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ON SECOND-ORDER RADIAL-ASYMPTOTIC PROTO-DIFFERENTIABILITY
OF THE BORWEIN PERTURBATION MAPS

THANH-HUNG PHAM* AND THANH-SANG NGUYEN

Abstract. This paper deals with second-order sensitivity analysis of parameterized vector optimiza-
tion problems. We prove that the Borwein efficient solution map and the Borwein efficient pertur-
bation map of a parametric vector optimization problem are second-order radial-asymptotic proto-
differentiable under some suitable qualification conditions. Some examples are also given for illustrating
the obtained results.

Mathematics Subject Classification. 90Q46, 90C26, 90C29, 90C30.

Received April 8, 2021. Accepted May 3, 2022.

1. INTRODUCTION

In parametric vector optimization problems, sensitivity analysis is not only theoretically interesting but
also practically important. Here, sensitivity analysis is the research of derivatives of the perturbation maps.
It provides informations about derivatives of the perturbation maps of the parametric optimization problem.
Due to its importance not only for theoretical aspect, but also for practical application, sensitivity analysis has
been considered by numerous researchers. There are two main approaches in sensitivity analysis: the dual space
approach and the primal space approach. In the dual space approach, we refer to the books [23,24] and the
recent papers [7,9,10,12]. In the primal space approach, the first results for sensitivity analysis via contingent
derivative have been given by Tanino [30,31]. The TP-derivative has been introduced in [27], which has proved
to be useful in vector optimization and set-valued analysis. In [8], Chuong has established formulae for inner and
outer evaluating the TP-derivative of the efficient point multifunction in parametric vector optimization problem.
The behavior of perturbation maps in nonsmooth convex problems has been investigated in [17,28]. Recently,
the formulas for computing the generalized Clarke epiderivative of the efficient point multifunction have been
given by Chuong [11]. Very recently, Tung and Hung [38] have concerned with sensitivity analysis in parametric
vector optimization problems via 7"-contingent derivative. Some results in second-order sensitivity analysis for
vector optimization problem wvia second-order contingent derivative have been considered in [21, 32,39, 40]. In
[29], Sun and Li have investigated generalized second-order contingent epiderivatives of frontier and solution
maps in parametric vector optimization problem. Recently, higher-order sensitivity analysis in parametric vector
optimization problems and parametric set-valued optimization problems has occupied attention of researchers. In
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[4,33], some results in higher-order sensitivity analysis have been given by using the higher-order variational sets
and asymptotic variational sets. In [13], properties of higher-order contingent-type derivatives of the perturbation
and weak perturbation maps of a parameterized optimization problem have been obtained by using the higher-
order contingent-type derivatives. In [1], Anh has obtained sensitivity results of set-valued optimization problem
in terms of Studniarski derivatives. In [2], the higher-order contingent derivative of a parametrized set-valued
optimization problem has been studied. Very recently, the second-order composed contingent derivatives of
the perturbation maps/the weak perturbation maps have been given in [3,25]. In [41], Wang and Zhang have
obtained second-order sensitivity results for parametric multi-objective optimization problems under the Benson
proper efficiency in terms of second-order composed radial derivative.

Another important topic in the primal space approach is to study the proto-differentiability of perturba-
tion maps, the first result for proto-differentiability of perturbation maps has been presented by Rockafellar in
[26]. In [19], Levy and Rockafellar have investigated proto-differentiability generalized equations. In [18], Huy
and Lee have obtained sufficient conditions for the proto-differentiability of the generalized perturbation map.
The proto-differentiability of the efficient solution map/the efficient frontier map and the sufficient conditions
in order to approximate to the proto-derivative of the efficient frontier maps have been given in [14]. In [15],
Huy and Lee have been investigated proto-differentiability of generalized perturbation multifunction. Recently
[22], authors have established the semi-differentiability of the marginal mapping in the parametric multiob-
jective optimization problem. However, it is worth noting that there exist only few papers in the literature
devoting to the study of the higher-order proto-differentiability for perturbation maps. In [20], the second-order
proto-differentiability properties and the second-order semi-differentiability properties have been discussed for
generalized perturbation maps. In [34], Tung has studied the second-order proto-differentiability of the efficient
solution map and the efficient frontier map under some appropriate qualification conditions. The higher-order
proto-differentiability of the perturbation maps/the proper perturbation maps/the weak perturbation maps
were investigated in [35]. Recently, the higher-order proto-differentiability /the higher-order asymptotic proto-
differentiability of the weak efficient solution maps/the weak perturbation maps were considered in [36]. Very
recently, the second-order composed proto-differentiability of the proper perturbation maps/the proper effi-
cient solution maps were discussed in [37]. For the considerations of the second-order proto-differentiability,
we observe only references [20,34,37]. On the other hand, the higher-order proto-differentiability properties of
the Borwein efficient solution maps and the Borwein efficient frontier maps of parametric vector optimization
problems have not been yet investigated in [34-37]. Recently, the second-order radial-asymptotic derivative was
introduced and used in qualification conditions in [32] to obtain some quantitative results in analyzing the
second-order contingent derivative of the proper perturbation map. Moreover, to the best of our knowledge,
there is no paper dealing with the second-order radial-asymptotic proto-differentiability of perturbation maps
in parametric vector optimization problems. In addition, it is well known that the range of the set of Borwein
minimal points is smaller than minimal points, so the discussion of the sensitivity analysis makes a lot of sense
under the Borwein efficiency.

Inspired by the above observations, we provide some new results for the second-order radial-asymptotic proto-
differentiability of the Borwein efficient solution map and the Borwein efficient frontier map of parameterized
vector optimization problem in this paper under some suitable qualification conditions. In addition, the sufficient
conditions for approximating the second-order radial-asymptotic proto-derivative of the Borwein efficient frontier
map are also given.

The plan of paper is organized as follows. In Section 2, we recall several concepts of the derivatives of
multifunctions and their properties which are needed in the sequel. In Section 3, we establish the seond-order
radial-asymptotic proto-differentiability of the Borwein efficient solution map and the Borwein efficient frontier
map. The sufficient conditions in order to approximate to the second-order radial-asymptotic proto-derivative
of the Borwein efficient frontier map are also presented in Section 3.
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2. PRELIMINARIES

Throughout this paper, let P, X and Y be Euclidean spaces equipped with the usual norms, where the space
Y is partially ordered by nontrivial pointed closed convex cone K C Y with nonempty interior int K. The norms
of all Euclidean spaces are denoted by ||.||. The origins of all Euclidean spaces are denoted by 0. Bx, By stands
for the closed unit ball in X,Y. Closure and boundary of A C X are denoted by clA and JA. Furthermore,
coneA = {kalk > 0,a € A}. NJR, and R, are used for sets of natural numbers, real numbers, and nonnegative
real numbers, respectively.

Definition 2.1 (see [16]). Let Q be a nonempty subset of Y.

(i) An element y € € is said to be a K-minimal point of €, if (2 —y) N (—K) = {0}. The set of all K-minimal
points of € is denoted by Min g 2.

(ii) An element y € € is said to be a Borwein K-minimal point of €, if clcone(Q2 — y) N (—K) = {0}. The set
of all Borwein K-minimal points of €2 is denoted by BoMin k2.

It is easy to see that BoMing Q) C Ming {2 and the inclusion may be strict as in the following example.

