = (𝛿𝑡0, 𝛿𝜏), 𝑉𝑣0 = [0, 𝛼)× (𝑡00 − 𝛼, 𝑡00 + 𝛼)× (𝜏0 − 𝛼, 𝜏0 + 𝛼) we get 𝑣0 + 𝜀𝛿𝑣 ∈ 𝐷.
Now we calculate a differential of the mapping (4.1) at the point 𝑣0. We have,

𝑃 (𝑣0 + 𝜀𝛿𝑣)− 𝑃 (𝑣0) =
1
2
|𝑥(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑧|2 + 𝜀𝛿𝜉 − 1

2
|𝑥(𝑡𝑓 ;𝑤0)− 𝑧|2

=
1
2

∫︁ 1

0

d
d𝑠
|𝑥(𝑡𝑓 ;𝑤0) + 𝑠(𝑥(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑥(𝑡𝑓 ;𝑤0))− 𝑧|2 d𝑠+ 𝜀𝛿𝜉

=
1
2

𝑛∑︁
𝑖=1

∫︁ 1

0

d
d𝑠

[︀
𝑥𝑖(𝑡𝑓 ;𝑤0) + 𝑠(𝑥𝑖(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑥𝑖(𝑡𝑓 ;𝑤0))− 𝑧𝑖

]︀2
d𝑠+ 𝜀𝛿𝜉

=
𝑛∑︁

𝑖=1

∫︁ 1

0

[︀
𝑥𝑖(𝑡𝑓 ;𝑤0) + 𝑠(𝑥𝑖(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑥𝑖(𝑡𝑓 ;𝑤0))− 𝑧𝑖

]︀[︀
𝑥𝑖(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)
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− 𝑥𝑖(𝑡𝑓 ;𝑤0)
]︀

d𝑠 =
𝑛∑︁

𝑖=1

[︀
𝑥𝑖(𝑡𝑓 ;𝑤0)− 𝑧𝑖

]︀[︀
𝑥𝑖(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑥𝑖(𝑡𝑓 ;𝑤0)

]︀
+

1
2
[︀
𝑥𝑖(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑥𝑖(𝑡𝑓 ;𝑤0)

]︀2
= (𝑥(𝑡𝑓 ;𝑤0)− 𝑧)𝑇 ∆𝑥(𝑡𝑓 ; 𝜀𝛿𝑤)

+
1
2
|∆𝑥(𝑡𝑓 ; 𝜀𝛿𝑤)|2 + 𝜀𝛿𝜉, (4.2)

where
∆𝑥(𝑡𝑓 ; 𝜀𝛿𝑤) = 𝑥(𝑡𝑓 ;𝑤0 + 𝜀𝛿𝑤)− 𝑥(𝑡𝑓 ;𝑤0).

Taking into account the relation
∆𝑥(𝑡𝑓 ; 𝜀𝛿𝑤) = 𝜀𝛿𝑥(𝑡𝑓 ; 𝛿𝑤) + 𝑜(𝜀𝛿𝑤)

and the variation formula

𝛿𝑥(𝑡𝑓 ; 𝛿𝑤) = 𝑌 (𝑡00; 𝑡𝑓 )[𝜙̇(𝑡00)− 𝑓(𝑡00, 𝜙(𝑡00), 𝜙(𝑡00 − 𝜏0))]𝛿𝑡0

−
{︂∫︁ 𝑡𝑓

𝑡00

𝑌 (𝑡; 𝑡𝑓 )
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))𝑥̇0(𝑡− 𝜏0) d𝑠

}︂
𝛿𝜏

(see [28]), from (4.2) by elementary transformation we obtain

𝑃 (𝑣0 + 𝜀𝛿𝑣)− 𝑃 (𝑣0) = 𝜀

[︂
(𝑥(𝑡𝑓 ;𝑤0)− 𝑧)𝑇𝑌 (𝑡00; 𝑡𝑓 )[𝜙̇(𝑡00)− 𝑓(𝑡00, 𝜙(𝑡00), 𝜙(𝑡00 − 𝜏0))]𝛿𝑡0

−
{︂∫︁ 𝑡𝑓

𝑡00

(𝑥(𝑡1;𝑤0)− 𝑧)𝑇𝑌 (𝑡; 𝑡𝑓 )
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))𝑥̇0(𝑡− 𝜏0) d𝑡

