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ON SECOND-ORDER RADIAL-ASYMPTOTIC PROTO-DIFFERENTIABILITY
OF THE BORWEIN PERTURBATION MAPS

Thanh-Hung Pham* and Thanh-Sang Nguyen

Abstract. This paper deals with second-order sensitivity analysis of parameterized vector optimiza-
tion problems. We prove that the Borwein efficient solution map and the Borwein efficient pertur-
bation map of a parametric vector optimization problem are second-order radial-asymptotic proto-
differentiable under some suitable qualification conditions. Some examples are also given for illustrating
the obtained results.
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1. Introduction

In parametric vector optimization problems, sensitivity analysis is not only theoretically interesting but
also practically important. Here, sensitivity analysis is the research of derivatives of the perturbation maps.
It provides informations about derivatives of the perturbation maps of the parametric optimization problem.
Due to its importance not only for theoretical aspect, but also for practical application, sensitivity analysis has
been considered by numerous researchers. There are two main approaches in sensitivity analysis: the dual space
approach and the primal space approach. In the dual space approach, we refer to the books [23, 24] and the
recent papers [7, 9, 10, 12]. In the primal space approach, the first results for sensitivity analysis via contingent
derivative have been given by Tanino [30,31]. The TP-derivative has been introduced in [27], which has proved
to be useful in vector optimization and set-valued analysis. In [8], Chuong has established formulae for inner and
outer evaluating the TP-derivative of the efficient point multifunction in parametric vector optimization problem.
The behavior of perturbation maps in nonsmooth convex problems has been investigated in [17, 28]. Recently,
the formulas for computing the generalized Clarke epiderivative of the efficient point multifunction have been
given by Chuong [11]. Very recently, Tung and Hung [38] have concerned with sensitivity analysis in parametric
vector optimization problems via 𝜏𝑤-contingent derivative. Some results in second-order sensitivity analysis for
vector optimization problem via second-order contingent derivative have been considered in [21, 32, 39, 40]. In
[29], Sun and Li have investigated generalized second-order contingent epiderivatives of frontier and solution
maps in parametric vector optimization problem. Recently, higher-order sensitivity analysis in parametric vector
optimization problems and parametric set-valued optimization problems has occupied attention of researchers. In
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[4,33], some results in higher-order sensitivity analysis have been given by using the higher-order variational sets
and asymptotic variational sets. In [13], properties of higher-order contingent-type derivatives of the perturbation
and weak perturbation maps of a parameterized optimization problem have been obtained by using the higher-
order contingent-type derivatives. In [1], Anh has obtained sensitivity results of set-valued optimization problem
in terms of Studniarski derivatives. In [2], the higher-order contingent derivative of a parametrized set-valued
optimization problem has been studied. Very recently, the second-order composed contingent derivatives of
the perturbation maps/the weak perturbation maps have been given in [3, 25]. In [41], Wang and Zhang have
obtained second-order sensitivity results for parametric multi-objective optimization problems under the Benson
proper efficiency in terms of second-order composed radial derivative.

Another important topic in the primal space approach is to study the proto-differentiability of perturba-
tion maps, the first result for proto-differentiability of perturbation maps has been presented by Rockafellar in
[26]. In [19], Levy and Rockafellar have investigated proto-differentiability generalized equations. In [18], Huy
and Lee have obtained sufficient conditions for the proto-differentiability of the generalized perturbation map.
The proto-differentiability of the efficient solution map/the efficient frontier map and the sufficient conditions
in order to approximate to the proto-derivative of the efficient frontier maps have been given in [14]. In [15],
Huy and Lee have been investigated proto-differentiability of generalized perturbation multifunction. Recently
[22], authors have established the semi-differentiability of the marginal mapping in the parametric multiob-
jective optimization problem. However, it is worth noting that there exist only few papers in the literature
devoting to the study of the higher-order proto-differentiability for perturbation maps. In [20], the second-order
proto-differentiability properties and the second-order semi-differentiability properties have been discussed for
generalized perturbation maps. In [34], Tung has studied the second-order proto-differentiability of the efficient
solution map and the efficient frontier map under some appropriate qualification conditions. The higher-order
proto-differentiability of the perturbation maps/the proper perturbation maps/the weak perturbation maps
were investigated in [35]. Recently, the higher-order proto-differentiability/the higher-order asymptotic proto-
differentiability of the weak efficient solution maps/the weak perturbation maps were considered in [36]. Very
recently, the second-order composed proto-differentiability of the proper perturbation maps/the proper effi-
cient solution maps were discussed in [37]. For the considerations of the second-order proto-differentiability,
we observe only references [20, 34, 37]. On the other hand, the higher-order proto-differentiability properties of
the Borwein efficient solution maps and the Borwein efficient frontier maps of parametric vector optimization
problems have not been yet investigated in [34–37]. Recently, the second-order radial-asymptotic derivative was
introduced and used in qualification conditions in [32] to obtain some quantitative results in analyzing the
second-order contingent derivative of the proper perturbation map. Moreover, to the best of our knowledge,
there is no paper dealing with the second-order radial-asymptotic proto-differentiability of perturbation maps
in parametric vector optimization problems. In addition, it is well known that the range of the set of Borwein
minimal points is smaller than minimal points, so the discussion of the sensitivity analysis makes a lot of sense
under the Borwein efficiency.

Inspired by the above observations, we provide some new results for the second-order radial-asymptotic proto-
differentiability of the Borwein efficient solution map and the Borwein efficient frontier map of parameterized
vector optimization problem in this paper under some suitable qualification conditions. In addition, the sufficient
conditions for approximating the second-order radial-asymptotic proto-derivative of the Borwein efficient frontier
map are also given.

The plan of paper is organized as follows. In Section 2, we recall several concepts of the derivatives of
multifunctions and their properties which are needed in the sequel. In Section 3, we establish the seond-order
radial-asymptotic proto-differentiability of the Borwein efficient solution map and the Borwein efficient frontier
map. The sufficient conditions in order to approximate to the second-order radial-asymptotic proto-derivative
of the Borwein efficient frontier map are also presented in Section 3.
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2. Preliminaries

Throughout this paper, let 𝑃,𝑋 and 𝑌 be Euclidean spaces equipped with the usual norms, where the space
𝑌 is partially ordered by nontrivial pointed closed convex cone 𝐾 ⊆ 𝑌 with nonempty interior int𝐾. The norms
of all Euclidean spaces are denoted by ‖.‖. The origins of all Euclidean spaces are denoted by 0. 𝐵𝑋 , 𝐵𝑌 stands
for the closed unit ball in 𝑋, 𝑌 . Closure and boundary of 𝐴 ⊆ 𝑋 are denoted by cl𝐴 and 𝜕𝐴. Furthermore,
cone𝐴 = {𝑘𝑎|𝑘 ≥ 0, 𝑎 ∈ 𝐴}. N, R, and R+ are used for sets of natural numbers, real numbers, and nonnegative
real numbers, respectively.

Definition 2.1 (see [16]). Let Ω be a nonempty subset of 𝑌 .

(i) An element 𝑦 ∈ Ω is said to be a 𝐾-minimal point of Ω, if (Ω− 𝑦)∩ (−𝐾) = {0}. The set of all 𝐾-minimal
points of Ω is denoted by Min𝐾Ω.

(ii) An element 𝑦 ∈ Ω is said to be a Borwein 𝐾-minimal point of Ω, if cl cone(Ω− 𝑦) ∩ (−𝐾) = {0}. The set
of all Borwein 𝐾-minimal points of Ω is denoted by BoMin𝐾Ω.

It is easy to see that BoMin𝐾Ω ⊂ Min𝐾Ω and the inclusion may be strict as in the following example.

Example 2.2 (see [38]). Let 𝑌 = R2, 𝐾 = R2
+ and Ω =

{︀
(𝑥1, 𝑥2) ∈ R2 | 𝑥2

2 ≤ 𝑥1 ≤ 1
}︀

. Then, we can check
that

Min𝐾Ω =
{︀
𝑥1, 𝑥2) ∈ R2 | 𝑥1 = 𝑥2

2, 0 ≤ 𝑥1 ≤ 1,−1 ≤ 𝑥2 ≤ 0
}︀
,

BoMin𝐾Ω =
{︀
𝑥1, 𝑥2) ∈ R2 | 𝑥1 = 𝑥2

2, 0 < 𝑥1 ≤ 1,−1 ≤ 𝑥2 < 0
}︀
.

Hence,
BoMin𝐾Ω $ Min𝐾Ω.

Definition 2.3 (see [5,6]). Let 𝑓 : 𝑋 → 𝑌 be a vector-valued map. 𝑓 is said to be twice Fréchet differential at
𝑥̄ ∈ 𝑋, if there exist two linear continuous operators ∇𝑓(𝑥̄) : 𝑋 → 𝑌 and ∇2𝑓(𝑥̄) : 𝑋 ×𝑋 → 𝑌 , such that

𝑓(𝑥) = 𝑓(𝑥̄) +∇𝑓(𝑥̄)(𝑥− 𝑥̄) +
1
2
∇2𝑓(𝑥̄)(𝑥− 𝑥̄, 𝑥− 𝑥̄) + 𝑜

(︀
‖𝑥− 𝑥̄‖2

)︀
,

where 𝑜(‖𝑥 − 𝑥̄‖2) satisfies
𝑜(‖𝑥− 𝑥̄‖2)
‖𝑥− 𝑥̄‖2

→ 0 when 𝑥 → 𝑥̄. ∇𝑓(𝑥̄) and ∇2𝑓(𝑥̄) are the Fréchet derivative and

second-order Fréchet derivative, respectively. 𝑓 is said twice Fréchet differentiable on 𝑋 if 𝑓 is twice Fréchet
differentiable at any 𝑥 ∈ 𝑋. If ∇𝑓(𝑥̄) and ∇2𝑓(𝑥̄) are continuous at 𝑥̄ then 𝑓 is said to be twice continuously
Fréchet differentiable at 𝑥̄.