Example 2.2 (see [38]). Let Y = R?, K = R% and Q = {(21,22) € R? | 23 < 21 < 1}. Then, we can check
that

MingQ = {xl,acg) ER? |y =23,0< 2 <1,-1<1y < 0},
BoMing§) = {xl,xg) ER? |z =23,0<2; <1,-1<m3 < 0}.

Hence,
BoMingQ G Ming Q.

Definition 2.3 (see [5,6]). Let f: X — Y be a vector-valued map. f is said to be twice Fréchet differential at
T € X, if there exist two linear continuous operators Vf(z) : X — Y and V2f(z): X x X — Y, such that

£(2) = f(@) + VI@) @~ )+ 5 V@) ~ 2,7~ ) + ol — 7).

oz — z[?)
x — T2
second-order Fréchet derivative, respectively. f is said twice Fréchet differentiable on X if f is twice Fréchet
differentiable at any x € X. If Vf(Z) and V2f(Z) are continuous at Z then f is said to be twice continuously

Fréchet differentiable at Z.

where o(||z — z||?) satisfies — 0 when # — z. Vf(Z) and V?f(z) are the Fréchet derivative and

Let G: P =Y be a multifunction. The effective domain, graph, and epigraph of G are defined by

domG := {p € P | G(p) # 0},
gphG :={(p,y) € Px Y |y € G(p)},
epiG := {(p,y) € Px Y | p € domG,y € G(p) + K}.

The profile map of G is G + K, defined by (G + K)(p) := G(p) + K.

Definition 2.4 (see [34]). Let G : P — Y be a vector-valued function. G is said to be monotone if for any
p1,p2 € P, one has (G(p2) — G(p1),p2 — p1) > 0. G is said to be strictly monotone if for any p1,ps € P, and
p1 # pa, one has (G(p2) — G(p1), p2 — p1) > 0.

Definition 2.5 (see [5,34]). Let G: P = Y be a set-valued map, (p,y) € gphG and (4,0) € P x Y.
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(i) The second-order contingent derivative of G at (p, %) in the direction (@, ) € P x Y is the set-valued map
D2G(p,y,u,v) : P =Y defined by

D*G(p,y,u,v)(p) := {y €Y |3, — 0", 3(pn,yn) — (p,y), Vn €N, such that

1 1
g+ t,0+ itiyn € G’<z3 +tpu+ 2tipn) }, Vp € P.

(ii) The second-order contingent adjacent derivative of G at (p, ) in the direction (@, ) € PxY is the set-valued
map D*®G(p,§,4,7) : P =Y defined by
Dz(b)G(ﬁ,gj,ﬂ,T})(p) ::{y €Y |Vt, — 0", 3(pn,yn) — (p,y), Vn €N, such that

1 1
§ o+t + Stnyn € G(p+tnu + Qtipn> } Vp € P.

(iii) The second-order contingent lower derivative of G at (p, 7) in the direction (@,7) € P x Y is the set-valued
map D*VG(p,,4,7) : P =Y defined by
D2<”G(ﬁ,g,a, ?)(p) := {y €Y |Vt, —» 0", VYp, —p, Iy, —vy, Vn €N, such that

1 1
y+tnv+2t2yn€G(p+tnu+ 2tipn>}7 VPEP-

Definition 2.6 (see [32]). Let G: P =Y be a set-valued map, (p,7) € gphG and (4,7) € P x Y.

(i) The second-order radial-asymptotic derivative of G at (p, %) in the direction (@, ) € P xY is the set-valued
map DiG(p,y,u,v) : P =Y defined by

D%G(p,y,u,v)(p) := {y €Y |3}, —0",3r, >0,3pn,yn) — (p,y), Vn €N, such that
_ _ 1 _ 1
Y+ 1,0+ §tnrnyn S G(p + t,u + 2tnrnpn>,tnrnpn — O}, Vp € P.

(ii) The second-order radial-asymptotic adjacent derivative of G at (p, %) in the direction (@, v) € P x Y is the
set-valued map Dz(b)G(ﬁ, g,u,v) : P =Y defined by

DXV G(p, 5,1, 0)(p) = {y €Y |Vtn =07, Vr, >0,3(pn,yn) = (p,y), Yn €N, such that

1 1
g + tnﬁ + Qtnrnyn € G(p+ tna + 2tnrnpn>atnrnpn - O}a vp S P.

(iii) The second-order radial-asymptotic lower derivative of G at (p,y) in the direction (@,v) € P x Y is the
set-valued map Dé(l)G(ﬁ, ¥,u,7) : P =Y defined by

D?”G(ﬁ,gj,ﬂ,@)(p) — {y €Y |V, — 0", Vr,>0, Yp,—p Iy, —y, Vn €N, such that

1 1
y+tpv+ gtn’rnyn € G(ﬁ +thu + 2tnrnpn> st TnPn — 0}7 Vp € P.

Remark 2.7 ([34]). From definitions we derive,
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(i) D*VG(p,y,u,v)(p) € D*PG(p,y,u,v)(p) € D*G(p, ¥, u,v)(p) € DEG(p, ¥, u,v)(p), Vp€ P.
(i) D*VG(p,7,%,7)(p) € DV G (p,7,5,7)(p) € D2G(p, 7,5, 7)(p), Vp€E P.

However, the reverse inclusions in Remark 2.7(ii) may not hold. The following examples illustrate the cases.

1
Example 2.8. Let P=R,) Y =R, 7T = {n 'n € N} and G : P =3 Y be defined by

{o}, ifp<o,
G(p) = {-3p}, ifpeT,
0, otherwise.

Then, for (p,y) = (0,0) € gphG, (u,v) = (1,—3) and p = 1, we have
D%G(ﬁ, ga’EL?T})(l) = {_3}

1
—1+\/1+3pk1n(1+k>

ty = - 0+7 Vpk - 17
Pk

2\/1 +3pkln(1 + ]1)

Tk = > 07 vpk - 17
Pk

Taking

and

then

2

1
—1—|—\/1—|—3pkh’1(1+k>

B Pk

1 1
—\/1+3pk1n<1+k> +1+3pkln(1+k)

Pk
1

N 1 1
p+tpu+ §tk7"kpk =1t + S TkTkDE

+

1
Hence, G(p + txu + §tkrkpk) = (). Consequently,
D" G(p,7,u,7)(1) = 0.

Hence,
DG(p,5,3,0)(1) € D2V G(p, 5, 1,0)(1).

Example 2.9. Let P=R,Y =R? and G : P = Y be defined by

G(p)— {(yl,y2)€R2?y1 §p27y2§0}7 1fp<0a
{(1,2) ER? sy <0, > p*},  ifp>0.
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Let (p,y) = (0,(0,0)) and (@, v) = (0, (0,0)). Then,

{(y1,y2) ER? 1 y1 <0,y2 <0}, ifp<O,
Dz(b)G(ﬁagaﬁal_})(p) = {(ylva) € RQ B < anQ S R}7 lfp = 07
{(y1,92) €R? 1y < 0,90 >0}, ifp>0,

and
{(yl,yg)ERzzylgo,yggO}, if p<O,
DG (3. 5,.9)(p) = {(W.m2) ER?1yn 0,12 =0}, ifp=0,
{(yl,y2)€R2:y1§O,y220}, if p>0.
Therefore,

D" G(p.y.u,9)(0) £ D5V G(p,5.2,v)(0).
Definition 2.10. Let G : P = Y be a set-valued map, (p,7) € gphG and (@,v) € P x Y.