}︂
𝛿𝜏 + 𝛿𝜉

]︂
+ 𝑜(𝜀𝛿𝑤)

= 𝜀𝑑𝑃𝑣0(𝛿𝑣) + 𝑜(𝜀𝛿𝑤). (4.3)

Here, 𝑑𝑃𝑣0(𝛿𝑣) denotes the differential of mapping (4.1); 𝑌 (𝑠; 𝑡𝑓 ) is the 𝑛 × 𝑛-matrix function satisfying the
linear differential equation with advanced argument

d
d𝑠
𝑌 (𝑡; 𝑡𝑓 ) = −𝑌 (𝑡; 𝑡𝑓 )

𝜕𝑓

𝜕𝑥
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))− 𝑌 (𝑡+ 𝜏0; 𝑡𝑓 )

𝜕𝑓

𝜕𝑦
(𝑡+ 𝜏0, 𝑥0(𝑡+ 𝜏0), 𝑥0(𝑡)), 𝑡 ∈ [𝑡00, 𝑡𝑓 ]

and the conditions

𝑌 (𝑡; 𝑡𝑓 ) =

{︃
𝐼 for 𝑡 = 𝑡𝑓
Θ for 𝑡 > 𝑡𝑓 ,

𝐼 is the identity matrix and Θ is the zero matrix;

lim
𝜀→0

𝑜(𝜀𝛿𝑤)
𝜀

= 0 uniformly for 𝛿𝑣 ∈ 𝑉𝑣0 .

From the necessary condition of criticality (see [12,17]) it follows that: there exists a number 𝜋 ̸= 0 such that

𝜋𝑑𝑃𝑣0(𝛿𝑣) ≤ 0,∀𝛿𝑣 ∈ cone(𝑉𝑣0 − 𝑣0). (4.4)

Introduce the function
𝜓(𝑡) = 𝜋(𝑥(𝑡𝑓 ;𝑤0)− 𝑧)𝑇𝑌 (𝑡; 𝑡𝑓 ) (4.5)

as is easily seen, it satisfies the equation (3.1) and the condition

𝜓(𝑡𝑓 ) = 𝜋(𝑥(𝑡𝑓 ;𝑤0)− 𝑧)𝑇
. (4.6)
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Taking into account (4.3), (4.5) and (4.6) from inequality (4.4) we obtain

𝜓(𝑡00)[𝜙̇(𝑡00)− 𝑓(𝑡00, 𝜙(𝑡00), 𝜙(𝑡00 − 𝜏0))]𝛿𝑡0 −
{︂∫︁ 𝑡𝑓

𝑡00

𝜓(𝑡)
𝜕𝑓

𝜕𝑦
(𝑡, 𝑥0(𝑡), 𝑥0(𝑡− 𝜏0))𝑥̇0(𝑡− 𝜏0) d𝑡

}︂
𝛿𝜏 + 𝜋𝛿𝜉 ≤ 0,

𝛿𝑣 ∈ cone(𝑉𝑣0 − 𝑣0). (4.7)

The condition 𝛿𝑣 ∈ cone(𝑉𝑣0 − 𝑣0) is equivalent to conditions:

𝛿𝜉 ∈ R+, 𝛿𝑡0 ∈ R, 𝛿𝜏 ∈ R.

Let 𝛿𝑡0 = 𝛿𝜏 = 0 in (4.7), then we obtain
𝜋𝛿𝜉 ≤ 0,∀𝛿𝜉 ∈ R+.