Let 𝐺 : 𝑃 ⇒ 𝑌 be a multifunction. The effective domain, graph, and epigraph of 𝐺 are defined by

dom𝐺 := {𝑝 ∈ 𝑃 | 𝐺(𝑝) ̸= ∅},
gph𝐺 := {(𝑝, 𝑦) ∈ 𝑃 × 𝑌 | 𝑦 ∈ 𝐺(𝑝)},
epi𝐺 := {(𝑝, 𝑦) ∈ 𝑃 × 𝑌 | 𝑝 ∈ dom𝐺, 𝑦 ∈ 𝐺(𝑝) + 𝐾}.

The profile map of 𝐺 is 𝐺 + 𝐾, defined by (𝐺 + 𝐾)(𝑝) := 𝐺(𝑝) + 𝐾.

Definition 2.4 (see [34]). Let 𝐺 : 𝑃 → 𝑌 be a vector-valued function. 𝐺 is said to be monotone if for any
𝑝1, 𝑝2 ∈ 𝑃 , one has ⟨𝐺(𝑝2)−𝐺(𝑝1), 𝑝2 − 𝑝1⟩ ≥ 0. 𝐺 is said to be strictly monotone if for any 𝑝1, 𝑝2 ∈ 𝑃 , and
𝑝1 ̸= 𝑝2, one has ⟨𝐺(𝑝2)−𝐺(𝑝1), 𝑝2 − 𝑝1⟩ > 0.

Definition 2.5 (see [5, 34]). Let 𝐺 : 𝑃 ⇒ 𝑌 be a set-valued map, (𝑝, 𝑦) ∈ gph𝐺 and (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 .
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(i) The second-order contingent derivative of 𝐺 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 is the set-valued map
𝐷2𝐺(𝑝, 𝑦, 𝑢̄, 𝑣) : 𝑃 ⇒ 𝑌 defined by

𝐷2𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) :=
{︂

𝑦 ∈ 𝑌 | ∃𝑡𝑛 → 0+,∃(𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡2𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡2𝑛𝑝𝑛

)︂}︂
, ∀𝑝 ∈ 𝑃.

(ii) The second-order contingent adjacent derivative of 𝐺 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) ∈ 𝑃×𝑌 is the set-valued
map 𝐷2(𝑏)𝐺(𝑝, 𝑦, 𝑢̄, 𝑣) : 𝑃 ⇒ 𝑌 defined by

𝐷2(𝑏)𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) :=
{︂

𝑦 ∈ 𝑌 | ∀𝑡𝑛 → 0+,∃(𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡2𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡2𝑛𝑝𝑛

)︂}︂
, ∀𝑝 ∈ 𝑃.

(iii) The second-order contingent lower derivative of 𝐺 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) ∈ 𝑃 ×𝑌 is the set-valued
map 𝐷2(𝑙)𝐺(𝑝, 𝑦, 𝑢̄, 𝑣) : 𝑃 ⇒ 𝑌 defined by

𝐷2(𝑙)𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) :=
{︂

𝑦 ∈ 𝑌 | ∀𝑡𝑛 → 0+, ∀𝑝𝑛 → 𝑝, ∃𝑦𝑛 → 𝑦, ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡2𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡2𝑛𝑝𝑛

)︂}︂
, ∀𝑝 ∈ 𝑃.

Definition 2.6 (see [32]). Let 𝐺 : 𝑃 ⇒ 𝑌 be a set-valued map, (𝑝, 𝑦) ∈ gph𝐺 and (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 .

(i) The second-order radial-asymptotic derivative of 𝐺 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) ∈ 𝑃 ×𝑌 is the set-valued
map 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣) : 𝑃 ⇒ 𝑌 defined by

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) :=

{︂
𝑦 ∈ 𝑌 | ∃𝑡𝑛 → 0+,∃𝑟𝑛 > 0,∃(𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, 𝑡𝑛𝑟𝑛𝑝𝑛 → 0

}︂
, ∀𝑝 ∈ 𝑃.

(ii) The second-order radial-asymptotic adjacent derivative of 𝐺 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 is the
set-valued map 𝐷

2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣) : 𝑃 ⇒ 𝑌 defined by

𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) :=

{︂
𝑦 ∈ 𝑌 | ∀𝑡𝑛 → 0+, ∀𝑟𝑛 > 0,∃(𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, 𝑡𝑛𝑟𝑛𝑝𝑛 → 0

}︂
, ∀𝑝 ∈ 𝑃.

(iii) The second-order radial-asymptotic lower derivative of 𝐺 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 is the
set-valued map 𝐷

2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣) : 𝑃 ⇒ 𝑌 defined by

𝐷
2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) :=

{︂
𝑦 ∈ 𝑌 | ∀𝑡𝑛 → 0+, ∀𝑟𝑛 > 0, ∀𝑝𝑛 → 𝑝,∃𝑦𝑛 → 𝑦, ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, 𝑡𝑛𝑟𝑛𝑝𝑛 → 0

}︂
, ∀𝑝 ∈ 𝑃.

Remark 2.7 ([34]). From definitions we derive,
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(i) 𝐷2(𝑙)𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷2(𝑏)𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷2𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), ∀𝑝 ∈ 𝑃.

(ii) 𝐷
2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷

2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), ∀𝑝 ∈ 𝑃.

However, the reverse inclusions in Remark 2.7(ii) may not hold. The following examples illustrate the cases.

Example 2.8. Let 𝑃 = R, 𝑌 = R, ℐ =
{︂

1
𝑛

: 𝑛 ∈ N
}︂

and 𝐺 : 𝑃 ⇒ 𝑌 be defined by

𝐺(𝑝) =

⎧⎪⎨⎪⎩
{0}, if 𝑝 ≤ 0,

{−3𝑝}, if 𝑝 ∈ ℐ,

∅, otherwise.

Then, for (𝑝, 𝑦) = (0, 0) ∈ gph𝐺, (𝑢̄, 𝑣) = (1,−3) and 𝑝 = 1, we have

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(1) = {−3}.

Taking

𝑡𝑘 =

−1 +

√︃
1 + 3𝑝𝑘 ln

(︂
1 +

1
𝑘

)︂
𝑝𝑘

→ 0+, ∀𝑝𝑘 → 1,

and

𝑟𝑘 =

2

√︃
1 + 3𝑝𝑘 ln

(︂
1 +

1
𝑘

)︂
𝑝𝑘

> 0, ∀𝑝𝑘 → 1,

then

𝑝 + 𝑡𝑘𝑢̄ +
1
2
𝑡𝑘𝑟𝑘𝑝𝑘 = 𝑡𝑘 +

1
2
𝑡𝑘𝑟𝑘𝑝𝑘

=

−1 +

√︃
1 + 3𝑝𝑘 ln

(︂
1 +

1
𝑘

)︂
𝑝𝑘

+

−

√︃
1 + 3𝑝𝑘 ln

(︂
1 +

1
𝑘

)︂
+ 1 + 3𝑝𝑘 ln

(︂
1 +

1
𝑘

)︂
𝑝𝑘

= 3 ln
(︂

1 +
1
𝑘

)︂
̸⊆ ℐ, ∀𝑝𝑘 → 1.

Hence, 𝐺(𝑝 + 𝑡𝑘𝑢̄ +
1
2
𝑡𝑘𝑟𝑘𝑝𝑘) = ∅. Consequently,

𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(1) = ∅.

Hence,
𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(1) ̸⊆ 𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(1).

Example 2.9. Let 𝑃 = R, 𝑌 = R2 and 𝐺 : 𝑃 ⇒ 𝑌 be defined by

𝐺(𝑝) =

{︃{︀
(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 𝑝2, 𝑦2 ≤ 0

}︀
, if 𝑝 < 0,{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 ≥ 𝑝2
}︀
, if 𝑝 ≥ 0.
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Let (𝑝, 𝑦) = (0, (0, 0)) and (𝑢̄, 𝑣) = (0, (0, 0)). Then,

𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

⎧⎪⎨⎪⎩
{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 ≤ 0
}︀
, if 𝑝 < 0,{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 ∈ R
}︀
, if 𝑝 = 0,{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 ≥ 0
}︀
, if 𝑝 > 0,

and

𝐷
2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

⎧⎪⎨⎪⎩
{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 ≤ 0
}︀
, if 𝑝 < 0,{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 = 0
}︀
, if 𝑝 = 0,{︀

(𝑦1, 𝑦2) ∈ R2 : 𝑦1 ≤ 0, 𝑦2 ≥ 0
}︀
, if 𝑝 > 0.

Therefore,
𝐷

2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(0) ̸⊆ 𝐷

2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(0).

Definition 2.10. Let 𝐺 : 𝑃 ⇒ 𝑌 be a set-valued map, (𝑝, 𝑦) ∈ gph𝐺 and (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 .

(i) The map 𝐺 is said to be second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣)
if for any 𝑝 ∈ 𝑃 ,

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝),

and its second-order radial-asymptotic proto-derivative is denoted by 𝐺
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣.

(ii) The map 𝐺 is said to be second-order radial-asymptotic semi-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣)
if for any 𝑝 ∈ 𝑃 ,

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝).

and its second-order radial-asymptotic semi-derivative is denoted by ̂︀𝐺2(𝑆)
𝑝,𝑦,𝑢̄,𝑣.

Definition 2.11 (see [27]). Let 𝐺 : 𝑃 ⇒ 𝑌 be a set-valued map and (𝑝, 𝑦) ∈ gph𝐺.