(i) The map G is said to be second-order radial-asymptotic proto-differentiable at (p,§) in the direction (@, )
if for any p € P,
o 20) vy —
D3G(5,7,7%,9)(p) = DF" G(, 7,5, 9)(p),
and its second-order radial-asymptotic proto-derivative is denoted by G;E; )m;
(ii) The map G is said to be second-order radial-asymptotic semi-differentiable at (p,¥) in the direction (u,v)
if for any p € P,

DEG(p,9,u.9)(p) = D3V G(p. 5, 2.0)(p).
and its second-order radial-asymptotic semi-derivative is denoted by éf;(ﬂ)aﬁ
Definition 2.11 (see [27]). Let G: P = Y be a set-valued map and (p,7) € gphG.
(i) The TP-derivative of G at (P, ) is the set-valued map DsG(p, ) : P = Y defined by
DsG(p,9)(p) :={y €Y | 3, > 0,3I(Pn,yn) — (p,y), ¥n €N, such that
G+ tnyn € G(D+ tadn), tnpn — 0}, Vp € P.

(ii) The adjacent TP-derivative of G at (p, %) is the set-valued map D%G(p, ) : P = Y defined by

DgG(ﬁ, 9)(p):={y €Y |Vt, > 0,I(pn,yn) — (p,y), ¥n €N, such that
Y+ tayn € G(ﬁ-i' tnpn)vtnpn - O}, Vp € P.

(iii) The map G is said to be TP-proto-differentiable at (p,y) if for any p € P,
DsG(p,9)(p) = DG (P, 5)(p)-

Remark 2.12. (i) G is TP-proto-differentiable at (p,y) if G is second-order radial-asymptotic proto-
differentiable (p,y) in the direction (0, 0).
(ii) If G is second-order radial-asymptotic semi-differentiable at (p, %) in the direction (@, @), then G is second-
order radial-asymptotic proto-differentiable at (p, §) in the direction (@, 7).

Definition 2.13 (see [5]). Set-valued map G : P = Y is said to be local Lipschitz at (p,§) € gphG, if there
exist a real constant M > 0 and a neighborhood U of p such that

G(p1) € G(p2) + M||py — p2||By, Vp1,p2 € U.
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Proposition 2.14. Let G : P = Y be the set-valued map, (p,y) € gphG and (4,v) € P x Y. Suppose that
G s local Lipschitz at (p,y) € gphG. If G is second-order radial-asymptotic proto-differentiable at (p,q) in the
direction (u,v), then G is second-order radial-asymptotic semi-differentiable at (p,q) in the direction (u,v).

Proof. Obviously, D?g(l)G(f), y,u,0)(p) C DZG(p,y, u,v)(p), for any p € P. Therefore, we only need to prove,
o Doy — —
D3G(p,5,u,9)(p) € DFG(p, 5,7, 7)(p),

for any p € P. In fact, for any y € D2G(p,y,u,v)(p), there exist t, — 0%, 7, > 0, (pn,yn) — (p,y), such that
_ 1 _ _ 1
y+thv + §tnrnyn ceG(p+tyu+ itnrnpn and t,r,pp, — 0, Vn €N, (2.1)

Let {p],} C P be any sequence such that p!, — p. Since G is local Lipschitz at (p, ), there exist a M > 0 and a
neighborhood U of p such that

G(p1) € G(p2) + M||py — p2||By, Vp1,p2 €U. (2.2)

1 1
Hence, there exists a ng > 0 such that p+ t,u + §tnrnpn,]5+ t,u ~+ Qtnrnp;l € U, for any n > ng. From (2.1)

and (2.2), we have, for any n > ng, there exists a sequence {b,,} with b, € By such that ¢,r,p!, — 0 and
_ _ 1 / _ _ 1 ’
Y+ tav+ §tnrn<yn - MHpn - pn”bn) eG|lp+tyu+ §tnrnpn .

Let v/, := y, — M||p}, — pnl|bn. From p!, — p and p,, — p, we have y/, — y. Thus, for any ¢, — 0%, r, > 0 and
p,, — D, there exists y,, — y such that ¢,r,p,, — 0 and

— — 1 / _ = 1 /
y+t,v+ itnrnyn €eG|p+tyu+ itnrnpn .
Therefore, y € D?g(l)G(ﬁ, ¥,u,7)(p). Hence,

D2G(p, 7,u,v)(p) € DXVG(p, 5,4, v)(p).
O

Inspired by Definition 2.3 in [21], we introduce the following definition of second-order radial-asymptotic
directionally compact of a set-valued map.

Definition 2.15. Let G : P = Y be the set-valued map, (p,§) € gphG and (@,7) € P x Y. G is said
to be second-order radial-asymptotic directionally compact at (p,gy) with respect to (@,v) in the direction

1
p € P if for all sequences t, — 07,r, > 0 and p, — p, every sequences {y,} with 4 + ¢,0 + gtnrnyn €

1
G (]3 4+ttt + 2tnrnpn> and t,r,p, — 0, there exists a convergent subsequence of {y,}.

Proposition 2.16. Let G: P =Y be the set-valued map, (p,y) € gphG and (u,v) € P xY. Suppose that G is
second-order radial-asymptotic directionally compact at (p,y) with respect to (4,v) in any direction p € P. If G
is second-order radial-asymptotic proto-differentiable at (p,q) in the direction (u,v), then G+ K is second-order
radial-asymptotic proto-differentiable at (P, ) in the direction (u,v) and

G+ K2 o(0) =Goohs(p) + K, VpeP.

D,Y,u,0
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Proof. Since G(p) C (G + K)(p) and
D3"G(p,5.u,v)(p) = DG(p.9.1.0)(p), VpE P,
we only need to prove
D(G + K)(p,9,5,7)(p) € DSG(p,4,0,0)(p) + K, VpeP (2:3)

and
DV G(p, 5,5, 7)(p) + K € DE"(G + K)(p,5,5,0)(p), Vp€ P. (2.4)

Firstly, we prove that (2.3) holds. Let y € D%(G+K)(p, y, 4, v)(p). Then, there exist t,, — 07,7, > 0, (pn, yn) —
(p,y), kn € K for all n € N, such that

1 1
y+t,0+ itnrn(yn - kn) € G(ﬁ +thu + Qtnrnpn) and tnTnpn — 0.

Denote gy, := yn, — ky. Since, G is second-order radial-asymptotic directionally compact at (p, 7), with respect to

(@,v), we have §, — y' € Y. Then, one has y' € D3G(p, §, i, v)(p). Together with y,, — y, we have k,, — k € K

and y' =y — k, which implies that y — k € DZG(p, §, @, v)(p). Therefore, y € DZG(p, ¥, u,v)(p) + K, Vp € P.
Secondly, we prove that (2.4) holds. Let y € Dz(b)G(f), g,u,0)(p) + K. Then, there exist § €

D;(b)G(;E7 y,u,0)(p) and k € K such that y = § + k. Thus, there exist t, — 07,7, > 0, (Pn,yn) — (»,9)
for all n € N, such that

_ _ 1 _ 1
Y+ 1,0+ §tnrnyn eG|lp+thu+ Qtnrnpn and t,r.p, — 0.
Setting y!, := y, + k, one has y/, — § + k and

_ _ 1 , _ _ 1 1 _ 1
Y+ thv + itnrnyn =y+t, 0+ étnrnyn + §tn7"nk eG|p+thu+ itnrnpn + K

and t,7,p, — 0. Therefore, y =9+ k € Dg(b)(G + K)(p,y,u,0)(p). O

In Proposition 2.16, if G is not second-order radial-asymptotic directionally compact at (p,y) with respect to
(,7) in any direction p € P, then Proposition 2.16 may not hold. The following example illustrates the case.