This implies 𝜋 < 0, therefore we can take 𝜋 = −1, i.e., 𝜓 satisfies the condition (3.2).
Let 𝛿𝜏 = 𝛿𝜉 = 0 then, taking into account that 𝛿𝑡0 ∈ R from (4.7) we obtain the condition (1).
Let 𝛿𝑡0 = 𝛿𝜉 = 0 then, taking into account that 𝛿𝜏 ∈ R from (4.7) we obtain the condition (2).
Finally, we note that in order to prove the Theorem 3.3 it suffices to replace the set 𝑉𝑣0 by the set

[0, 𝛼)× [𝑠1, 𝑠1 + 𝛼)× [𝜃1, 𝜃0 + 𝛼)

see the proof of the Theorem 3.1.

5. Numerical approach

In this section we shall present the numerical approach to solve the problem (2.3). First of all, we replace the
constrained problem by its appropriate discrete optimal control problem. We subdivide the interval [𝑡0, 𝑡𝑓 ] into
𝑁 sub-intervals with knots 𝑡0 < 𝑡1 < . . . < 𝑡𝑓 and 𝑡𝑘 = 𝑘∆𝑡𝑘, where ∆𝑡𝑘 is the mesh size of 𝑘th sub-interval.
Where 𝑘 ∈ {0, 1, . . . , 𝑁}.

The discrete problem associates to the continuous problem (2.3) is given by{︃
min 𝐽(𝑊,𝑥𝑁 )
𝑥𝑘+1 = Ψ(∆𝑡𝑘, 𝑓(𝑡𝑘, 𝑥𝑘, 𝑥𝑘(𝑡𝑘 − 𝜏)),

(5.1)

where Ψ is a method of approximation of the delay differential equations (2.1) and (2.2). In this paper, the
state problem will be solved by the solver dde23 using the popular approach based on the Runge–Kutta triple
BS(2,3) [27].

5.1. Numerical algorithm

Evolutionary Algorithms are based on a model of natural, biological evolution, which was primarily developed
by Holland [14]. It is essentially a searching method based on the Darwinian principles of biological evolution
that explains the adaptive change of species by the principle of natural selection, which favors those species for
survival and further evolution that are best adapted to their environmental conditions. It has been successfully
applied to various optimization problems [6–8,19].

In the evolutionary framework, a new generation of individuals is produced using the simulated genetic
operations selection, crossover, and mutation. The evolution is based only on fitness. The fitness of an individual
is measured only indirectly by its growth rate in comparison to others. Selection is the ability of those individuals
that have outlasted the struggle for existence to bring their genetic information to the next generation. The
crossover is the mechanism of reproduction based on the combination of the selected individuals. While the
mutation is characterized by modifying one or more genes of an individual with some probability. The object
of the mutation operator is to restore the lost or unexplored genetic material into the population to stop the
premature convergence of the evolutionary algorithm to sub-optimal solutions.
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The evolutionary algorithms differ from other methods of search and optimization in several practices. (1)
Evolutionary algorithms, search from a population of possible solutions instead of a single one. (2) The fitness
or cost function used to solve the redundancy has no necessity for continuity of the derivatives, so practically
any fitness function can be chosen for optimizing. (3) Evolutionary algorithms use random operators across
the process, including reproduction, crossover, and mutation. (4) Evolutionary algorithms are blind since no
specified information about the intended problem is required to get the final solution.

The disadvantage of EA is the high cost of function evaluations, notably for large structures and larger
population sizes, where many design iterations are necessary to reach the global optimum.

To circumvent this drawback, an improved evolutionary algorithm is considered to increase the performance
of the optimal control problem based on parallel computing. Indeed, as it’s well known, the EA readily lends
itself to parallel processing because each individual in the population is independent of the others and therefore
can be processed concurrently.

Furthermore, many parallel evolutionary algorithm implementations for solving optimization problems have
demonstrated their success [21–24] as seen in the literature. For the implementation, we use a parallel simulation
executed on a multiprocessor machine with distributed memory. There are various manners to exploit the
parallelism of the EA algorithm. We opt for the implementation based on the master-slave approach. The
interprocessor communication was realized via standard MPI (Message Passing Interface) [16]. In this procedure,
each processor can directly access its memory and must explicitly communicate with other processors to access
the data in their memories [16]. MPI’s objective is to give a standard for writing message-passing programs. The
ed algorithm is summarized in the Algorithm 1. Denotes by 𝑚 the size of the unknown parameter vector 𝑊 .