(i) The TP-derivative of 𝐺 at (𝑝, 𝑦) is the set-valued map 𝐷𝑆𝐺(𝑝, 𝑦) : 𝑃 ⇒ 𝑌 defined by

𝐷𝑆𝐺(𝑝, 𝑦)(𝑝) := {𝑦 ∈ 𝑌 | ∃𝑡𝑛 > 0,∃(𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), ∀𝑛 ∈ N, such that
𝑦 + 𝑡𝑛𝑦𝑛 ∈ 𝐺(𝑝 + 𝑡𝑛𝑝𝑛), 𝑡𝑛𝑝𝑛 → 0}, ∀𝑝 ∈ 𝑃.

(ii) The adjacent TP-derivative of 𝐺 at (𝑝, 𝑦) is the set-valued map 𝐷𝑏
𝑆𝐺(𝑝, 𝑦) : 𝑃 ⇒ 𝑌 defined by

𝐷𝑏
𝑆𝐺(𝑝, 𝑦)(𝑝) := {𝑦 ∈ 𝑌 | ∀𝑡𝑛 > 0,∃(𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), ∀𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑦𝑛 ∈ 𝐺(𝑝 + 𝑡𝑛𝑝𝑛), 𝑡𝑛𝑝𝑛 → 0}, ∀𝑝 ∈ 𝑃.

(iii) The map 𝐺 is said to be TP-proto-differentiable at (𝑝, 𝑦) if for any 𝑝 ∈ 𝑃 ,

𝐷𝑆𝐺(𝑝, 𝑦)(𝑝) = 𝐷𝑏
𝑆𝐺(𝑝, 𝑦)(𝑝).

Remark 2.12. (i) 𝐺 is TP-proto-differentiable at (𝑝, 𝑦) if 𝐺 is second-order radial-asymptotic proto-
differentiable (𝑝, 𝑦) in the direction (0, 0).

(ii) If 𝐺 is second-order radial-asymptotic semi-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣), then 𝐺 is second-
order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣).

Definition 2.13 (see [5]). Set-valued map 𝐺 : 𝑃 ⇒ 𝑌 is said to be local Lipschitz at (𝑝, 𝑦) ∈ gph𝐺, if there
exist a real constant 𝑀 > 0 and a neighborhood 𝑈 of 𝑝 such that

𝐺(𝑝1) ⊆ 𝐺(𝑝2) + 𝑀‖𝑝1 − 𝑝2‖𝐵𝑌 , ∀𝑝1, 𝑝2 ∈ 𝑈.
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Proposition 2.14. Let 𝐺 : 𝑃 ⇒ 𝑌 be the set-valued map, (𝑝, 𝑦) ∈ gph𝐺 and (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 . Suppose that
𝐺 is local Lipschitz at (𝑝, 𝑦) ∈ gph𝐺. If 𝐺 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the
direction (𝑢̄, 𝑣), then 𝐺 is second-order radial-asymptotic semi-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣).

Proof. Obviously, 𝐷
2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), for any 𝑝 ∈ 𝑃 . Therefore, we only need to prove,

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷

2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝),

for any 𝑝 ∈ 𝑃 . In fact, for any 𝑦 ∈ 𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), there exist 𝑡𝑛 → 0+, 𝑟𝑛 > 0, (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦), such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and 𝑡𝑛𝑟𝑛𝑝𝑛 → 0, ∀𝑛 ∈ N. (2.1)

Let {𝑝′𝑛} ⊂ 𝑃 be any sequence such that 𝑝′𝑛 → 𝑝. Since 𝐺 is local Lipschitz at (𝑝, 𝑦), there exist a 𝑀 > 0 and a
neighborhood 𝑈 of 𝑝 such that

𝐺(𝑝1) ⊆ 𝐺(𝑝2) + 𝑀‖𝑝1 − 𝑝2‖𝐵𝑌 , ∀𝑝1, 𝑝2 ∈ 𝑈. (2.2)

Hence, there exists a 𝑛0 > 0 such that 𝑝 + 𝑡𝑛𝑢̄ +
1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝′𝑛 ∈ 𝑈 , for any 𝑛 ≥ 𝑛0. From (2.1)

and (2.2), we have, for any 𝑛 ≥ 𝑛0, there exists a sequence {𝑏𝑛} with 𝑏𝑛 ∈ 𝐵𝑌 such that 𝑡𝑛𝑟𝑛𝑝′𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛(𝑦𝑛 −𝑀‖𝑝′𝑛 − 𝑝𝑛‖𝑏𝑛) ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝′𝑛

)︂
.

Let 𝑦′𝑛 := 𝑦𝑛 −𝑀‖𝑝′𝑛 − 𝑝𝑛‖𝑏𝑛. From 𝑝′𝑛 → 𝑝 and 𝑝𝑛 → 𝑝, we have 𝑦′𝑛 → 𝑦. Thus, for any 𝑡𝑛 → 0+, 𝑟𝑛 > 0 and
𝑝′𝑛 → 𝑝, there exists 𝑦′𝑛 → 𝑦 such that 𝑡𝑛𝑟𝑛𝑝′𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦′𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝′𝑛

)︂
.

Therefore, 𝑦 ∈ 𝐷
2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Hence,

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷

2(𝑙)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝).

�

Inspired by Definition 2.3 in [21], we introduce the following definition of second-order radial-asymptotic
directionally compact of a set-valued map.

Definition 2.15. Let 𝐺 : 𝑃 ⇒ 𝑌 be the set-valued map, (𝑝, 𝑦) ∈ gph𝐺 and (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 . 𝐺 is said
to be second-order radial-asymptotic directionally compact at (𝑝, 𝑦) with respect to (𝑢̄, 𝑣) in the direction

𝑝 ∈ 𝑃 if for all sequences 𝑡𝑛 → 0+, 𝑟𝑛 > 0 and 𝑝𝑛 → 𝑝, every sequences {𝑦𝑛} with 𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈

𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and 𝑡𝑛𝑟𝑛𝑝𝑛 → 0, there exists a convergent subsequence of {𝑦𝑛}.

Proposition 2.16. Let 𝐺 : 𝑃 ⇒ 𝑌 be the set-valued map, (𝑝, 𝑦) ∈ gph𝐺 and (𝑢̄, 𝑣) ∈ 𝑃 ×𝑌 . Suppose that 𝐺 is
second-order radial-asymptotic directionally compact at (𝑝, 𝑦) with respect to (𝑢̄, 𝑣) in any direction 𝑝 ∈ 𝑃 . If 𝐺
is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣), then 𝐺+𝐾 is second-order
radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and

(𝐺 + 𝐾)2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) = 𝐺

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) + 𝐾, ∀𝑝 ∈ 𝑃.
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Proof. Since 𝐺(𝑝) ⊆ (𝐺 + 𝐾)(𝑝) and

𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), ∀𝑝 ∈ 𝑃,

we only need to prove

𝐷2
𝑆(𝐺 + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) + 𝐾, ∀𝑝 ∈ 𝑃 (2.3)

and
𝐷

2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) + 𝐾 ⊆ 𝐷

2(𝑏)
𝑆 (𝐺 + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), ∀𝑝 ∈ 𝑃. (2.4)

Firstly, we prove that (2.3) holds. Let 𝑦 ∈ 𝐷2
𝑆(𝐺+𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Then, there exist 𝑡𝑛 → 0+, 𝑟𝑛 > 0, (𝑝𝑛, 𝑦𝑛) →

(𝑝, 𝑦), 𝑘𝑛 ∈ 𝐾 for all 𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛(𝑦𝑛 − 𝑘𝑛) ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and 𝑡𝑛𝑟𝑛𝑝𝑛 → 0.

Denote 𝑦𝑛 := 𝑦𝑛−𝑘𝑛. Since, 𝐺 is second-order radial-asymptotic directionally compact at (𝑝, 𝑦), with respect to
(𝑢̄, 𝑣), we have 𝑦𝑛 → 𝑦′ ∈ 𝑌 . Then, one has 𝑦′ ∈ 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Together with 𝑦𝑛 → 𝑦, we have 𝑘𝑛 → 𝑘 ∈ 𝐾
and 𝑦′ = 𝑦 − 𝑘, which implies that 𝑦 − 𝑘 ∈ 𝐷2

𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Therefore, 𝑦 ∈ 𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) + 𝐾,∀𝑝 ∈ 𝑃 .

Secondly, we prove that (2.4) holds. Let 𝑦 ∈ 𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) + 𝐾. Then, there exist 𝑦 ∈

𝐷
2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) and 𝑘 ∈ 𝐾 such that 𝑦 = 𝑦 + 𝑘. Thus, there exist 𝑡𝑛 → 0+, 𝑟𝑛 > 0, (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦)

for all 𝑛 ∈ N, such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and 𝑡𝑛𝑟𝑛𝑝𝑛 → 0.

Setting 𝑦′𝑛 := 𝑦𝑛 + 𝑘, one has 𝑦′𝑛 → 𝑦 + 𝑘 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦′𝑛 = 𝑦 + 𝑡𝑛𝑣 +

1
2
𝑡𝑛𝑟𝑛𝑦𝑛 +

1
2
𝑡𝑛𝑟𝑛𝑘 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
+ 𝐾

and 𝑡𝑛𝑟𝑛𝑝𝑛 → 0. Therefore, 𝑦 = 𝑦 + 𝑘 ∈ 𝐷
2(𝑏)
𝑆 (𝐺 + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). �

In Proposition 2.16, if 𝐺 is not second-order radial-asymptotic directionally compact at (𝑝, 𝑦) with respect to
(𝑢̄, 𝑣) in any direction 𝑝 ∈ 𝑃 , then Proposition 2.16 may not hold. The following example illustrates the case.

