Z -equilibrium in random bi-matrix games: Definition and computation
RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1857-1875

This paper deals with bi-matrix games with random payoffs. Using probability tools, we propose a solution based on the concept of Z-equilibrium. Then, we give sufficient conditions of its existence. Further, the problem of computation of this solution is transformed into the determination of Pareto optimal solutions of a deterministic bi-criteria minimization problem. Finally, we provide illustrative numerical examples.

DOI : 10.1051/ro/2022050
Classification : 91A05
Keywords: Bi-matrix game, chance constrained game, Z-equilibrium, normal random variable, Cauchy random variable
@article{RO_2022__56_3_1857_0,
     author = {Achemine, Farida and Larbani, Moussa},
     title = {$Z$-equilibrium in random bi-matrix games: {Definition} and computation},
     journal = {RAIRO. Operations Research},
     pages = {1857--1875},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {3},
     doi = {10.1051/ro/2022050},
     mrnumber = {4445940},
     zbl = {1497.91006},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022050/}
}
TY  - JOUR
AU  - Achemine, Farida
AU  - Larbani, Moussa
TI  - $Z$-equilibrium in random bi-matrix games: Definition and computation
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 1857
EP  - 1875
VL  - 56
IS  - 3
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022050/
DO  - 10.1051/ro/2022050
LA  - en
ID  - RO_2022__56_3_1857_0
ER  - 
%0 Journal Article
%A Achemine, Farida
%A Larbani, Moussa
%T $Z$-equilibrium in random bi-matrix games: Definition and computation
%J RAIRO. Operations Research
%D 2022
%P 1857-1875
%V 56
%N 3
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022050/
%R 10.1051/ro/2022050
%G en
%F RO_2022__56_3_1857_0
Achemine, Farida; Larbani, Moussa. $Z$-equilibrium in random bi-matrix games: Definition and computation. RAIRO. Operations Research, Tome 56 (2022) no. 3, pp. 1857-1875. doi: 10.1051/ro/2022050

[1] F. Achemine, A. Merakeb and A. Hamaz, A new equilibrium for an n-person game with fuzzy parameters. Am. J. Math. Manage. Sci. 32 (2013) 118–132.

[2] F. Achemine, A. Merakeb, M. Larbani and P. Marthon, Z -equilibria in Bi-matrix games with uncertain payoffs. RAIRO: OR 54 (2020) 393–412. | MR | Zbl | Numdam | DOI

[3] R. J. Aumann, The core of a cooperative game without side payements. Trans. Am. Math. Soc. 96 (1961) 539–552. | MR | Zbl | DOI

[4] R. A. Blau, Random-payoff two person zero-sum games. Oper. Res. 22 (1974) 1243–1251. | MR | Zbl | DOI

[5] K. Bouchama, M. S. Radjef and L. Sais, Z-equilibrium for a CSP game. In: International Symposium on Artificial Intelligence and Mathematics Fort Lauderdale, FL (2016).

[6] R. G. Cassidy, C. A. Field and M. J. L. Kirby, Solution of a satisficing model for random payoff games. Manage. Sci. 19 (1972) 266–271. | MR | Zbl | DOI

[7] A. Charnes, M. J. L. Kirby and W. M. Raike, Zero-zero chanceconstrained games. Theory Probab. App. 13 (1968) 628–646. | MR | Zbl | DOI

[8] P. Couchman, B. Kouvaritakis, M. Cannon and F. Prashad, Gaming strategy for electric power with random demand. IEEE Trans. Power Syst. 20 (2005) 1283–1292. | DOI

[9] D. De Wolf and Y. Smeers, A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Manage. Sci. 43 (1997) 190–197. | Zbl | DOI

[10] V. De Miguel and H. Xu, A stochastic multiple leader Stackelberg model: Analysis, computation, and application. Oper. Res. 57 (2009) 1220–1235. | MR | Zbl | DOI

[11] A. Ferhat and M. S. Radjef, Z-equilibrium for a mixed strategic multicriteria game. EURO 25 – Vilnius (2012) 8–11.

[12] V. Ghildyal and N. V. Sahinidis, Solving global optimization problems with baron. In: From Local to Global Optimization. Vol. 53 of Nonconvex Optimization and Its Applications, edited by A. Migdalas, P. M. Pardalos and P. Värbrand. Springer, Boston, MA (2001). | MR | Zbl | DOI

[13] B. Jadamba and F. Raciti, Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly. J. Optim. Theory App. 165 (2015) 1050–1070. | MR | Zbl | DOI

[14] N. L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate Distributions, 2nd edition. Vol. 1, John Wiley and Sons Inc. (1994). | MR | Zbl

[15] M. Larbani and F. Achemine, Solving a two person cooperative game under uncertainty. In: Multiple Criteria Decision Making in the New Millennium, edited by M. Koksalan and S. Zionts. Springer Verlag (2001) 314–324. | MR | Zbl | DOI

[16] M. Larbani and H. Lebbah, A concept of equilibrium for a game under uncertainty. Eur. J. Oper. Res. 1 (1999) 145–156. | Zbl | DOI

[17] B. Liu, Uncertainty Theory, 2nd edition. Springer-Verlag, Berlin (2007). | MR | Zbl

[18] M. Mazadi, W. D. Rosehart, H. Zareipour, O. P. Malik and M. Oloomi, Impact of wind integration on electricity markets: A chance-constrained Nash-Cournot model. Int. Trans. Electr. Energy Syst. 23 (2013) 83–96. | DOI

[19] J. F. Nash, Non-cooperative games. Ann. Math. 54 (1951) 286–295. | MR | Zbl | DOI

[20] R. Nessah, M. Larbani and T. Tazdait, Coalitional Z P -equilibrium in games and its existence. Int. Game Theory Rev. 17 (2015) 1–18. | MR | Zbl | DOI

[21] U. Ravat and U. V. Shanbhag, On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21 (2011) 1168–1199. | MR | Zbl | DOI

[22] D. Sally, Conversation and cooperation in social Dilemma. A meta analysis from 1958 to 1992. Ration. Soc. 71995 (1958) 58–92.

[23] H. Simon, Administrative Behavior: A Study of Decision-Making Processes in Administrative Organization. Macmillan, New York (1947).

[24] V. V. Singh and A. Lisser, A characterization of Nash equilibrium for the games with random payoffs. J. Optim. Theory App. 178 (2018) 998–1013. Springer. | MR | Zbl | DOI

[25] V. Singh, O. Jouini and A. Lisser, Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44 (2016) 640–644. | MR | Zbl | DOI

[26] T. Song, Random payoff matrix games. In: Systems and Management Science by Extremal Methods. Springer Science + Business Media, LLC (1992) 291–308. | DOI

[27] J. Valenzuela and M. Mazumdar, Cournot prices considering generator availability and demand uncertainty. IEEE Trans. Power Syst. 22 (2007) 116–125. | DOI

[28] H. Xu and D. Zhang, Stochastic Nash equilibrium problems: Sample average approximation and applications. Comput. Optim. App. 55 (2013) 597–645. | MR | Zbl | DOI

[29] V. I. Zhukovskii, Some problems of non-antagonistic differential games. In: Matematiceskie metody versus issledovanii operacij [Mathematical Methods in Operations Research], edited by P. Kenderov. Bulgarian Academy of Sciences, Sofia (1985) 103–195.

[30] V. I. Zhukovskii and A. A. Tchikry, Linear-Quadratic Differential Games. Naoukova Doumka, Kiev (1994).

Cité par Sources :