Algorithm 1. Parallel EA.
1. Initialize MPI environment and configuration parameters.
2. Calculate 𝑛𝑝, the number of individuals to be evaluated by each processor.
3. Choose the bounds 𝑥𝑖 ∈ R𝑚 and 𝑥𝑓 ∈ R𝑚.
4. 𝑡← 0

The master processor performs the following task: generate randomly an initial population 𝑃 (𝑡), where all individual
𝑊𝑖(𝑡) are between 𝑥𝑖 and 𝑥𝑓 .

5. 𝑡← 𝑡 + 1
Each processor performs the following task:
for each element 𝑊𝑖(𝑡) of the population 𝑃 (𝑡) with 𝑖 = 1, . . . , 𝑛𝑝 do:

(a) Given 𝑊𝑖(𝑡), Solve the state equation.
(b) Compute 𝐽(𝑊𝑖(𝑡), 𝑥𝑖(𝑡))

The calculated data are exchanged by the MPI protocol.
6. If |𝐽(𝑊best(𝑡), 𝑥best(𝑡))| < 𝜖, then go to 8.
7. Run the genetic operation by the master processor:

(a) Selection
(b) Crossover
(c) Mutation

8. Collect all computed results and stop the MPI environment.

5.2. Numerical experiments

In order to establish the efficiency of the proposed approach. We consider some concrete problems governed by
nonlinear DDE in the form (2.1). A good test problem must have an analytical solution. Finding attractive and
nontrivial DDEs whose solution is known is sometimes a hard task. Each of the following examples emphasizes
one or more of the peculiar aspects of DDEs that make their numerical solution challenging. In all sequel
examples, we run the Algorithm 1 using the parameters listed in Table 1. All tests are executed under the same
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Table 1. The (EA) parameters.

Population size 𝑁 16
Selection type Roulette-wheel
Crossover type Barycentric with random coefficients
Crossover probability 𝑃𝑐 0.6
Type of mutation Non uniform
Mutation probability 𝑃𝑚 0.5%

machine footnote Calculator SGI, cluster-type calculation, consists of 888 Xeon cores clocked at 2.66 GHz with
2 GB of memory per core (http://www.ccipl.univ-nantes.fr), using the same solver.

Example 1

We consider the following with constant and multiple delays. For 𝑡0 ≤ 𝑡 ≤ 1⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑥̇1(𝑡) = 𝑥5(𝑡− 𝜏1) + 𝑥3(𝑡− 𝜏1)
𝑥̇2(𝑡) = 𝑥1(𝑡− 𝜏1) + 𝑥2(𝑡− 𝜏2)
𝑥̇3(𝑡) = 𝑥3(𝑡− 𝜏1) + 𝑥1(𝑡− 𝜏2)
𝑥̇4(𝑡) = 𝑥5(𝑡− 𝜏1)𝑥4(𝑡− 𝜏1)
𝑥̇5(𝑡) = 𝑥1(𝑡− 𝜏1),

(5.2)

with history
𝑥1(𝑡) = exp(𝑡+ 1), 𝑥2(𝑡) = exp(𝑡+ 0.5), 𝑥3(𝑡) = sin(𝑡+ 1),

𝑥4(𝑡) = 𝑥1(𝑡), 𝑥5(𝑡) = 𝑥1(𝑡) for 𝑡 ≤ 𝑡0.

In this case, we shall find 𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡) for 0 ≤ 𝑡 ≤ 1 and the control parameter 𝑊 =
(𝑡0, 𝜏1, 𝜏2).