Example 2.17. Let 𝑃 = R2, 𝑌 = R, 𝐾 = R+ and 𝐺 : 𝑃 ⇒ 𝑌 be difined by

𝐺(𝑝) =

{︃{︀
𝑝2
1 + 𝑝1,−1

}︀
, if 𝑝1 = 𝑝2 ≥ 0,

∅, otherwise,

where 𝑝 = (𝑝1, 𝑝2) ∈ R2. Let (𝑝, 𝑦) = ((0, 0), 0) ∈ gph𝐺 and (𝑢̄, 𝑣) = ((1, 0), 1). We have, for all 𝑝 = (𝑝1, 𝑝2) ∈ 𝑃 ,

𝐷2
𝑆𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐺(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = {𝑝1}.

Therefore, 𝐺 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and
𝐺

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) = {𝑝1}. We have, for all 𝑝 = (𝑝1, 𝑝2) ∈ 𝑃 ,

𝐷2
𝑆(𝐺 + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 (𝐺 + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = R.
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Hence, 𝐺 + 𝐾 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and (𝐺 +
𝐾)2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝) = R. Thus, for all 𝑝 = (𝑝1, 𝑝2) ∈ 𝑃 ,

(𝐺 + 𝐾)2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) ̸= 𝐺

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) + 𝐾.

The reason is that the condition second-order radial-asymptotic directionally compact of 𝐺 does not hold.
Indeed, for the direction 𝑝 = (1, 1), for every 𝑡𝑛 → 0+, 𝑟𝑛 > 0 for 𝑝𝑛 = (𝑝1𝑛, 𝑝2𝑛) → 𝑝 = (1, 1), the sequence
{𝑦𝑛} ⊆ R with

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = −1 ∈ 𝐺

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and 𝑡𝑛𝑟𝑛𝑝𝑛 → 0,

i.e. 𝑦𝑛 = − 2
𝑡𝑛𝑟𝑛

− 2
𝑟𝑛

, has no convergent subsequence. Thus, the condition second-order radial-asymptotic

directionally compact of 𝐺 is not satisfied.

3. Second-order radial-asymptotic proto-differentiability of Borwein
efficient solution map and Borwein efficient frontier map

In this section, we consider the second-order sensitivity analysis of parameterized vector optimization prob-
lems. Firstly, some notations and definitions are recollected. Let 𝑓 : 𝑃 × 𝑋 → 𝑌 be a vector function and
𝐶 : 𝑃 ⇒ 𝑋 be a multifunction. Let 𝐹 : 𝑃 ⇒ 𝑌 be a multifunction defined by

𝐹 (𝑝) := 𝑓(𝑝, 𝐶(𝑝)) = {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝐶(𝑝), 𝑦 = 𝑓(𝑝, 𝑥)}.

We consider the following parametric vector optimization problem

(PVO𝑝) BoMin𝐾{𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝐶(𝑝), 𝑦 = 𝑓(𝑝, 𝑥)} = BoMin𝐾𝐹 (𝑝),

where 𝑥 is decision variable, 𝑝 is perturbation parameter, 𝑓 is objective map, 𝐶 is constraint map and 𝐹 is
feasible set map in objective space. The Borwein efficient perturbation map/the Borwein efficient frontier map
ℬ : 𝑃 ⇒ 𝑌 of a family of parameterized vector optimization problem is defined by

ℬ(𝑝) := BoMin𝐾{𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝐶(𝑝), 𝑦 = 𝑓(𝑝, 𝑥)} = BoMin𝐾𝐹 (𝑝),

and the Borwein efficient solution map ℋ is given by

ℋ(𝑝) := {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝐶(𝑝), 𝑓(𝑝, 𝑥) ∈ ℬ(𝑝)}.

Definition 3.1. 𝐹 is said to be 𝐾-dominated by ℬ near 𝑝 ∈ 𝑃 if there exists a neighborhood 𝑈 of 𝑝, such that

𝐹 (𝑝) ⊆ ℬ(𝑝) + 𝐾, ∀𝑝 ∈ 𝑈.

Remark 3.2. Since ℬ(𝑝) ⊆ 𝐹 (𝑝) for all 𝑝 ∈ 𝑃 , the 𝐾-dominatedness of 𝐹 by ℬ implies that

(i) 𝐹 (𝑝) + 𝐾 = ℬ(𝑝) + 𝐾, ∀𝑝 ∈ 𝑈 ;
(ii) For (𝑝, 𝑦) ∈ gphℬ and (𝑢̄, 𝑣) ∈ 𝑃 × 𝑌 ,

𝐷2
𝑆(𝐹 + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷2

𝑆(ℬ + 𝐾)(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), ∀𝑝 ∈ 𝑃.

Proposition 3.3. Let 𝑝 ∈ 𝑃, 𝑥̄ ∈ ℋ(𝑝) and 𝑦 = 𝑓(𝑝, 𝑥̄), (𝑢̄, 𝑤̄, 𝑣) ∈ 𝑃 × 𝑋 × 𝑌 . Suppose that the following
conditions hold:

(i) 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄) and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄);
(ii) ∇𝑥𝑓(𝑝, 𝑥̄)(.) is strictly monotone on 𝑋;
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(iii) 𝐶 is second-order radial-asymptotic directionally compact at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄) in any direction
𝑝 ∈ 𝑃 .

Then, the Borwein efficient solution map ℋ is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑥̄)
in the direction (𝑢̄, 𝑤̄) whenever the Borwein efficient perturbation map ℬ is second-order radial-asymptotic
proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣). Furthermore, for all 𝑝 ∈ 𝑃 ,

ℋ2(𝑆)
𝑝,𝑥̄,𝑢̄,𝑤̄(𝑝) =

{︁
𝑥 ∈ 𝑋 | 𝑥 ∈ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝),∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥) ∈ ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝)

}︁
.

Proof. Let 𝑝 ∈ 𝑃 . Setting 𝐿 :=
{︁

𝑥 ∈ 𝑋 | 𝑥 ∈ 𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝),∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥) ∈ ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝)
}︁

. From
Remark 2.7, we only need to prove that, ∀𝑝 ∈ 𝑃,

𝐷2
𝑆ℋ(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) ⊆ 𝐿 ⊆ 𝐷

2(𝑏)
𝑆 ℋ(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝). (3.1)

Let 𝑥 ∈ 𝐷2
𝑆ℋ(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝). Then, there exist 𝑡𝑛 → 0+, 𝑟𝑛 > 0 and (𝑝𝑛, 𝑥𝑛) → (𝑝, 𝑥) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛𝑥𝑛 ∈ ℋ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, ∀𝑛 ∈ N.

Thus, there exists a sequence {̃︀𝑥𝑛} ⊆ 𝑋 such that ̃︀𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and

𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛𝑥𝑛 = ̃︀𝑥𝑛,

which in turn implies that

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, ̃︀𝑥𝑛

)︂
∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Setting ̃︀𝑥′𝑛 :=
̃︀𝑥𝑛 − 𝑥̄− 𝑡𝑛𝑤̄

1
2
𝑡𝑛𝑟𝑛

, we have

̃︀𝑥𝑛 = 𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
,

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛)︂ ∈ ℬ(︂𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
. (3.2)

Combining this with (iii), we can suppose that ̃︀𝑥′𝑛 → ̃︀𝑥′. Then, we have ̃︀𝑥′ ∈ 𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝). Setting

𝑦𝑛 :=
𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛)︂− 𝑓(𝑝, 𝑥̄)− 𝑡𝑛𝑣

1
2
𝑡𝑛𝑟𝑛

,

we deduce from (3.2) that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
. (3.3)

Since 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄), we obtain that

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛)︂ = 𝑓(𝑝, 𝑥̄) + 𝑡𝑛∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) +

1
2
𝑡𝑛𝑟𝑛∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, ̃︀𝑥′𝑛)
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+
1
2
𝑡2𝑛∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥′𝑛)︂,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥′𝑛)︂)︂

+ 𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛)︂⃦⃦⃦⃦2

)︃
. (3.4)

From 𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛)︂, 𝑦 = 𝑓(𝑝, 𝑥̄), 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) and

(3.4), we deduce that

𝑦𝑛 = ∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, ̃︀𝑥′𝑛) +
𝑡𝑛
𝑟𝑛
∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥′𝑛)︂,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥′𝑛)︂)︂

+

𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥′𝑛)︂⃦⃦⃦⃦2

)︃
1
2
𝑡𝑛𝑟𝑛

·

Let 𝑛 →∞, we obtain
𝑦𝑛 → ∇𝑓(𝑝, 𝑥̄)(𝑝, ̃︀𝑥′).

This and (3.3) give us that ∇𝑓(𝑝, 𝑥̄)(𝑝, ̃︀𝑥′) ∈ ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). Hence, 𝑥 ∈ 𝐿, i.e. the first inclusion in (3.1) is fulfilled.

Now, we prove the second inclusion in (3.1). Let 𝑝 ∈ 𝑃 and 𝑥 ∈ 𝐿. Then, 𝑥 ∈ 𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) and

𝑦 := ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥) ∈ ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). Since ℬ is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the

direction (𝑢̄, 𝑣). Hence, for all 𝑡𝑛 → 0+, 𝑟𝑛 > 0, there exists (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
⊆ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

This leads the existence of sequence {𝑥𝑛} ⊆ 𝑋 such that 𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥𝑛

)︂
.

Setting ̃︀𝑥𝑛 :=
𝑥𝑛 − 𝑥̄− 𝑡𝑛𝑤̄

1
2
𝑡𝑛𝑟𝑛

, we get

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛

)︂
(3.5)

and

𝑥𝑛 = 𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Together with (iii), we have ̃︀𝑥𝑛 → ̃︀𝑥. Thus,

̃︀𝑥 ∈ 𝐷
2(𝑏)
𝑆 𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) ⊆ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝).

