On second-order radial-asymptotic proto-differentiability of the borwein perturbation maps
RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1373-1395

This paper deals with second-order sensitivity analysis of parameterized vector optimization problems. We prove that the Borwein efficient solution map and the Borwein efficient perturbation map of a parametric vector optimization problem are second-order radial-asymptotic proto-differentiable under some suitable qualification conditions. Some examples are also given for illustrating the obtained results.

DOI : 10.1051/ro/2022062
Classification : 90Q46, 90C26, 90C29, 90C30
Keywords: Parametric vector optimization problem, second-order radial-asymptotic derivative, Borwein efficient solution map, Borwein efficient perturbation map, sensitivity analysis
@article{RO_2022__56_3_1373_0,
     author = {Pham, Thanh-Hung and Nguyen, Thanh-Sang},
     title = {On second-order radial-asymptotic proto-differentiability of the borwein perturbation maps},
     journal = {RAIRO. Operations Research},
     pages = {1373--1395},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/ro/2022062},
     mrnumber = {4431923},
     zbl = {1492.90194},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022062/}
}
TY  - JOUR
AU  - Pham, Thanh-Hung
AU  - Nguyen, Thanh-Sang
TI  - On second-order radial-asymptotic proto-differentiability of the borwein perturbation maps
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 1373
EP  - 1395
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022062/
DO  - 10.1051/ro/2022062
LA  - en
ID  - RO_2022__56_3_1373_0
ER  - 
%0 Journal Article
%A Pham, Thanh-Hung
%A Nguyen, Thanh-Sang
%T On second-order radial-asymptotic proto-differentiability of the borwein perturbation maps
%J RAIRO. Operations Research
%D 2022
%P 1373-1395
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022062/
%R 10.1051/ro/2022062
%G en
%F RO_2022__56_3_1373_0
Pham, Thanh-Hung; Nguyen, Thanh-Sang. On second-order radial-asymptotic proto-differentiability of the borwein perturbation maps. RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1373-1395. doi: 10.1051/ro/2022062

[1] N. L. H. Anh, Sensitivity analysis in constrained set-valued optimization via Studniarski derivatives. Positivity 21 (2017) 255–272. | MR | Zbl | DOI

[2] N. L. H. Anh, Some results on sensitivity analysis in set-valued optimization. Positivity 21 (2017) 1527–1543. | MR | Zbl | DOI

[3] N. L. H. Anh, Second-order composed contingent derivatives of perturbation maps in set-valued optimization. Comput. Appl. Math. 38 (2019) 145. | MR | Zbl | DOI

[4] N. L. H. Anh and P. Q. Khanh, Variational sets of perturbation maps and applications to sensitivity analysis for constrained vector optimization. J. Optim. Theory Appl. 158 (2013) 363–384. | MR | Zbl | DOI

[5] J.-P. Aubin and H. Frankowska, Set-Valued Analysis. Birkhauser, Boston (1990). | MR | Zbl

[6] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer, New York (2000). | MR | Zbl | DOI

[7] T. D. Chuong, Clarke coderivatives of efficient point multifunctions in parametric vector optimization. Nonlinear Anal. 74 (2011) 273–285. | MR | Zbl | DOI

[8] T. D. Chuong, Derivatives of the efficient point multifunction in parametric vector optimization problems. J. Optim. Theory Appl. 156 (2013) 247–265. | MR | Zbl | DOI

[9] T. D. Chuong, Normal subdifferentials of effcient point multifunctions in parametric vector optimization. Optim. Lett. 7 (2013) 1087–1117. | MR | Zbl | DOI

[10] T. D. Chuong and J.-C. Yao, Coderivatives of efficient point multifunctions in parametric vector optimization. Taiwan. J. Math. 13 (2009) 1671–1693. | MR | Zbl | DOI

[11] T. D. Chuong and J.-C. Yao, Generalized clarke epiderivatives of parametric vector optimization problems. J. Optim. Theory Appl. 147 (2010) 77–94. | MR | Zbl | DOI

[12] T. D. Chuong and J.-C. Yao, Fréchet subdifferentials of efficient point multifunctions in parametric vector optimization. J. Global Optim. 57 (2013) 1229–1243. | MR | Zbl | DOI

[13] H. T. H. Diem, P. Q. Khanh and L. T. Tung, On higher-order sensitivity analysis in nonsmooth vector optimization. J. Optim. Theory Appl. 162 (2014) 463–488. | MR | Zbl | DOI

[14] N. Q. Huy and G. M. Lee, On sensitivity analysis in vector optimization. Taiwan. J. Math. 11 (2007) 945–958. | MR | Zbl

[15] N. Q. Huy and G. M. Lee, Sensitivity of solutions to a parametric generalized equation. Set-Valued Anal. 16 (2008) 805–820. | MR | Zbl | DOI