The desired parameter is
𝑊 = (𝑡0, 𝜏1, 𝜏2) = (0, 1, 0.5)

and the exact solution is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥̇1(𝑡) = exp(𝑡)− cos(𝑡) + 𝑒 0 ≤ 𝑡 ≤ 1

𝑥̇2(𝑡) =

⎧⎪⎨⎪⎩
2 exp(𝑡) + exp(0.5)− 2 0 ≤ 𝑡 ≤ 0.5
exp(𝑡) + 2(𝑡− 5) + 𝑡 exp(0.5)− 2𝑡
+1.5 exp(0.5)− 3 0.5 ≤ 𝑡 ≤ 1

𝑥̇3(𝑡) =

⎧⎪⎨⎪⎩
exp(𝑡+ 0.5)− cos(𝑡) + 1− exp(0.5) + sin(1), 0 ≤ 𝑡 ≤ 0.5
− cos(𝑡) + exp(𝑡− 0.5)− sin(𝑡− 0.5) + (𝑡+ 0.5)𝑒
− exp(0.5) + sin(1), 0.5 ≤ 𝑡 ≤ 1

𝑥̇4(𝑡) = 0.5 exp(2𝑡)− 0.5 + 𝑒, 0 ≤ 𝑡 ≤ 1
𝑥̇5(𝑡) = exp(𝑡) + 𝑒− 1, 0 ≤ 𝑡 ≤ 1.

(5.3)

In Figure 1, we present the comparison of the obtained solution using the Algorithm 1.
The evolution of the cost function is presented in the Figure 2.
In the Table 2 we present the comparison between the obtained values of the parameter 𝑊 = (𝑡0, 𝜏1, 𝜏2), and

the exact one.
As we can see from these results the obtained approximation is in good agreement with the exact solution.

http://www.ccipl.univ-nantes.fr
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Figure 1. Comparison of the approximate and exact solution of the problem (5.2).

Figure 2. Evolution of the cost function.

Table 2. Comparison between the exact and the approximate parameter 𝑊 = (𝑡0, 𝜏1, 𝜏2).

𝑡0 𝜏1 𝜏2

Exact 0 1 0.5
Approximate 0.0008 0.99999 0.49999

Example 2

In this example, we consider the model of the four-year life cycle of a population of lemmings [30]. The
problem is defined as follows {︃

𝑥̇(𝑡) = 𝑟𝑥(𝑡)
(︁

1− 𝑥(𝑡−𝜏)
𝑚

)︁
, 𝑡0 ≤ 𝑡 ≤ 40

𝑥(𝑡) = 19, 𝑡 ≤ 𝑡0.
(5.4)

The parameters 𝑟 = 3.5 and 𝑚 = 19. Note that with these values, the problem has a constant (steady-state)
solution, 𝑥(𝑡) = 19. The original model is proposed with the solution as history and perturbs the initial value
to 𝑥(0) = 19.00001 so that 𝑥(𝑡) will move away from the steady state. Here we use 𝑥(0) = 19.001 so as to find
out the cyclic behavior sooner. The exact control parameters in this case are 𝑊 = (𝜏, 𝑡0) = (0.74, 0).

In the Figure 3, we present the obtained solution compared to the exact one.
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Figure 3. The comparison between the approximate and the exact solution of the problem (5.4).

Figure 4. The evolution of the cost function.

Table 3. Comparison between the exact and the approximate parameter 𝑊 = (𝑡0, 𝜏).

𝑡0 𝜏

Exact 0 0.74
Approximate 0.00007 0.741345

In the Figure 4, we present the evolution of the cost function related to the iteration.
In the Table 3 we present the comparison between the obtained values and the exact parameters.
We can see from the Figures 3 and 4 and the Table 3, that the obtained results show the robustness of the

proposed method despite the difficulty of the problem which presents a very high sensitivity to perturbation.

Example 3

In this example, we consider the predator-prey models derived by introducing a resource limitation on the
prey and assuming the birth rate of predators respond to adjustment in the magnitude of the population 𝑥1 of
prey and the population 𝑥2 of predators just after a time delay 𝜏 .⎧⎪⎨⎪⎩

𝑥̇1(𝑡) = 𝑎𝑥1(𝑡)
(︁

1− 𝑥1(𝑡)
𝑚

)︁
+ 𝑏𝑥1(𝑡)𝑥2(𝑡), 𝑡0 ≤ 𝑡 ≤ 100

𝑥̇2(𝑡) = 𝑐𝑥2(𝑡) + 𝑑𝑥1(𝑡− 𝜏)𝑥2(𝑡− 𝜏), 𝑡0 ≤ 𝑡 ≤ 100
𝑥1(𝑡) = 80, 𝑥2(𝑡) = 30, 𝑡 ≤ 𝑡0.