Moreover, since 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄), we obtain that

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛

)︂
= 𝑓(𝑝, 𝑥̄) + 𝑡𝑛∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) +

1
2
𝑡𝑛𝑟𝑛∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, ̃︀𝑥𝑛)
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+
1
2
𝑡2𝑛∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥𝑛

)︂)︂
+ 𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛

)︂⃦⃦⃦⃦2
)︃

. (3.6)

From (3.5), (3.6) and 𝑦 = 𝑓(𝑝, 𝑥̄), 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄), we deduce that

𝑦𝑛 = ∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, ̃︀𝑥𝑛) +
𝑡𝑛
𝑟𝑛
∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛̃︀𝑥𝑛

)︂)︂

+

𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛

)︂⃦⃦⃦⃦2
)︃

1
2
𝑡𝑛𝑟𝑛

·

Let 𝑛 →∞, we obtain
𝑦𝑛 → 𝑦 := ∇𝑓(𝑝, 𝑥̄)(𝑝, ̃︀𝑥).

Combining this with 𝑦 := ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥), we have

∇𝑥𝑓(𝑝, 𝑥̄)(𝑥) = ∇𝑥𝑓(𝑝, 𝑥̄)(̃︀𝑥).

From ∇𝑥𝑓(𝑝, 𝑥̄)(.) is strictly monotone on 𝑋, we get 𝑥 = ̃︀𝑥. Therefore, for any 𝑡𝑛 → 0+, 𝑟𝑛 > 0, there exists
(𝑝𝑛, ̃︀𝑥𝑛) → (𝑝, 𝑥) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0,

𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛̃︀𝑥𝑛

)︂
∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Therefore, 𝑥 ∈ 𝐷
2(𝑏)
𝑆 ℋ(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝). The proof is complete. �

Now, we present an example to illustrate Proposition 3.3.

Example 3.4. Let 𝑃 = R+, 𝑋 = 𝑌 = R2, 𝐾 = R2
+ and 𝑓 : 𝑃 ×𝑋 → 𝑌,𝐶 : 𝑃 ⇒ 𝑋 be defined as follows:

𝑓(𝑝, 𝑥) = (𝑥1, 𝑥2), ∀𝑝 ∈ 𝑃, ∀𝑥 = (𝑥1, 𝑥2) ∈ 𝑋,

𝐶(𝑝) =
{︀

(𝑥1, 𝑥2) ∈ R2 | 𝑥1 = 𝑝2 + 𝑝, 𝑥2 ≥ 3𝑝
}︀
.

Taking 𝑝 = 0, 𝑥̄ = (0, 0) and (𝑢̄, 𝑤̄) = (1, (1, 3)), we have

𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) =

{︀
(𝑥1, 𝑥2) ∈ R2 | 𝑥1 = 𝑝, 𝑥2 ≥ 3𝑝

}︀
.

Obviousbly, 𝐶 is second-order radial-asymptotic directionally compact at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄) in any
direction 𝑝 ∈ 𝑃 . Since 𝑦 = 𝑓(𝑝, 𝑥̄) = 0,

∇𝑓(𝑝, 𝑥) = (∇𝑝𝑓(𝑝, 𝑥),∇𝑥𝑓(𝑝, 𝑥)) =
(︂[︂

0
0

]︂
,

[︂
1 0
0 1

]︂)︂
, ∇2𝑓(𝑝, 𝑥) = 0,

∇𝑓(𝑝, 𝑥̄) =
(︂[︂

0
0

]︂
,

[︂
1 0
0 1

]︂)︂
, ∇2𝑓(𝑝, 𝑥̄) = 0
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and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) = (1, 3). Hence, condition (i) in Proposition 3.3 holds. Since

∇𝑥𝑓(𝑝, 𝑥̄) =
[︂
1 0
0 1

]︂
,

we have ∇𝑥𝑓(𝑝, 𝑥̄)(.) is strictly monotone on 𝑋. By direct calculation, we have, for any 𝑝 ∈ 𝑃 ,

𝐹 (𝑝) =
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦1 = 𝑝2 + 𝑝, 𝑦2 ≥ 3𝑝
}︀
,

and
ℬ(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (𝑝2 + 𝑝, 3𝑝)

}︀
.

Therefore, for any 𝑝 ∈ 𝑃 , one has

𝐷2
𝑆ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (𝑝, 3𝑝)

}︀
.

Hence, ℬ is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and

ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (𝑝, 3𝑝)

}︀
.

By direct calculation, one has

ℋ(𝑝) = {𝑥 ∈ 𝑋 | 𝑥 ∈ 𝐶(𝑝), 𝑓(𝑝, 𝑥) ∈ ℬ(𝑝)} =
{︀
𝑥 = (𝑥1, 𝑥2) ∈ R2 | 𝑥 = (𝑝2 + 𝑝, 3𝑝)

}︀
.

This means that, for all 𝑝 ∈ 𝑃 ,

𝐷2
𝑆ℋ(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) = 𝐷

2(𝑏)
𝑆 ℋ(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) =

{︀
𝑥 = (𝑥1, 𝑥2) ∈ R2 | 𝑥 = (𝑝, 3𝑝)

}︀
.

Therefore, ℋ is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑥̄) in the direction (𝑢̄, 𝑤̄) and

ℋ2(𝑆)
𝑝,𝑥̄,𝑢̄,𝑤̄(𝑝) =

{︀
𝑥 = (𝑥1, 𝑥2) ∈ R2 | 𝑥 = (𝑝, 3𝑝)

}︀
,∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥) = 𝑥,{︁

𝑥 = (𝑥1, 𝑥2) ∈ R2 | 𝑥 ∈ 𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝),∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥) ∈ ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝)
}︁

=
{︀
𝑥 = (𝑥1, 𝑥2) ∈ R2 | 𝑥 = (𝑝, 3𝑝)

}︀
= ℋ2(𝑆)

𝑝,𝑥̄,𝑢̄,𝑤̄(𝑝).

Thus, Proposition 3.3 is satisfied.

Proposition 3.5. Let 𝑝 ∈ 𝑃, 𝑥̄ ∈ 𝐶(𝑝) and 𝑦 = 𝑓(𝑝, 𝑥̄), (𝑢̄, 𝑤̄, 𝑣) ∈ 𝑃 × 𝑋 × 𝑌 . Suppose that the following
conditions hold:

(i) 𝐶 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑥̄) in the direction (𝑢̄, 𝑤̄);
(ii) 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄) and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄);
(iii) 𝐶 is second-order radial-asymptotic directionally compact at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄) in any direction

𝑝 ∈ 𝑃 .

Then, 𝐹 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣). Furthermore,
for all 𝑝 ∈ 𝑃 ,

𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
𝑦 ∈ 𝑌 | 𝑥 ∈ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝), 𝑦 = ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥)
}︀
.

Proof. Let 𝑝 ∈ 𝑃 . Setting 𝐿 :=
{︀
𝑦 ∈ 𝑌 | 𝑥 ∈ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝), 𝑦 = ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥)
}︀

. From Remark 2.7, we only
need to prove that, ∀𝑝 ∈ 𝑃,

𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐿 ⊆ 𝐷

2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). (3.7)
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Let 𝑦 ∈ 𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Then, there exist 𝑡𝑛 → 0+, 𝑟𝑛 > 0 and (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Then, there exists a sequence {𝑥𝑛} ⊆ 𝑋 such that 𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥𝑛

)︂
.

Setting 𝑥′𝑛 :=
𝑥𝑛 − 𝑥̄− 𝑡𝑛𝑤̄

1
2
𝑡𝑛𝑟𝑛

, we have

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥′𝑛

)︂
(3.8)

and

𝑥𝑛 = 𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛𝑥′𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Since 𝐶 is second-order radial-asymptotic directionally compact at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄). Without loss
of generality, we suppose that 𝑥′𝑛 → 𝑥′. Then, 𝑥′ ∈ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝). Moreover, since 𝑓 is twice continuously
Fréchet differentiable at (𝑝, 𝑥̄), one has

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥′𝑛

)︂
= 𝑓(𝑝, 𝑥̄) + 𝑡𝑛∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) +

1
2
𝑡𝑛𝑟𝑛∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, 𝑥′𝑛)

+
1
2
𝑡2𝑛∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥′𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥′𝑛

)︂)︂
+ 𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥′𝑛

)︂⃦⃦⃦⃦2
)︃

. (3.9)

From (3.8), (3.9) and 𝑦 = 𝑓(𝑝, 𝑥̄), 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄), one has

𝑦𝑛 = ∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, 𝑥′𝑛) +
𝑡𝑛
𝑟𝑛
∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥′𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥′𝑛

)︂)︂

+

𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥′𝑛

)︂⃦⃦⃦⃦2
)︃

1
2
𝑡𝑛𝑟𝑛

·

Let 𝑛 →∞, we obtain
𝑦𝑛 → 𝑦 := ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥′).

Therefore, 𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐿. It follows that the first inclusion in (3.7) holds.