Example 2.17. Let P=R?Y =R, K =R, and G : P = Y be difined by

{p%+p17_1}7 1fp1:p2207
G(p) = .
0, otherwise,

where p = (p1,p2) € R%. Let (p, ) = ((0,0),0) € gphG and (u,%) = ((1,0),1). We have, for all p = (p1,p2) € P,

D%G(p,5,u,0)(p) = D" G(p,7,4,9)(p) = {p1}.

Therefore, G is second-order radial-asymptotic proto-differentiable at (p,y) in the direction (@,v) and
29) (p) = {p1}. We have, for all p = (p1,p2) € P,

P,Y,u,0

D(G + K)(p,7,4,7)(p) = D5 (G + K)(5,7.4,7)(p) = R.
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Hence, G + K is second-order radial-asymptotic proto-differentiable at (p, %) in the direction (u,v) and (G +
K)Z—(—S)— 5(p) = R. Thus, for all p = (p1,p2) € P,

D,7,1,0
S S
(G + K)f?,('g,)ﬁ,@(p) # Gfi,(gj,)ﬁ,ﬂ(p) + K.

The reason is that the condition second-order radial-asymptotic directionally compact of G does not hold.
Indeed, for the direction p = (1, 1), for every t, — 07,7, > 0 for p, = (p1n,p2n) — p = (1,1), the sequence
{yn} C R with

1 1
Y+ t,0+ §tnrnyn =-1¢€ G(p+ t,t + 2tnrnpn> and t,r,pn, — 0,

2 2

.6 Yp = —; — —, has no convergent subsequence. Thus, the condition second-order radial-asymptotic
nTn Tn

directionally compact of G is not satisfied.

3. SECOND-ORDER RADIAL-ASYMPTOTIC PROTO-DIFFERENTIABILITY OF BORWEIN
EFFICIENT SOLUTION MAP AND BORWEIN EFFICIENT FRONTIER MAP

In this section, we consider the second-order sensitivity analysis of parameterized vector optimization prob-
lems. Firstly, some notations and definitions are recollected. Let f : P x X — Y be a vector function and
C : P = X be a multifunction. Let F': P = Y be a multifunction defined by

F(p) == f(p,C(p)) ={y €Y | Iz € Cp),y = f(p,x)}.
We consider the following parametric vector optimization problem
(PVO,) BoMing{y € Y | 3z € C(p),y = f(p,z)} = BoMing F(p),

where x is decision variable, p is perturbation parameter, f is objective map, C' is constraint map and F' is
feasible set map in objective space. The Borwein efficient perturbation map/the Borwein efficient frontier map
B: P =3Y of a family of parameterized vector optimization problem is defined by

B(p) := BoMing{y € Y | 3z € C(p),y = f(p,z)} = BoMing F'(p),
and the Borwein efficient solution map H is given by
H(p) == {x e X [z € Clp), f(p,x) € B(p)}.
Definition 3.1. F is said to be K-dominated by B near p € P if there exists a neighborhood U of p, such that
F(p)CB(p)+ K, Vpel.

Remark 3.2. Since B(p) C F(p) for all p € P, the K-dominatedness of F' by B implies that
(i) F(p) + K=B(p)+ K, VpeU;
(ii) For (p,9y) € gphB and (@,7) € P x Y,
D§(F + K)(p,7,u,0)(p) = D§(B + K)(p, 5,4, 0)(p), Vp€ P.
Proposition 3.3. Let p € P,z € H(p) and §j = f(p, %), (u,w,v) € P x X X Y. Suppose that the following
conditions hold:

(i) f is twice continuously Fréchet differentiable at (p,z) and v =V f(p, Z)(u,w);
(ii) Vi f(p,Z)(.) is strictly monotone on X ;
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(iii) C is second-order radial-asymptotic directionally compact at (p,Z) with respect to (a,
peP.

) in any direction

Then, the Borwein efficient solution map H is second-order radial-asymptotic proto-differentiable at (p,T)
in the direction (u,w) whenever the Borwein efficient perturbation map B is second-order radial-asymptotic
proto-differentiable at (p, ) in the direction (u,v). Furthermore, for all p € P,

HS) olp) = {x € X | 2 € DEC(p. 7,5, 0) (), VI (5, 5) (1, 2) € Bigho(0) }-

Proof. Let p € P. Setting L := {x € X |z € DiC(p,z,u,w)(p), VI(p,Z)(p,x) € B;;Z—m(p)} From
Remark 2.7, we only need to prove that, Vp € P,
D2H(p, &1, @)(p) C L € DXOH(p, 2, 1,9)(p). (3.1)

Let x € D¥H(p, %, 4, w)(p). Then, there exist ¢, — 07, r, >0 and (p,,z,) — (p,z) such that t,r,p, — 0 and

1 1
T+ tp,w + itnrnxn eH (13 +tpt + 2tnrnpn>, Vn € N.

~ - 1
Thus, there exists a sequence {Z,} C X such that Z,, € C(p + t,u + 2tnrnpn) and

1 ~
T+ t,w+ §tnrnxn =Ty,

which in turn implies that

_ 1 ~ _ 1
flp+thu+ §tn7”npm$n eBlp+thu+ itnrnpn .

L Fa-z—t
Setting 7], := In T ‘ nw, we have
itn’rn
~ _ 1 - B 1
Tp =T+ t,w+ itnrnxn eClp+tiu+ §tnrnpn ;
_ 1 _ _ 1 _ B 1
flp+tha+ itnrnpn, T+ t,w + itnrnxn eB(p+tyu+ itnrnpn . (3.2)

Combining this with (iii), we can suppose that 2/, — 2’. Then, we have ' € DZC(p, Z,u,w)(p). Setting

f (p + tpu + %tnrnpn, T+ t,w+ ;tnrnﬂl) — f(p, %) — t, ¥
Yn = ltnrn )
2
we deduce from (3.2) that
U+ tnd + %tnrnyn € B(p + b+ ;tnrnpn) (3.3)

Since f is twice continuously Fréchet differentiable at (p, Z), we obtain that

1 1 - 1 ~
f(ﬁ + T+ StnTnpn, T + bt + Qtnrnrc;> = f(0,2) +taVf(p,2) (W, @) + StaraV (P, 2) (pn, Tr)
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1 1 1 1 1
+ 2tiv2f(p,m)(<u + §rnpn,ﬁ} + QTn.Q?:l), (u + Ernpn,u? + 21"”:6;))

1 1\
0 (H (tna + 5tnrnpn, L0 + 2tnrna:;L> ) ) (3.4)

From y + t,v + 2t 2TnlYn = f(p+t u+ 2t nTnPn, T + tp w—|—2t n’nd ) g = f(p,z),v = Vf(p,Z)(u,w) and
(3.4), we deduce that

e

Let n — oo, we obtain

1 1 1 1
i' (pn7 n) + V2f(ﬁa f) <(ﬁ + irnpnvw + QTnzln)a (’L_l, + §Tnpm”@ + 27ﬂnx/n>>
2>

yn — V (D, 7)(p, EEI)-

This and (3.3) give us that Vf(p,Z)(p,7’) € Bp s.u,5(p). Hence, x € L, i.e. the first inclusion in (3.1) is fulfilled.