(5.5)
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Figure 5. The population 𝑥2 of predators related to population 𝑥1 of prey: comparison between
the exact and the approximate solution.

Figure 6. Evolution of the cost function related to the iterations.

Table 4. The exact and the approximate parameter 𝑊 = (𝑡0, 𝜏).

𝑡0 𝜏

Exact 0 1
Approximate 0.0135 0.9994

Suppose that the parameters 𝑎 = 0.25, 𝑏 = −0.01, 𝑐 = −1.00, 𝑑 = 0.01, and 𝑚 = 200. In the Figure 5 we present
the behavior of the population of predators 𝑥2(𝑡) according to the population of prey 𝑥1(𝑡) for 𝑡0 ≤ 𝑡 ≤ 100. In
the Figure 6, we present the evolution of the cost function related to the iterations. The Table 4 presents the
obtained values of parameters and the exact parameters.

This model is more complicate to the previews. This explains the little lack of precision in the obtained
results. However, the results still in good agreement with the exact solution.

Example 4

In this last example, we consider a cardiovascular model due to Ottesen [25] concerning the arterial pressure,
𝑃𝑎(𝑡) = 𝑥1(𝑡), the venous pressure, 𝑃𝑣(𝑡) = 𝑥2(𝑡), and the heart rate, 𝐻(𝑡) = 𝑥3(𝑡). Ottesen study conditions
under which the delay causes qualitative differences in the solution and in particular, oscillations in 𝑃𝑎(𝑡). The
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Table 5. Parameters of the cardiovascular model.

Parameter 𝑅 𝑟 𝑉𝑠𝑡𝑟 𝑐𝑎 𝑐𝑣 𝛼𝑠 𝛽𝑠 𝛼𝑝 𝛽𝑝

Value 1.05 0.068 67.9 1.55 519 93 7 93 7

Parameter 𝛼𝐻 𝛾𝐻 𝛽𝐻 𝑃0

Value 0.84 0 1.17 93

Table 6. The exact and the approximate parameter 𝑊 = (𝑡0, 𝜏).

𝑡0 𝜏

Exact 0 1
Approximate −2.4384e-006 1.00000006

model is presented as follows

𝑥1(𝑡) =
1
𝑐𝑎

(︂
1
𝑅

(−𝑥1(𝑡) + 𝑥2(𝑡)) + 𝑉𝑠𝑡𝑟𝑥3(𝑡)
)︂
, 𝑡0 ≤ 𝑡 ≤ 350

𝑥2(𝑡) =
1
𝑐𝑣

(︂
1
𝑅
𝑥1(𝑡)−

(︂
1
𝑅

+
1
𝑟

)︂
𝑥2(𝑡)

)︂
, 𝑡0 ≤ 𝑡 ≤ 350

𝑥3(𝑡) = 𝑓(𝑇𝑠, 𝑇𝑝), 𝑡0 ≤ 𝑡 ≤ 350, (5.6)

where

𝑇𝑠 =
1

1 +
(︁

𝑥1(𝑡−𝜏)
𝛼𝑠

)︁𝛽𝑠

𝑇𝑝 =
1

1 +
(︁

𝛼𝑝

𝑥1(𝑡)

)︁𝛽𝑝

𝑓(𝑇𝑠, 𝑇𝑝) =
𝛼𝐻𝑇𝑠

1 + 𝛾𝐻𝑇𝑝
− 𝛽𝐻𝑇𝑝.

For the history is given by

𝑥1(𝑡) = 𝑃0, 𝑡 ≤ 𝑡0

𝑥2(𝑡) =
1

1 + 𝑅
𝑟

𝑃0, 𝑡 ≤ 𝑡0

𝑥3(𝑡) =
1

𝑅𝑉𝑠𝑡𝑟

(︀
1 + 𝑟

𝑅

)︀ , 𝑡 ≤ 𝑡0.