Now, we will prove that 𝐿 ⊆ 𝐷
2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) holds. Let 𝑝 ∈ 𝑃 and 𝑦 ∈ 𝐿. Then, there exists 𝑥 ∈

𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) such that 𝑦 = ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥). Since 𝐶 is second-order radial-asymptotic proto-differentiable

at (𝑝, 𝑥̄) in the direction (𝑢̄, 𝑤̄). Thus, for all 𝑡𝑛 → 0+, 𝑟𝑛 > 0, there exists (𝑝𝑛, 𝑥𝑛) → (𝑝, 𝑥) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0
and

𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
,
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which implies that,

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂
∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
. (3.10)

Setting

𝑦𝑛 :=
𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂
− 𝑓(𝑝, 𝑥̄)− 𝑡𝑛𝑣

1
2
𝑡𝑛𝑟𝑛

· (3.11)

Then,

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Since 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄), we obtain that

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂
= 𝑓(𝑝, 𝑥̄) + 𝑡𝑛∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) +

1
2
𝑡𝑛𝑟𝑛∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, 𝑥𝑛)

+
1
2
𝑡2𝑛∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂)︂
+ 𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂⃦⃦⃦⃦2
)︃

. (3.12)

From (3.11), (3.12) and 𝑦 = 𝑓(𝑝, 𝑥̄), 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄), we deduce that

𝑦𝑛 = ∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, 𝑥𝑛) +
𝑡𝑛
𝑟𝑛
∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂)︂

+

𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂⃦⃦⃦⃦2
)︃

1
2
𝑡𝑛𝑟𝑛

·

Let 𝑛 →∞, we obtain
𝑦𝑛 → 𝑦 := ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥).

Thus, for all 𝑡𝑛 → 0+, 𝑟𝑛 > 0, there exists (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

Consequently,
𝑦 ∈ 𝐷

2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝).

It follows that the second inclusion in (3.7) holds. The proof is complete. �

Theorem 3.6. Let 𝑝 ∈ 𝑃, 𝑥̄ ∈ ℋ(𝑝) and 𝑦 = 𝑓(𝑝, 𝑥̄), (𝑢̄, 𝑤̄, 𝑣) ∈ 𝑃×𝑋×𝑌 . Suppose that the following conditions
hold:

(i) 𝐶 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑥̄) in the direction (𝑢̄, 𝑤̄);
(ii) 𝐶 is second-order radial-asymptotic directionally compact at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄) in any direction

𝑝 ∈ 𝑃 ;
(iii) 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄) and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄);
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(iv) 𝐹 is local Lipschitz at 𝑝;
(v) 𝐹 is 𝐾-dominated by ℬ near 𝑝;
(vi) For all 𝑝 ∈ 𝑃,𝑤 − 𝑧 ∈ 𝐾 ∪ (−𝐾), ∀𝑤, 𝑧 ∈ 𝐹 (𝑝), 𝑤 ̸= 𝑧.

Then, the Borwein efficient perturbation map ℬ is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦)
in the direction (𝑢̄, 𝑣). Moreover, for all 𝑝 ∈ 𝑃 ,

ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) = BoMin𝐾𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝)

= BoMin𝐾

{︀
𝑦 ∈ 𝑌 | 𝑥 ∈ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝), 𝑦 = ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥)
}︀
.

Proof. First of all, we prove that ℬ(𝑝) is a single point set for all 𝑝 ∈ 𝑃 . Let 𝑤 ∈ ℬ(𝑝), then 𝑤 ∈ 𝐹 (𝑝). Suppose
to contrary that ℬ(𝑝) is not a single point set. Therefore, for any 𝑧 ∈ ℬ(𝑝) ⊂ 𝐹 (𝑝) with 𝑤 ̸= 𝑧, it implies from
assumption (vi) that 𝑤− 𝑧 ∈ 𝐾 ∪ (−𝐾). Hence, 𝑤− 𝑧 ∈ 𝐾 or 𝑤− 𝑧 ∈ −𝐾. Obviously, 𝑤− 𝑧 ̸= 0. If 𝑤− 𝑧 ∈ 𝐾,
then we have 𝑧 − 𝑤 ∈ −𝐾. Thus,

cl cone(𝐹 (𝑝)− 𝑤) ∩ ((−𝐾)∖{0}) ̸= ∅,

which contradicts the fact that 𝑤 ∈ ℬ(𝑝). If 𝑤 − 𝑧 ∈ −𝐾, then we have

cl cone(𝐹 (𝑝)− 𝑧) ∩ ((−𝐾)∖{0}) ̸= ∅,

which contradicts the fact that 𝑧 ∈ ℬ(𝑝). Thus, ℬ(𝑝) is a single point set for all 𝑝 ∈ 𝑃 .
Let an arbitrary 𝑝 ∈ 𝑃 . By (i), (ii) and (iii) and Proposition 3.5, we follow that 𝐹 is second-order radial-

asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and

𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
𝑦 ∈ 𝑌 | 𝑥 ∈ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝), 𝑦 = ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥)
}︀
.

Setting 𝐿 := BoMin𝐾𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). From Remark 2.7, we only need to prove that

𝐷2
𝑆ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐿 ⊆ 𝐷

2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). (3.13)

First, we prove that 𝐷2
𝑆ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐿,∀𝑝 ∈ 𝑃 . Let 𝑦 ∈ 𝐷2

𝑆ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Then, there exist 𝑡𝑛 → 0+, 𝑟𝑛 > 0
and (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
⊆ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
.

This implies that 𝑦 ∈ 𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). Arguing by contradiction, suppose that

𝑦 /∈ BoMin𝐾𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝).

Thus, there exist ℎ𝑚 > 0 and ̂︀𝑦𝑚 ∈ 𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) such that

lim
𝑚→∞

ℎ𝑚(̂︀𝑦𝑚 − 𝑦) ∈ −𝐾∖{0}. (3.14)

Since 𝐹 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and ̂︀𝑦𝑚 ∈
𝐷2

𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), 𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝), one yields, for all 𝑡𝑛 → 0+, 𝑟𝑛 > 0 there exists

(̂︀𝑝𝑚𝑛
, ̂︀𝑦𝑚𝑛

) → (𝑝, ̂︀𝑦𝑚) such that 𝑡𝑛𝑟𝑛̂︀𝑝𝑚𝑛
→ 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛̂︀𝑦𝑚𝑛 ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛̂︀𝑝𝑚𝑛

)︂
, ∀𝑛 ∈ N. (3.15)
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Since 𝐹 is 𝐾-dominated by ℬ near 𝑝 ∈ 𝑃 , there exists the neighborhood 𝑈1 of 𝑝 such that

𝐹 (𝑝) ⊆ ℬ(𝑝) + 𝐾, ∀𝑝 ∈ 𝑈1. (3.16)

Because 𝐹 is local Lipschitz at 𝑝, one implies that exist the neighborhood 𝑈2 of 𝑝 and 𝑀 > 0 such that

𝐹 (𝑝1) ⊆ 𝐹 (𝑝2) + 𝑀‖𝑝1 − 𝑝2‖𝐵𝑌 , ∀𝑝1, 𝑝2 ∈ 𝑈2. (3.17)

Naturally, there exists 𝑛0 > 0 with 𝑛0 ∈ N, such that

𝑝 + 𝑡𝑛𝑢̄ +
1
2
𝑡𝑛𝑟𝑛̂︀𝑝𝑚𝑛

, 𝑝 + 𝑡𝑛𝑢̄ +
1
2
𝑡𝑛𝑟𝑛𝑝𝑛 ∈ 𝑈1 ∩ 𝑈2, ∀𝑛 > 𝑛0, ∀𝑚 ∈ N. (3.18)

Thus, it follows from (3.15), (3.18), (3.17) and (3.16), there exists 𝑏𝑛 ∈ 𝐵𝑌 in order that, for every 𝑛 large
enough,

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛(̂︀𝑦𝑚𝑛

−𝑀‖̂︀𝑝𝑚𝑛
− 𝑝𝑛‖𝑏𝑛) ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
⊆ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
+ 𝐾, ∀𝑚 ∈ N.

(3.19)

Because ℬ(𝑝) is a single point set for all 𝑝 ∈ 𝑃 . So, by (3.19), one has

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛(̂︀𝑦𝑚𝑛

−𝑀‖̂︀𝑝𝑚𝑛
− 𝑝𝑛‖𝑏𝑛)−

(︂
𝑦 + 𝑡𝑛𝑣 +

1
2
𝑡𝑛𝑟𝑛𝑦𝑛

)︂
=

1
2
𝑡𝑛𝑟𝑛(̂︀𝑦𝑚𝑛

−𝑀‖̂︀𝑝𝑚𝑛
− 𝑝𝑛‖𝑏𝑛 − 𝑦𝑛) ∈ 𝐾.

Thus, ̂︀𝑦𝑚𝑛 −𝑀‖̂︀𝑝𝑚𝑛 − 𝑝𝑛‖𝑏𝑛 − 𝑦𝑛 → ̂︀𝑦𝑚 − 𝑦, ∀𝑚 ∈ N.

Since 𝐾 is a pointed closed convex cone in Euclidean space 𝑌 , we deduce ̂︀𝑦𝑚 − 𝑦 ∈ 𝐾, ∀𝑚 ∈ N. Therefore,
we derive from ℎ𝑚 > 0 and 𝐾 is a pointed closed convex cone that

lim
𝑚→∞

ℎ𝑚(̂︀𝑦𝑚 − 𝑦) ∈ 𝐾,

which contradicts (3.14). Thus, 𝑦 ∈ BoMin𝐾𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐿, which completes the first inclusion in (3.13).

Now, we prove 𝐿 ⊆ 𝐷
2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝),∀𝑝 ∈ 𝑃 . Let 𝑦 ∈ 𝐿 = BoMin𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). Then, 𝑦 ∈ 𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). By the

second-order radial-asymptotic proto-differentiability of 𝐹 at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣), for any 𝑡𝑛 → 0+, 𝑟𝑛 >
0, there exists (𝑝𝑛, 𝑦𝑛) → (𝑝, 𝑦) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, ∀𝑛 ∈ N.

Hence,

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
+ 𝐾, ∀𝑛 ∈ N.

On the other hand, from the 𝐾-dominatedness by ℬ near 𝑝 of 𝐹 and ℬ(𝑝) ⊆ 𝐹 (𝑝),∀𝑝 ∈ 𝑃 , there exists the
neighborhood 𝑈 of 𝑝 such that

𝐹 (𝑝) + 𝐾 = ℬ(𝑝) + 𝐾, ∀𝑝 ∈ 𝑈.