Now, we prove the second inclusion in (3.1). Let p € P and x € L. Then, x € D%C(p,z,u,w)(p) and

y:=Vf(pz)(p,x) € Bf;(;z]ﬂ( ). Since B is second-order radial-asymptotic proto-differentiable at (p,§) in the

direction (@, v). Hence, for all t,, — 07,7, > 0, there exists (pn,yn) — (p,y) such that t,r,p, — 0 and

t nTnPn, tn + 2tnrn )

itnrn

1 1 1

1
This leads the existence of sequence {z,} C X such that z, € C <p 4t + 2tnrnpn> and

_ 1 _ 1
y+tav+ itnrnyn = f(p +tpu+ itnrnpna zn)

Ty — T — W

Setting z,, := —g > weget
7tn n
B T
_ 1 _ 1 _ 1 ~
and

_ _ 1 ~ _ 1
T, =T+ t,w+ itnrnxn eC p+itpu+ itnTnpn .
Together with (iii), we have z, — . Thus,

7 e DXV C(p,z,u,w)(p) C DC(p, %, 1, @) (p).

Moreover, since f is twice continuously Fréchet differentiable at (p, Z), we obtain that

1 1 - 1 -
I (;5 + ot + itnrnpn, T+ t,w+ 2tnrnmn> = f(p,z) + t,Vf(p,z)(u,w) + itnran(p, Z)(pny Tn)
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N S| 1 N\ /1 1
+ Qth f(p,fv)(<U+ 5 nPn, W + Qann), (u+ 5 nPn, W+ 2%%))

2) . (3.6)

From (3.5), (3.6) and § = f(p,Z),v = V f(p, Z)(4,w), we deduce that

1 1 ~
+o (H (tna + itnrnpna thw + 2t7LTn93n>

~ tn o 1 1 1 1
Yn = vf(ﬁ?j)(pnvxn) + 7v2f(pa (E) ((u + §rnpn7w + 2rnxn)7 (U + §rnpn7w + 2Tn$n>>
0(
+

2)
Let n — oo, we obtain
Yn =y :=Vf(p,T)(p, T).

1 1 ~
’ <tnu + §t7Lrnp’rL7 tnw + 2tnTnxn>

7tn7ﬂn

2

Combining this with y := V f(p, Z)(p, ), we have

Ve f (0, T)(x) = Va f (D, 7)(T).

From V., f(p,Z)(.) is strictly monotone on X, we get © = Z. Therefore, for any ¢, — 0%, r, > 0, there exists
(pn, Tn) — (p, ) such that t,r,p, — 0,

_ _ 1 ~ _ 1
T+ t,w + §tnrnxn eC (p +tpu + Qtnrnpn)
and
_ 1 _ _ 1 _ 1 - B 1
Therefore, x € D?g(b)H(;E7 Z,u,w)(p). The proof is complete. O
Now, we present an example to illustrate Proposition 3.3.
Example 3.4. Let P=R;, X =Y =R* K=R3 and f: Px X - Y,C: P = X be defined as follows:

f(p,l'):(fﬂl,ajg), VP€P7 Vl’:((El,l‘g) EXa
C(p) = {(z1,72) € R* | 21 = p* + p,x2 > 3p}.
Taking p = 0,z = (0,0) and (a,w) = (1, (1,3)), we have

D%C(ﬁ,i‘,ﬂ,w)(p) = {(.1'173,'2) S RQ | Ty = p,T2 Z 3p}

Obviousbly, C is second-order radial-asymptotic directionally compact at (p,z) with respect to (@,
direction p € P. Since § = f(p,z) = 0,

) in any

Via) = (uf .0 Tuse) = (o], |5 Y] 2w =

Vip,z)= (m {(1) ?D Vif(p,z)=0
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and 0 = Vf(p,7)(u,w) = (1,3). Hence, condition (i) in Proposition 3.3 holds. Since

V. f(p.7) = Ll) ﬂ

we have V. f(p, Z)(.) is strictly monotone on X. By direct calculation, we have, for any p € P,

F(p) = {(y1,12) €R* | y1 = p* +p,y2 > 3p},
and

B(p) = {y = (y1,y2) €R* |y = (»* +p,3p) }.
Therefore, for any p € P, one has

D2B(p,5,u,9)(p) = D" B(5,5,5,0)(p) = {y = (51,y2) €R* | y = (p,3p) }.

Hence, B is second-order radial-asymptotic proto-differentiable at (p, %) in the direction (@, ) and

5.0.0,0 (D) = {Z‘/ = (y1,52) €R? |y = (p, 310)}~
By direct calculation, one has
H(p)={z e X |z € Cp), f(p,x) € B(p)} = {z = (x1,22) € R? |z = (p? +p.3p)}.

This means that, for all p € P,
D¥H(p, 7,15, w)(p) = Do "H(p, 7,1, %)(p) = {x = (v1,22) € R* | z = (p,3p)}.

Therefore, H is second-order radial-asymptotic proto-differentiable at (p, Z) in the direction (@, w) and

Ho s o(p) = {# = (z1,72) € R? | = (p,3p) }, VI (5, 7)(p,z) = =,
{0 = (@1,22) € R? |2 € DEC(p, 2, 5,0)(p), V[ (5,7) (1, 7) € Byly s o(p)}
= {o = (v1,22) € R* |2 = (p,3p)} = M35 s.a(p)-
Thus, Proposition 3.3 is satisfied.

Proposition 3.5. Let p € P,z € C(p) and § = f(p,T), (4, w,v) € P x X x Y. Suppose that the following
conditions hold:

(i) C is second-order radial-asymptotic proto-differentiable at (p,Z) in the direction (4, w);
(ii) f is twice continuously Fréchet differentiable at (p,z) and v = V f(p, Z)(u,w);
(iii) C is second-order radial-asymptotic directionally compact at (p,T) with respect to (4,
peP.

) in any direction

Then, F is second-order radial-asymptotic proto-differentiable at (p,y) in the direction (@,v). Furthermore,
for allp € P,

P2 (p) = {y €Y | € DEC(p, %, 4, @) (p),y = VI(5,%)(p,z)}.

Proof. Let p € P. Setting L := {y € Y |z € D:C(p,z,4,w)(p),y = Vf(P,Z)(p,x) }. From Remark 2.7, we only
need to prove that, Vp € P,

D%F(p,5,u,7)(p) C L € D3" F(p,5.4,0)(p). (3.7)
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Let y € D%F(p,y,u,v)(p). Then, there exist t, — 0%, 7, > 0 and (p,, yn) — (p,y) such that t,7,p, — 0 and
_ _ 1 _ _ 1
g+itav+ §tnrnyn EF|p+tpu+ §tnrnpn .

1
Then, there exists a sequence {z,,} C X such that x,, € C’(p + tpu + 2tnrnpn> and

_ 1 _ _ 1
y+itpv+ itnrnyn = f p+tyu+ itnrnp'm Tn |-

Ty — T — W

Setting x!, := , we have

gtnrn

1 1 1
U+ t,v+ 5tnrnyn =f (;5 + ot + 5tnrnpn, T+ t, W+ 2tnrna:;b> (3.8)

and

_ 1 / _ .