The used parameters are given in the Table 5.
For the sake of visibility, we will limit ourselves to the presentation of the behavior of the arterial pressure

𝑃𝑎(𝑡) in the Figure 7. The other obtained results has a similar quality.
The evolution of the cost function for this example is presented in the Figure 8.
The approximation of the free parameter 𝜏 and 𝑡0 is presented in the Table 6.
We have shown the efficiency of the proposed approach through different problems with different kinds of

difficulties. According to the presented figures and tables, the obtained results confirm the robustness of the
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Figure 7. The behavior of the arterial pressure 𝑃𝑎(𝑡).

Figure 8. The evolution of the cost function.

developed approach in terms of precision quality. In the following section, we will study the performance of the
proposed algorithm in terms of time execution.

5.3. Performance of the parallel Algorithm 1 in term of execution time

In order to examine the performance of the parallel algorithm, we start by analyzing the time complexity of
the sequential evolutionary algorithm. The sequential Complexity is given by

Complexity of sequential EA Complexity parallel EA

𝑂(𝑁 * 𝑛𝑔 *𝑂(𝐽fitness)) 𝑂
(︁
𝑁 * 𝑛𝑔 * 𝑂(𝐽fitness)

𝑛𝑝

)︁
+ 𝐶𝐶

where 𝑛𝑔 denotes the number of iterations, 𝑛𝑝 denotes the number of used processors and 𝐶𝐶 is the commu-
nication cost. Comparison of consuming time-related to the number of processors 𝑛𝑝 is not enough to analyze
the performance of the parallel algorithm. Indeed, the communication cost may offset any gains in computation
time. Therefore, to ensure that the parallel implementation has a better performance than a simple one we must
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Figure 9. Time consuming with different used number of processors 𝑛𝑝.

Figure 10. Parallel speedup and the efficiency related to the used number of processors.

take into consideration the parallel speedup 𝑆 and the efficiency defined as follows

𝑆 =
𝑇𝑠

𝑇𝑝
, 𝐸 =

𝑆

𝑛𝑝
(5.7)

where 𝑇𝑠 denotes the times of sequential algorithm and 𝑇𝑝 is the one of the parallel algorithm.
In the Figure 9, we present the behavior of the time consuming related to the used number of processor.
The parallel speedup 𝑆 and the efficiency 𝐸 related the used number of processors is presented in the

Figure 10.
According to the presented results in Figures 9 and 10, we can see that the parallel version reduces considerably

the execution time in comparison to the sequential version. Indeed, only passing from a single processor to two
processors reduces the computing time by half. Obviously, the ideal would be that the time observed using
𝑛𝑝 processors should be exactly the time observed using 1 processor divided by 𝑛𝑝. However, in practice, the
difference increases with the number of processors. This is due to the communication time, which increases
with the number of processors. This is confirmed by noting the passage from 8 to 16 processors which did not
save time. On the contrary, the time has intensified. This is explained by the fact that communication time
has become more important than the gain from the distribution of tasks. Thus, from Figure 10 we can see that
the parallel speedup increases until 8 processors, then stagnates. While the efficiency we can observe that it
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decreases as the number of processors increases. The critical number of slaves that maintain a predetermined
efficiency and maximize the parallel speedup is 8.

6. Conclusion

In this work, we have proposed an optimal control approach for solving an inverse problem governed by
a nonlinear delay differential equation. Based on some observed data we have determined the initial moment
and delay parameter. Thus, the necessary conditions of optimality related to the associate control problem
have been formulated and proved. To approximate the obtained optimal control problem we have discussed an
approach based on an improved parallel evolutionary algorithm. Through some numerical experiments, we have
studied the performance of the proposed algorithm. In particular, a useful analysis of the parallel algorithms
is presented. We claim that the proposed approach can easily be adapted to solve other inverse problems of
parameter identification.

Acknowledgements. The paper was developed when the first author was visiting professor at the Laboratory of
Mathematics Jean Leray UMR6629 CNRS, Nantes University, in November-December 2021. All parallel programs
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[19] M. Nachaoui, Étude théorique et approximation numérique d’un problème inverse de transfert de la chaleur. Ph.D. thesis,
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