Thus,

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛𝑦𝑛 ∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
+ 𝐾, ∀𝑛 ∈ N.

Therefore, one follows the existence of 𝑘𝑛 ∈ 𝐾 such that

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛̃︀𝑦𝑛 ∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
⊆ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, ̃︀𝑦𝑛 := 𝑦𝑛 − 𝑘𝑛, ∀𝑛 ∈ N. (3.20)
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Thus, there exists 𝑥𝑛 ∈ 𝑋 such that

𝑥̄ + 𝑡𝑛𝑤̄ +
1
2
𝑡𝑛𝑟𝑛𝑥𝑛 ∈ 𝐶

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
,

and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛̃︀𝑦𝑛 = 𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂
. (3.21)

As the second-order radial-asymptotic directionally compactness of 𝐶 at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄), we derive
that the sequence {𝑥𝑛} ⊆ 𝑋 has a convergent subsequence, also denoted by 𝑥𝑛 and 𝑥𝑛 → 𝑥, which in turn
implies that 𝑥 ∈ 𝐷

2(𝑏)
𝑆 𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) ⊆ 𝐷2

𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝). Moreover, since 𝑓 is twice continuously Fréchet
differentiable at (𝑝, 𝑥̄), one has

𝑓

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑥̄ + 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂
= 𝑓(𝑝, 𝑥̄) + 𝑡𝑛∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) +

1
2
𝑡𝑛𝑟𝑛∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, 𝑥𝑛)

+
1
2
𝑡2𝑛∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂)︂
+ 𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂⃦⃦⃦⃦2
)︃

. (3.22)

From (3.21), (3.22) and 𝑦 = 𝑓(𝑝, 𝑥̄), 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄), one has

̃︀𝑦𝑛 = ∇𝑓(𝑝, 𝑥̄)(𝑝𝑛, 𝑥𝑛) +
𝑡𝑛
𝑟𝑛
∇2𝑓(𝑝, 𝑥̄)

(︂(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂
,

(︂
𝑢̄ +

1
2
𝑟𝑛𝑝𝑛, 𝑤̄ +

1
2
𝑟𝑛𝑥𝑛

)︂)︂

+

𝑜

(︃⃦⃦⃦⃦(︂
𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛, 𝑡𝑛𝑤̄ +

1
2
𝑡𝑛𝑟𝑛𝑥𝑛

)︂⃦⃦⃦⃦2
)︃

1
2
𝑡𝑛𝑟𝑛

·

Let 𝑛 →∞, we obtain ̃︀𝑦𝑛 → ̃︀𝑦 := ∇𝑓(𝑝, 𝑥̄)(𝑝, 𝑥).

On the other hand, from (3.20), one gets

̃︀𝑦 ∈ 𝐷
2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) ⊆ 𝐷

2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝).

By the closedness of 𝐾 and 𝑘𝑛 = 𝑦𝑛 − ̃︀𝑦𝑛 → 𝑦− ̃︀𝑦, one has 𝑦− ̃︀𝑦 ∈ 𝐾. Since 𝐾 is a pointed closed convex cone,
there exists ℎ > 0 such that

ℎ(𝑦 − ̃︀𝑦) ∈ 𝐾.

We prove that 𝑦 = ̃︀𝑦. Indeed, suppose to the contrary that 𝑦 ̸= ̃︀𝑦. Then, one gets

ℎ(̃︀𝑦 − 𝑦) ∈ −𝐾∖{0}.

Since 𝐷
2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝), it follows that there exists ̃︀𝑦 ∈ 𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) such that

ℎ(̃︀𝑦 − 𝑦) ∈ −𝐾∖{0}.

Hence, 𝑦 /∈ BoMin𝐾𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝), a contradiction. So, 𝑦 = ̃︀𝑦 ∈ 𝐷

2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝). The proof is complete. �
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Remark 3.7. Assumption (vi) in Theorem 3.6 is difference from assumption (vi) in Theorem 3.2 of [34],
assumption (vi) in Proposition 3.1, Proposition 3.2 of [35] and assumption (vi) in Proposition 3.3 of [37]. Thus,
Theorem 3.6 improves the results in [34,35,37].

The following example shows that the condition (vi) in Theorem 3.6 is essential.

Example 3.8. Let 𝑃 = R+, 𝑋 = 𝑌 = R2, 𝐾 =
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥ 3𝑦1 ≥ 0
}︀

and 𝑓 : 𝑃 ×𝑋 → 𝑌, 𝐶 : 𝑃 ⇒ 𝑋
be defined as follows:

𝑓(𝑝, 𝑥) = (𝑥1, 𝑥2), ∀𝑝 ∈ 𝑃, ∀𝑥 = (𝑥1, 𝑥2) ∈ 𝑋,

𝐶(𝑝) =
{︀

(𝑥1, 𝑥2) ∈ R2 | 𝑥1 ≥ 𝑝2, 𝑥2 ≥ 3𝑝2 + 3𝑝
}︀
∪
{︀

(𝑥1, 𝑥2) ∈ R2 | 𝑥2 ≥ 3𝑥1 ≥ 0
}︀
.

Taking 𝑝 = 0, 𝑥̄ = (0, 0) and (𝑢̄, 𝑤̄) = (1, (1, 3)), we have

𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) =

{︀
(𝑥1, 𝑥2) ∈ R2 | 𝑥2 ≥ 3𝑝

}︀
∪
{︀

(𝑥1, 𝑥2) ∈ R2 | 𝑥2 ≥ 3𝑥1

}︀
,

leading that the condition (i) in Theorem 3.6 is satisfied. Since 𝑦 = 𝑓(𝑝, 𝑥̄) = 0,

∇𝑓(𝑝, 𝑥) = (∇𝑝𝑓(𝑝, 𝑥),∇𝑥𝑓(𝑝, 𝑥)) =
(︂[︂

0
0

]︂
,

[︂
1 0
0 1

]︂)︂
, ∇2𝑓(𝑝, 𝑥) = 0,

∇𝑓(𝑝, 𝑥̄) =
(︂[︂

0
0

]︂
,

[︂
1 0
0 1

]︂)︂
, ∇2𝑓(𝑝, 𝑥̄) = 0,

and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) = (1, 3). Hence, condition (iii) in Theorem 3.6 holds. It is easy to prove that the
assumptions (ii), (iv) and (v) in Theorem 3.6 are satisfied. By direct calculation, we have, for any 𝑝 ∈ 𝑃 ,

𝐹 (𝑝) =
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦1 ≥ 𝑝2, 𝑦2 ≥ 3𝑝2 + 3𝑝
}︀
∪
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥ 3𝑦1 ≥ 0
}︀
,

and
ℬ(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦1 > 𝑝2 + 𝑝, 𝑦2 = 3𝑝2 + 3𝑝

}︀
∪ {(0, 0)}.

Take (1, 3) ∈ 𝐹 (𝑝) and (0, 3) ∈ 𝐹 (𝑝), we have

(0, 3)− (1, 3) = (−1, 0) /∈ 𝐾 ∪ (−𝐾).

Thus, the assumption (vi) in Theorem 3.6 is not satisfied. For any 𝑝 ∈ 𝑃 , one has

𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥ 3𝑝

}︀
∪
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥ 3𝑦1

}︀
,

𝐷2
𝑆ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦1 ≥ 𝑝, 𝑦2 = 3𝑝

}︀
.

Hence, 𝐹 and ℬ are second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and

𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥ 3𝑝

}︀
∪
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦2 ≥ 3𝑦1

}︀
,

ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦1 ≥ 𝑝, 𝑦2 = 3𝑝

}︀
.

Hence,
BoMin𝐾𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦1 > 𝑝, 𝑦2 = 3𝑝

}︀
.

This means that, for all 𝑝 ∈ 𝑃 ,
ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝) ̸= BoMin𝐾𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝).

Thus, Theorem 3.6 does not hold. Because the assumption (vi) in Theorem 3.6 is not satisfied.
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Remark 3.9. For all 𝑝 ∈ 𝑃 , ℬ(𝑝) is a single point set if and only if 𝑤 − 𝑧 ∈ 𝐾 ∪ (−𝐾),∀𝑤, 𝑧 ∈ 𝐹 (𝑝), 𝑤 ̸= 𝑧.

Indeed, for all 𝑝 ∈ 𝑃 , if 𝑤 − 𝑧 ∈ 𝐾 ∪ (−𝐾),∀𝑤, 𝑧 ∈ 𝐹 (𝑝), 𝑤 ̸= 𝑧, then we have ℬ(𝑝) is a single point set.
Suppose that ∀𝑝 ∈ 𝑃,ℬ(𝑝) is a single point set, then we need prove that 𝑤−𝑧 ∈ 𝐾∪(−𝐾),∀𝑤, 𝑧 ∈ 𝐹 (𝑝), 𝑤 ̸= 𝑧.

Let 𝑧 ∈ ℬ(𝑝), then 𝑧 ∈ 𝐹 (𝑝). Suppose to contrary that 𝑤 − 𝑧 /∈ 𝐾 ∪ (−𝐾),∀𝑤, 𝑧 ∈ 𝐹 (𝑝), 𝑤 ̸= 𝑧. If 𝑤 − 𝑧 /∈ 𝐾,
then we have 𝑧 − 𝑤 /∈ −𝐾. Thus,

cl cone(𝐹 (𝑝)− 𝑤) ∩ (−𝐾) = {0},

it follows 𝑤 ∈ ℬ(𝑝), a contradiction, since ℬ(𝑝) is a single point set. If 𝑤 − 𝑧 /∈ −𝐾, then we have 𝑧 − 𝑤 /∈ 𝐾.
Thus,

cl cone(𝐹 (𝑝)− 𝑤) ∩𝐾 = {0}.