Since C' is second-order radial-asymptotic directionally compact at (p, Z) with respect to (@, w). Without loss
of generality, we suppose that =/, — z’. Then, 2’ € D%C(p, Z,u,w)(p). Moreover, since f is twice continuously
Fréchet differentiable at (p, ), one has

B 1 B B 1 o ., 1 o
f(p +tpu+ itnrnpny T+ thw + 2t71Tnx;¢> = f(pa 'T) + thf(Z), z)(u, w) + §tnrnvf(p7 I)(pn, xln)

2 2 2 2

2). (3.9)

From (3.8), (3.9) and g = f(p,Z),v = Vf(p, T)(u, w), one has

1 1 1 1 1
+ Qtiv2f<p,m>((u b 0+ x) (u + Lm0+ x))

1 1
+o0 (H (tna + itn""npna tpw + Qtnrnx/n>

tn 1 1 1 1
Yn = VB, Z)(pn,x)) + =V f(p, T) <(a + 5rnpn,w + 2rnz/n), (a + 5rnpn,w + 2rnz;)>
T
0(
+

2)
Let n — oo, we obtain
Yn =y = VI(p,7)(p, 7).
Therefore, DZF(p, §,4,v)(p) C L. It follows that the first inclusion in (3.7) holds.

Now, we will prove that L C Dg(b)F(ﬁ,g7ﬂ7@)(p) holds. Let p € P and y € L. Then, there exists z €
D%C(p,z,u,w)(p) such that y = Vf(p,Z)(p, ). Since C is second-order radial-asymptotic proto-differentiable
at (P, ) in the direction (%, w). Thus, for all ¢, — 07,7, > 0, there exists (py, z,) — (p,x) such that t,r,p, — 0
and

2

1 1
’ (tnu + 7tnrnpn7 tnw + 2tn’rn${n>

7tn7‘n

2

1 1
T+t + 5tnrnxn € C(p +tpu + 2tnrnpn> ;
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which implies that,

1 1 1
f <13 + t,u + itnrnpn, T+ t,w + 2tnrnmn) cF <1‘) + tpu + 2tnrnpn) . (3.10)
Setting
_ _ 1 _ _ 1 _ _
f (p + tnu + §tnrnpna X + tnw + Qtnrnxn) - f(pa .’L‘) - tnv
Yn 1= T . (3.11)
7tn n
2 T
Then,

1 1
g + tn?7 + §tnTnyn € F(p + tna + 2tnrnpn> .

Since f is twice continuously Fréchet differentiable at (p, Z), we obtain that

1 1 1
f(p +tpu+ §tnTnpn7 T+ thw + 2tn7'nxn> = f(f)a 53) + tnvf(i)a j:)(ﬂ, 71)) + itnrnvf(]i JE)(pm xn)

Low. ({1 1 1 1
+ Qth f(p,fv)<<U+ 5 nPn, W+ QTn:cn), (u+ 5 nPn, @ + 2%%))

1 1 2
o (H (tnﬂ + itnrnpn, t,w + 2tnrnxn> ) . (3.12)

From (3.11), (3.12) and § = f(p, %), v = V f(p, Z)(@,w), we deduce that

e

Let n — oo, we obtain

1 1 1 1
Z)(pny ) + " V2f(ﬁ, z) <(ﬁ + §Tnpn7w + 2rnxn>7 (ﬁ + grnpn,w + ZTnxn)>

)

Yn =y :=Vf(p,T)(p, x).
Thus, for all ¢, — 07,7, > 0, there exists (pn,yn) — (p,y) such that t,r,p, — 0 and

1
t nTnPn, tnW + 2t rnacn>

1
itnTn

1 1
g + tn?7 + §tn7anyn € F(p + tnﬂ + Qtnrnpn> .

Consequently,
b) e
y € DY F(p,5,5,7)(p).
Tt follows that the second inclusion in (3.7) holds. The proof is complete. O

Theorem 3.6. Letp € P,z € H(p) andy = f(p,T), (4, w,0) € Px X xY . Suppose that the following conditions
hold:

(i) C is second-order radial-asymptotic proto-differentiable at (p,T) in the direction (u,w);
(ii) C s second-order radial-asymptotic directionally compact at (p,T) with respect to (4, w) in any direction
pE P;
(ili) f 4s twice continuously Fréchet differentiable at (p,%) and v =V f(p, Z)(4, w);
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(iv) F is local Lipschitz at p;
(v) F is K-dominated by B near p;
(vi) Forallp e Pw—z€ KU(—-K), Yw,z¢€ F(p),w # z.

Then, the Borwein efficient perturbation map B is second-order radial-asymptotic proto-differentiable at (p,y)
in the direction (u,v). Moreover, for allp € P,

81237(;21,5 (p) = BOMinKF§7gj€')D.,E (p)

= BoMinK{y €Y |z € DiC(p,x,u,w)(p),y = VI(p,z)(p, x)}

Proof. First of all, we prove that B(p) is a single point set for all p € P. Let w € B(p), then w € F(p). Suppose
to contrary that B(p) is not a single point set. Therefore, for any z € B(p) C F(p) with w # z, it implies from
assumption (vi) that w —z € K U(—K). Hence, w—z € K or w—z € —K. Obviously, w—z # 0. f w—z € K,
then we have z — w € —K. Thus,

cleone(F(p) —w) N ((=K)\{0}) # 0,
which contradicts the fact that w € B(p). If w — z € —K, then we have
cleone(F(p) — z) N ((=K)\{0}) # 0,

which contradicts the fact that z € B(p). Thus, B(p) is a single point set for all p € P.
Let an arbitrary p € P. By (i), (ii) and (iii) and Proposition 3.5, we follow that F' is second-order radial-
asymptotic proto-differentiable at (p, ) in the direction (@,?) and

s o _
Fyiuo(®) = {y €Y | € DC(p.2,0,0)(p).y = Vf(5.7)(p. 2)}.
Setting L := BoMinKF;(;:%j(p). From Remark 2.7, we only need to prove that
DEB(p, 3,,0)(p) € L € DYVB(p, 5,3, 0)(p)- (3.13)

First, we prove that DZB(p,y,u,v)(p) C L,Vp € P. Let y € DZB(p, §,u,v)(p). Then, there exist t,, — 0%, 7, >0
and (pn,yn) — (p,y) such that t,r,p, — 0 and

g+ tnv+ %tnrnyn S B(p + ot + ;tnrnpn> - F(p +tyu + ;tnrnpn).
This implies that y € D%F(p, ¥, 4, v)(p). Arguing by contradiction, suppose that
y ¢ BoMing DEF(p,§, 4, v)(p)-
Thus, there exist h,, > 0 and y,, € DZF(p, ¥, 4, v)(p) such that
TG — ) € ~K\{0). (3.14)
Since F' is second-order radial-asymptotic proto-differentiable at (p,y) in the direction (u,v) and ¥, €

D%F(p,y,u,v)(p), DZF (p,y,u,v)(p) = Dz(b)F(p, 7,1,0)(p), one yields, for all t, — 0% r, > 0 there exists
(P, » Ym,,) — (D, Ym) such that t,7,Dm, — 0 and

1 N 1 -
y+tht + itnrnymn € F<]§—|— t,u + 2tnrnpmn>, Vn € N. (3.15)
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Since F' is K-dominated by B near p € P, there exists the neighborhood U; of p such that
F(p) CB(p)+ K, VpeU. (3.16)
Because F' is local Lipschitz at p, one implies that exist the neighborhood Us of p and M > 0 such that
F(p1) € F(p2) + M|p1 — p2||By, Vp1,p2 € Us. (3.17)

Naturally, there exists ng > 0 with ng € N, such that

1 - 1
P+ t,u+ itnrnpmn,ﬁ—l— thtl + itnrnpn ceUiNUy, VYn>ng, VmeN. (3.18)

Thus, it follows from (3.15), (3.18), (3.17) and (3.16), there exists b, € By in order that, for every n large
enough,

1 - N B 1 B 1
y+tav+ itnrn(ymn - MHpmn - pn”bn) € F(P +tpu+ 2tnrnpn) C B<p +tpu + 2tn7'npn> +K, VmeN
(3.19)

Because B(p) is a single point set for all p € P. So, by (3.19), one has

1 . n 1 1 R R
Y+ta0 + §tnrn(ymn — M||pm,, — pnllbn) — (y + ta¥ + 2tnrnyn) = §tnrn(ymn — M||pm,, — Pnllbn — yn) € K.