[16] A. Khan, C. Tammer and C. Zălinescu, Set-Valued Optimization – An Introduction with Applications. Springer, Berlin (2015). | MR | Zbl | DOI

[17] H. Kuk, T. Tanino and M. Tanaka, Sensitivity analysis in parametrized convex vector optimization. J. Math. Anal. Appl. 202 (1996) 511–522. | MR | Zbl | DOI

[18] G. M. Lee and N. Q. Huy, On proto-differentiability of generalized perturbation maps. J. Math. Anal. Appl. 324 (2006) 1297–1309. | MR | Zbl | DOI

[19] A. B. Levy and R. T. Rockafellar, Sensitivity analysis of solutions to generalized equations. Trans. Am. Math. Soc. 345 (1994) 661–671. | MR | Zbl | DOI

[20] S. J. Li and C. M. Liao, Second-order differentiability of generalized perturbation maps. J. Global Optim. 52 (2012) 243–252. | MR | Zbl | DOI

[21] S. J. Li, X. K. Sun and J. Zhai, Second-order contingent derivatives of set-valued mappings with application to set-valued optimization. Appl. Math. Comput. 218 (2012) 6874–6886. | MR | Zbl

[22] D. T. Luc, M. Soleimani-Damaneh and M. Zamani, Semi-differentiability of the marginal mapping in vector optimization. SIAM J. Optim. 28 (2018) 1255–1281. | MR | Zbl | DOI

[23] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic Theory. Springer, Berlin (2006). | MR | Zbl

[24] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. II: Applications. Springer, Berlin (2006). | MR

[25] Z. Peng and Z. Wan, Second-order composed contingent derivative of the perturbation map in multiobjective optimization. Asia Pac. J. Oper. Res. 37 (2020) 2050002. | MR | Zbl | DOI

[26] R. T. Rockafellar, Proto-differentiablility of set-valued mappings and its applications in optimization. Ann. Inst. Non Linéaire. H. Poincaré Anal. 6 (1989) 449–482. | MR | Zbl | Numdam | DOI

[27] D. S. Shi, Contingent derivative of the perturbation map in multiobjective optimization. J. Optim. Theory Appl. 70 (1991) 385–396. | MR | Zbl | DOI

[28] D. S. Shi, Sensitivity analysis in convex vector optimization. J. Optim. Theory Appl. 77 (1993) 145–159. | MR | Zbl | DOI

[29] X. K. Sun and S. J. Li, Generalized second-order contingent epiderivatives in parametric vector optimization problem. J. Glob. Optim. 58 (2014) 351–363. | MR | Zbl | DOI

[30] T. Tanino, Sensitivity analysis in multiobjective optimization. J. Optim. Theory Appl. 56 (1988) 479–499. | MR | Zbl | DOI

[31] T. Tanino, Stability and sensitivity analysis in convex vector optimization. SIAM J. Control Optim. 26 (1988) 521–536. | MR | Zbl | DOI

[32] L. T. Tung, Second-order radial-asymptotic derivatives and applications in set-valued vector optimization. Pac. J. Optim. 13 (2017) 137–153. | MR | Zbl

[33] L. T. Tung, Variational sets and asymptotic variational sets of proper perturbation map in parametric vector optimization. Positivity 21 (2017) 1647–1673. | MR | Zbl | DOI

[34] L. T. Tung, On second-order proto-differentiability of perturbation maps. Set-Valued Var. Anal. 26 (2018) 561–579. | MR | Zbl | DOI

[35] L. T. Tung, On higher-order proto-differentiability of perturbation maps. Positivity 24 (2020) 441–462. | MR | Zbl | DOI

[36] L. T. Tung, On higher-order proto-differentiability and higher-order asymptotic proto-differentiability of weak perturbation maps in parametric vector optimization. Positivity 25 (2021) 579–604. | MR | Zbl | DOI

[37] L. T. Tung, On second-order composed proto-differentiability of proper perturbation maps in parametric vector optimization problems. Asia Pac. J. Oper. Res. 38 (2021) 2050040. | MR | Zbl | DOI

[38] L. T. Tung and P. T. Hung, Sensitivity analysis in parametric vector optimization in Banach spaces via τ w -contingent derivatives. Turk. J. Math. 44 (2020) 152–168. | MR | Zbl | DOI

[39] Q. L. Wang and S. J. Li, Second-order contingent derivative of the pertubation map in multiobjective optimization. Fixed Point Theory Appl. 2011 (2011) 1–13. | MR | Zbl

[40] Q. L. Wang and S. J. Li, Sensitivity and stability for the second-order contingent derivative of the proper perturbation map in vector optimization. Optim. Lett. 6 (2012) 731–748. | MR | Zbl | DOI

[41] Q. L. Wang and X. Y. Zhang, Second-order composed radial derivatives of the Benson proper perturbation map for parametric multi-objective optimization problems. Asia Pac. J. Oper. Res. 37 (2020) 2040011. | MR | Zbl | DOI

Cité par Sources :