Since 𝐾 is pointed cone, we get
𝐾 ∩ (−𝐾) = {0} (see [16] page 15).

Hence, we have
cl cone(𝐹 (𝑝)− 𝑤) ∩ (−𝐾) = {0},

it follows 𝑤 ∈ ℬ(𝑝), a contradiction, since ℬ(𝑝) is a single point set. Thus, 𝑤 − 𝑧 ∈ 𝐾 ∪ (−𝐾), ∀𝑤, 𝑧 ∈
𝐹 (𝑝), 𝑤 ̸= 𝑧 for all 𝑝 ∈ 𝑃 .

Now, we present an example to explain the given result in Theorem 3.6.

Example 3.10. Let 𝑃 = R+, 𝑋 = 𝑌 = R2, 𝐾 = R2
+ and 𝑓 : 𝑃 ×𝑋 → 𝑌, 𝐶 : 𝑃 ⇒ 𝑋 be defined as follows:

𝑓(𝑝, 𝑥) = (𝑥1, 𝑥2), ∀𝑝 ∈ 𝑃, ∀𝑥 = (𝑥1, 𝑥2) ∈ 𝑋,

𝐶(𝑝) =
{︀

(𝑥1, 𝑥2) ∈ R2 | 𝑥1 = 𝑝2 + 2𝑝, 𝑥2 ≥ 3𝑝
}︀
.

Taking 𝑝 = 0, 𝑥̄ = (0, 0) and (𝑢̄, 𝑤̄) = (1, (2, 3)), we have

𝐷2
𝑆𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐶(𝑝, 𝑥̄, 𝑢̄, 𝑤̄)(𝑝) =

{︀
(𝑥1, 𝑥2) ∈ R2 | 𝑥1 = 2𝑝, 𝑥2 ≥ 3𝑝

}︀
,

leading that the condition (i) in Theorem 3.6 is satisfied. Since 𝑦 = 𝑓(𝑝, 𝑥̄) = 0,

∇𝑓(𝑝, 𝑥) = (∇𝑝𝑓(𝑝, 𝑥),∇𝑥𝑓(𝑝, 𝑥)) =
(︂[︂

0
0

]︂
,

[︂
1 0
0 1

]︂)︂
, ∇2𝑓(𝑝, 𝑥) = 0,

∇𝑓(𝑝, 𝑥̄) =
(︂[︂

0
0

]︂
,

[︂
1 0
0 1

]︂)︂
, ∇2𝑓(𝑝, 𝑥̄) = 0

and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄) = (2, 3). Hence, condition (iii) in Theorem 3.6 holds. It is easy to prove that the
assumption (ii), (iv), (v) and (vi) in Theorem 3.6 are satisfied. By direct calculation, we have, for any 𝑝 ∈ 𝑃 ,

𝐹 (𝑝) =
{︀

(𝑦1, 𝑦2) ∈ R2 | 𝑦1 = 𝑝2 + 2𝑝, 𝑦2 ≥ 3𝑝
}︀
,

and
ℬ(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (𝑝2 + 2𝑝, 3𝑝)

}︀
.

Therefore, for any 𝑝 ∈ 𝑃 , one has

𝐷2
𝑆𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 𝐹 (𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦1 = 2𝑝, 𝑦2 ≥ 3𝑝

}︀
,

𝐷2
𝑆ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) = 𝐷

2(𝑏)
𝑆 ℬ(𝑝, 𝑦, 𝑢̄, 𝑣)(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (2𝑝, 3𝑝)

}︀
.

Hence, 𝐹 and ℬ are second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣) and

𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
(𝑦1, 𝑦2) ∈ R2 | 𝑦1 = 2𝑝, 𝑦2 ≥ 3𝑝

}︀
,
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ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (2𝑝, 3𝑝)

}︀
.

Hence,
BoMin𝐾𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (2𝑝, 3𝑝)

}︀
.

This means that, for all 𝑝 ∈ 𝑃 ,

ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) = BoMin𝐾𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) =

{︀
𝑦 = (𝑦1, 𝑦2) ∈ R2 | 𝑦 = (2𝑝, 3𝑝)

}︀
.

So, Theorem 3.6 holds here.

Theorem 3.11. Let 𝑝 ∈ 𝑃, 𝑥̄ ∈ ℋ(𝑝) and 𝑦 = 𝑓(𝑝, 𝑥̄), (𝑢̄, 𝑤̄, 𝑣) ∈ 𝑃 × 𝑋 × 𝑌 . Suppose that the following
conditions hold:

(i) 𝐶 is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑥̄) in the direction (𝑢̄, 𝑤̄);
(ii) 𝑓 is twice continuously Fréchet differentiable at (𝑝, 𝑥̄) and 𝑣 = ∇𝑓(𝑝, 𝑥̄)(𝑢̄, 𝑤̄);
(iii) 𝐶 is second-order radial-asymptotic directionally compact at (𝑝, 𝑥̄) with respect to (𝑢̄, 𝑤̄) in any direction

𝑝 ∈ 𝑃 ;
(iv) ℬ is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣);
(v) ℬ is second-order radial-asymptotic directionally compact at (𝑝, 𝑦) with respect to (𝑢̄, 𝑣) in any direction

𝑝 ∈ 𝑃 ;
(vi) 𝐹 is 𝐾-dominated by ℬ near 𝑝.

Then, BoMin𝐾𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) ⊂ ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝),∀𝑝 ∈ 𝑃.

Proof. Since 𝑥̄ ∈ ℋ(𝑝), we have 𝑦 ∈ ℬ(𝑝) ⊆ 𝐹 (𝑝). From (i), (ii), (iii) and Proposition 3.5, we follow that 𝐹
is second-order radial-asymptotic proto-differentiable at (𝑝, 𝑦) in the direction (𝑢̄, 𝑣). Let arbitrary 𝑝 ∈ 𝑃 and
𝑦 ∈ BoMin𝐾𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). Then, 𝑦 ∈ 𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝). From (iv), (v) and Proposition 2.16, it follows that

(ℬ + 𝐾)2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) = ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝) + 𝐾, ∀𝑝 ∈ 𝑃.

On the other hand, from the domination around 𝑝 of 𝐹 and ℬ(𝑝) ⊆ 𝐹 (𝑝),∀𝑝 ∈ 𝑃 , there exists the neighborhood
𝑈 of 𝑝 such that

𝐹 (𝑝) + 𝐾 = ℬ(𝑝) + 𝐾, ∀𝑝 ∈ 𝑈.

Thus,
𝐹

2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) ⊂ (𝐹 + 𝐾)2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝) = (ℬ + 𝐾)2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) = ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝) + 𝐾, ∀𝑝 ∈ 𝑃.

This means that, there exist ̃︀𝑦 ∈ ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) and 𝑘 ∈ 𝐾 such that 𝑦 = ̃︀𝑦 + 𝑘. By the closedness of 𝐾 and

𝑘 = 𝑦 − ̃︀𝑦, one has 𝑦 − ̃︀𝑦 ∈ 𝐾. Since 𝐾 is a pointed closed convex cone, there exists ℎ > 0 such that

ℎ(𝑦 − ̃︀𝑦) ∈ 𝐾.

We will prove that 𝑘 = 0. Indeed, if 𝑘 ∈ 𝐾∖{0}, then

ℎ(̃︀𝑦 − 𝑦) ∈ −𝐾∖{0}.

Since ̃︀𝑦 ∈ ℬ2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝), for any 𝑡𝑛 → 0+, 𝑟𝑛 > 0, there exists (𝑝𝑛, ̃︀𝑦𝑛) → (𝑝, ̃︀𝑦) such that 𝑡𝑛𝑟𝑛𝑝𝑛 → 0 and

𝑦 + 𝑡𝑛𝑣 +
1
2
𝑡𝑛𝑟𝑛̃︀𝑦𝑛 ∈ ℬ

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
⊆ 𝐹

(︂
𝑝 + 𝑡𝑛𝑢̄ +

1
2
𝑡𝑛𝑟𝑛𝑝𝑛

)︂
, ∀𝑛 ∈ N.

It yields that ̃︀𝑦 ∈ 𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝) such that

ℎ(̃︀𝑦 − 𝑦) ∈ −𝐾∖{0}.

Hence, 𝑦 /∈ BoMin𝐾𝐹
2(𝑆)
𝑝,𝑦,𝑢̄,𝑣(𝑝), a contradiction. So 𝑘 = 0, this means that, 𝑦 ∈ ℬ2(𝑆)

𝑝,𝑦,𝑢̄,𝑣(𝑝), 𝑝 ∈ 𝑃 . The proof is
complete. �
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Remark 3.12. (i) By some suitable changes, most of the results of Section 3 are still true when the second-
order radial-asymptotic proto-differentiability is replaced by the second-order radial-asymptotic semi-
differentiability.

(ii) As in Remark 2.7, the results in this paper are different from the results in [34].
(iii) Second-order radial-asymptotic derivative contains both the second-order contingent derivative and the

second-order asymptotic derivative. So, second-order radial-asymptotic proto-differentiability properties of
the efficient solution maps and the perturbation maps are different from the results in [36] when 𝑚 = 2.

(iv) Second-order radial-asymptotic derivative in this paper is different from second-order composed derivatives
in [37]. So, the results in this paper are different from the results in [37].

(v) The proto-differentiability properties of the Borwein efficient solution map and the Borwein efficient frontier
map of parametric vector optimization problems have not been yet considered in [34–37]. So, the obtained
results improve and extend the results in [34–37].

Acknowledgements. The authors would like to thank the Editors for the help in the processing of the article. The authors
are very grateful to the Associate Editor and the Anonymous Referees for many valuable comments and suggestions to
improve the original version of the article.
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