Thus,
Ym, — MPm, —Pallbn —Yn — m —y, Ym €N,
Since K is a pointed closed convex cone in Euclidean space Y, we deduce ¥,, —y € K, Vm € N. Therefore,

we derive from h,, > 0 and K is a pointed closed convex cone that

hm hm (gm - y) S K7

m—00

which contradicts (3.14). Thus, y € BoMing D% F(p, §, @, v)(p) = L, which completes the first inclusion in (3.13).
Now, we prove L C Dg(b)l’:)’(p7 7,a,0)(p),Vp € P.Let y € L = BoMinF2() (p). Then, y € F29) (p). By the

D,Y,u,v D,Y,u,v
second-order radial-asymptotic proto-differentiability of F' at (p, ) in the direction (1, v), for any ¢, — 07,7, >
0, there exists (pn, yn) — (p,y) such that t,r,p, — 0 and

1 1
¥+ tyv + itnrnyn S F(p + t,u + 2tnrnpn), Vn € N.

Hence,

1 1
y+tav+ itn"qnyn € F(p +tpu + 2tnr7zpn> +K, VneN

On the other hand, from the K-dominatedness by B near p of F and B(p) C F(p),Vp € P, there exists the
neighborhood U of p such that
F(p)+ K=B(p)+ K, Vpel.

Thus,

1 1
Y+ t,0+ itnrnyn € B(p + t,u+ Qtnrnpn> + K, VYnéeN.

Therefore, one follows the existence of k,, € K such that

1 - 1 1 -
g+ tht+ itnrnyn € B(ﬁ 4+t + Qtnrnpn) - F(ﬁ +tpt + 2tnrnpn> JUn = Yn — kn, Vn eN. (3.20)
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Thus, there exists x,, € X such that

_ 1 _ _ 1
T+ t,w+ §tnrnxn eC P+ tht + itnrnpn 3

and
1 ~ 1 1
J+th + 51tnrnyn =7 (ﬁ +t,u + 5tnrnpn, T+ t,w + 2tnrnxn> . (3.21)

As the second-order radial-asymptotic directionally compactness of C' at (p, Z) with respect to (@, w), we derive
that the sequence {z,} C X has a convergent subsequence, also denoted by z, and z, — x, which in turn

implies that = € Dé(b)C(p,a?,a,w)(p) C D%C(p,z,u,w)(p). Moreover, since f is twice continuously Fréchet
differentiable at (p, ), one has

1 1 1
f(ﬁ +thu+ itnrnpny T+ thw + 2tn7"nxn> = f(ﬁa f) + tnvf(ﬁa 1_:)(1_1,7 1I)) + itnrnvf(ﬁv J_C)(pm xn)

1 1 1 1 1
+ §tiV2f(ﬁ, j) ( (u + irnpna w + 2Tnxn>a (U + irnpna w + 2Tnxn))
1 1 2
o t, U + itnrnpn, t,w + itnrnxn . (3.22)

From (3.21), (3.22) and § = f(p,Z),v = V f(p,Z)(4, W), one has

- tn o 1 1 1 1
Un = Vf(D,T)(pn,xn) + T—VQf(p, z) <(u + 5 7nPn, © + rnzn), (u + 5 7nPn, © + Tn:En))

(oo o)) |

Let n — oo, we obtain
Yn =y :=Vf(p,T)(p, )

1 1
(tnu + itnrnpm thw + 2tn7”n$n>

1
—tnTn

2

On the other hand, from (3.20), one gets
y € D" B(5,7,5,9)(p) € D& F(p,5.7,7) (p).

By the closedness of K and k,, = y,, — ¥, — y — ¥y, one has y —y € K. Since K is a pointed closed convex cone,
there exists h > 0 such that

h(y—79) € K.

We prove that y = y. Indeed, suppose to the contrary that y # y. Then, one gets
h(y —y) € —K\{0}.

Since Dy 2(b )F( U, 4, 0)(p) = Fpg(;%@(p), it follows that there exists y € Fj, 2(¢ 7)“ (p) such that
h(y —y) € —K\{0}.

Hence, y ¢ BoMing F; (ysi s(p), a contradiction. So, y =y € DQ(b)B( , U, @, 0)(p). The proof is complete. O
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Remark 3.7. Assumption (vi) in Theorem 3.6 is difference from assumption (vi) in Theorem 3.2 of [34],
assumption (vi) in Proposition 3.1, Proposition 3.2 of [35] and assumption (vi) in Proposition 3.3 of [37]. Thus,
Theorem 3.6 improves the results in [34,35, 37].

The following example shows that the condition (vi) in Theorem 3.6 is essential.

Example 3.8. Let P=R;, X =Y =R* K = {(y1,52) €R? | y2 >3y >0} and f: PXx X - Y,C: P= X
be defined as follows:

f(pvx):(irlvlé)v vp€P7 V$:<$17$2)€X7
C(p) = {(xhxg) €R? |z, > p? a9 > 3p? +3p} U {(xl,xz) €R? | 29 > 32 > 0}.

Taking p = 0,Z = (0,0) and (@, w) = (1, (1,3)), we have
D%C(p,z,u,@)(p) = D" C(p, 7,4, @) (p) = {(z1,22) € R?* | 22 > 3p} U {(21,22) € R? | 25 > 31},

leading that the condition (i) in Theorem 3.6 is satisfied. Since § = f(p,Z) = 0,
0] |1 O 2
Vipz) = (Vpf(p2), Vaf(p:2)) = ol 10 1| ) VI2)=0,

vima = (oo 9]): Vf(5.2) =0,

and o = Vf(p,Z)(a,w) = (1,3). Hence, condition (iii) in Theorem 3.6 holds. It is easy to prove that the
assumptions (ii), (iv) and (v) in Theorem 3.6 are satisfied. By direct calculation, we have, for any p € P,

F(p) = {(y1,y2) €R? | y1 > p*, 92 > 3p” + 3p} U{(y1,y2) € R? | yo > 3y1 > 0},

and
B(p) = {(y1.y2) € R* | y1 > p* +p,y2 = 3p° + 3p} U{(0,0)}.
Take (1,3) € F(p) and (0,3) € F(p), we have

(0,3) = (1,3) = (=1,0) ¢ KU (=K).

Thus, the assumption (vi) in Theorem 3.6 is not satisfied. For any p € P, one has

DEF(p,§,1,0)(p) = D2V F(p, 5,4, 0)(p) = {(y1,y2) € R? | y2 > 3p} U {(y1,92) € R? | y5 > 3u1 },
D%B(p,5,u,)(p) = Do B(p, 7, %, 5)(p) = {(y1,92) € R? | y1 > p,yo = 3p}.

Hence, F' and B are second-order radial-asymptotic proto-differentiable at (p,7) in the direction (@, v) and

F25) ) = {(y1,92) €R? |y > 3p} U {(y1,2) € R? | 2 > 3u1 },
o) ={(y1,12) €R* | y1 > p,y2 = 3p}.

Hence,
BoMing Fp o 5(0) = {(y1,y2) € R? | y1 > p,y2 = 3p}.
This means that, for all p € P,
B2 (p) # BoMin y F2(5) (p).

D,Y,u,0 P,Y,u,0

Thus, Theorem 3.6 does not hold. Because the assumption (vi) in Theorem 3.6 is not satisfied.
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Remark 3.9. For all p € P, B(p) is a single point set if and only if w — z € K U (= K),Vw,z € F(p),w # z.

Indeed, for all p e P, if w— 2z € KU (—K),Vw,z € F(p),w # z, then we have B(p) is a single point set.
Suppose that Vp € P, B(p) is a single point set, then we need prove that w—z € KU(—K),Vw, z € F(p),w # z.
Let z € B(p), then z € F(p). Suppose to contrary that w — z ¢ K U (—K),Vw,z € F(p),w # z. fw— 2z ¢ K,
then we have z — w ¢ —K. Thus,
cleone(F(p) —w) N (—K) = {0},

it follows w € B(p), a contradiction, since B(p) is a single point set. If w — z ¢ —K, then we have z —w ¢ K.
Thus,
clcone(F(p) —w) N K = {0}.

Since K is pointed cone, we get
KN (—K) = {0} (see [16] page 15).

Hence, we have
cleone(F(p) —w) N (—K) = {0},

it follows w € B(p), a contradiction, since B(p) is a single point set. Thus, w — z € K U (-K), VYw,z €
F(p),w # z for all p € P.
Now, we present an example to explain the given result in Theorem 3.6.

Example 3.10. Let P=R,, X =Y =R? K = Rf_ and f: Px X —Y,C: P = X be defined as follows:

f(p,x):(l'l,xz), VPGP, Vx:(xlaxQ)EXv
C(p) = {(z1,22) € R* | 21 = p* + 2p, 25 > 3p}.

Taking p = 0,Z = (0,0) and (a,w) = (1,(2,3)), we have
D3C(p, 7,1, w)(p) = D3 C(p, 2,4, 0)(p) = {(x1,22) € R? | &1 = 2p, x5 > 3p},

leading that the condition (i) in Theorem 3.6 is satisfied. Since § = f(p,Z) = 0,

Via) = (.05t = (o] oY) e =

vima = (oo 9]): Vf(5.5) = 0

and o = Vf(p,z)(a,w) = (2,3). Hence, condition (iii) in Theorem 3.6 holds. It is easy to prove that the
assumption (ii), (iv), (v) and (vi) in Theorem 3.6 are satisfied. By direct calculation, we have, for any p € P,

F(p) = {(y1,92) € R* | y1 = p* + 2p, 32 > 3p},
and
B(p) = {y = (y1,52) €R* |y = (p* +2p,3p)}.
Therefore, for any p € P, one has
DEF(p.5.u.0)(p) = D5 F(p,9,0.9)(p) = {(v1,42) € R* | 51 = 2p. 12 > 3p},
D3B(5,7,4,9)(p) = D" B(p,5,,9)(p) = {y = (y1,92) € B* | y = (2p, 3p)}.
Hence, F' and B are second-order radial-asymptotic proto-differentiable at (p,7) in the direction (@, ) and

Fp’z,(y,%,a(p) = {(yhyz) ER? | y1 = 2p,y0 > 3p},
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8125521 o(p) ={y = (y1.42) ER* | y = (2p,3p) }.
Hence,
BoMing Fy 'y 5(p) = {y = (41,92) € B | y = (2p,3p)}.
This means that, for all p € P,

By (p) = BoMing Fp 0% o(p) = {y = (y1,42) € B | y = (2p,3p)}.
So, Theorem 3.6 holds here.

Theorem 3.11. Let p € P,z € H(p) and § = f(P,T), (w,w,0) € P x X x Y. Suppose that the following
conditions hold:

(i) C is second-order radial-asymptotic proto-differentiable at (p,Z) in the direction (u,w);

(i) f is twice continuously Fréchet differentiable at (p,Z) and v =V f(p, Z)(4, w);

(iii) C is second-order radial-asymptotic directionally compact at (P, %) with respect to (@, w) in any direction
peEP;

(iv) B is second-order radial-asymptotic proto-differentiable at (p,y) in the direction (u,v);

(v) B is second-order radial-asymptotic directionally compact at (p,§) with respect to (4,v) in any direction
p € P;

(vi) F is K-dominated by B near p.

Then, BoMing Fa') (p) C Bas +(p),Vp € P.

Proof. Since T € H(p), we have § € B(p) C F(p). From (i), (ii), (iii) and Proposition 3.5, we follow that F
is second-order radial-asymptotic proto-differentiable at (p,y) in the direction (@,v). Let arbitrary p € P and

Y€ BoMinKFg%S% 5(p). Then, y € Ff,(g ) 5(p). From (iv), (v) and Proposition 2.16, it follows that

(B+K)22 () = B2 o(p) + K, VpeP.

On the other hand, from the domination around p of F and B(p) C F(p),Vp € P, there exists the neighborhood

U of p such that
Fp)+ K=B{p)+K, Vpel.

Thus,
2(S 2(8 S 2(8
F) o) € (F+ K2 s(0) = (B+ K)o s(p) = Bagho(p) + K, WpeP.
2(S)

This means that, there exist y € By ;5 5(p) and k € K such that y = y + k. By the closedness of K and
k =y —7u, one has y — y € K. Since K is a pointed closed convex cone, there exists h > 0 such that

hy—y) € K.
We will prove that k = 0. Indeed, if k¥ € K\{0}, then
h(y —y) € —K\{0}.
s)

Since y € B2 o, q—j(p), for any t, — 0%, r, > 0, there exists (pn,¥n) — (p,¥) such that t,r,p, — 0 and

1 - 1 1

It yields that y € F; (g%@(p) such that

h(y —y) € —K\{0}.
Hence, y ¢ BoMing F; 2(5) (p), a contradiction. So k = 0, this means that, y € B2 (p),p € P. The proof is

p,Y,u, v p,Y,u, v
complete. 0]
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Remark 3.12. (i) By some suitable changes, most of the results of Section 3 are still true when the second-

(i)
(iif)

(iv)
(v)

order radial-asymptotic proto-differentiability is replaced by the second-order radial-asymptotic semi-
differentiability.

As in Remark 2.7, the results in this paper are different from the results in [34].

Second-order radial-asymptotic derivative contains both the second-order contingent derivative and the
second-order asymptotic derivative. So, second-order radial-asymptotic proto-differentiability properties of
the efficient solution maps and the perturbation maps are different from the results in [36] when m = 2.
Second-order radial-asymptotic derivative in this paper is different from second-order composed derivatives
in [37]. So, the results in this paper are different from the results in [37].

The proto-differentiability properties of the Borwein efficient solution map and the Borwein efficient frontier
map of parametric vector optimization problems have not been yet considered in [34-37]. So, the obtained
results improve and extend the results in [34-37].

Acknowledgements. The authors would like to thank the Editors for the help in the processing of the article. The authors
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improve the original version of the article.
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