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Z-EQUILIBRIUM IN RANDOM BI-MATRIX GAMES: DEFINITION
AND COMPUTATION

Farida Achemine1 and Moussa Larbani2,3,*

Abstract. This paper deals with bi-matrix games with random payoffs. Using probability tools, we
propose a solution based on the concept of Z-equilibrium. Then, we give sufficient conditions of its
existence. Further, the problem of computation of this solution is transformed into the determination
of Pareto optimal solutions of a deterministic bi-criteria minimization problem. Finally, we provide
illustrative numerical examples.

Mathematics Subject Classification. 91A05.

Received March 15, 2021. Accepted April 1, 2022.

1. Introduction

Bi-matrix games played an important role in the development of game theory. Many real-world conflict
situations are analyzed by bi-matrix games such as the prisoner dilemma game. A bi-matrix game is characterized
by two matrices 𝐴 and 𝐵 representing the payoffs of the players, players I and player II, respectively. A nice
feature of matrix games is that Nash equilibrium [19] always exists in pure or mixed strategies and it can be
computed via the resolution of a quadratic optimization problem.

Nash equilibrium is the most prominent concept of solution in game theory. However, it may not exist in
pure strategies and may not be pareto optimal, that is, it may be dominated. In this paper, we consider the
concept of Z-equilibrium introduced by Zhukovskii [29]. In contrast to Nash equilibrium, it always exists in pure
strategies in finite games and it is always Pareto optimal. This equilibrium is said to be “active” in the sense
that, any deviation of a player from her/his Z-equilibrium strategy, the other player has a specific punishing
strategy that decreases or maintains her/his payoff. Whereas, in Nash equilibrium, the reaction of a player to
any deviation of the other player is the same. Moreover, it is interesting to note that the set of Z-equilibria is
a subset of the 𝛼-core of Aumann [3] in two-player games. Moreover if, we consider a stronger version of the
𝛼-core where a coalition can block a solution if it can guarantee greater or equal payoff for all its members
with a strictly greater payoff for at least one member, then the Z-equilibrium generalizes the 𝛼-core in 𝑛-person
games with 𝑛 > 2.

Keywords. Bi-matrix game, chance constrained game, Z-equilibrium, normal random variable, Cauchy random variable.

1 Laboratory of Pure and Applied Mathematics, Mouloud Mammeri University of Tizi-Ouzou, Tizi-Ouzou, Algeria.
2 School of Mathematics and Statistics, Carleton Unversity, Ottawa, Canada.
3 Ecole Nationale Supérieure de Statistique et d’économie appliquée, Koléa, Tipaza, Algeria.
*Corresponding author: larbani61@hotmail.com

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022050
https://www.rairo-ro.org
mailto:larbani61@hotmail.com
https://creativecommons.org/licenses/by/4.0


1858 F. ACHEMINE AND M. LARBANI

A complete study of Z-equilibrium in continuous and deterministic games is given in Zhukovskii [29] (see
a formal definition in Sect. 2) and Zhukovskii and Tchickry [30]. Ferhat and Radjef [11] have generalized
Z-equilibrium to multiple criteria games in mixed strategies. In Bouchama et al. [5] an equivalence between the
solution of a constraint satisfaction problem and the Z-equilibrium of its associated game is established.

However, in many real games situations, it is very difficult to determine an exact value of the payoffs.
Therefore, some approaches to Z-equilibrium in the case of lack of precision and certainty on the payoffs are
considered in Larbani and Lebbah [16], Larbani and Achemine [15], Achemine et al. [1], Nessah et al. [20] and
Achemine et al. [2].

The first work on Z-equilibrium in games involving uncertainty is due to Larbani and Lebbah [16]. They con-
sidered games with uncertain payoffs of the form 𝑢𝑖(𝑥, 𝑦), where 𝑦 is an unknown parameter that varies in some
set 𝑌 ⊂ R𝑚. They introduced a concept called ZS-equilibrium. Further, Larbani and Achemine [15] introduced
and investigated the notion of ZP-equilibrium. This concept is generalized to fuzzy games in Achemine et al.
[1]. Nessah et al. [20] considered games with uncertain parameters, where the players can form coalitions, the
introduced concept is called coalitional ZP-equilibrium. Recently, Achemine et al. [2] investigated Z-equilibrium
in the class of bi-matrix games with uncertain payoffs in the sense of Liu [17]. Liu uncertainty theory is different
from probability theory; it is based on credibility measure that measures fuzzy events that are subjective in
nature.

In many practical situations, the players’ payoffs are better modeled using random variables. Wholesale elec-
tricity markets are good examples of this area [8, 9, 18, 27]. One way to handle such games is using expected
payoff criterion [9,10,13,21,27,28]. The expected payoff criterion is not suitable when the random payoff has a
large variance. In this case, it is more interesting to consider payoffs that can be obtained with a certain confi-
dence level. Such situations are modeled using chance-constraints games. The first works on chance-constrained
games concern zero-sum chance-constrained games. These games were developed by Blau [4], Cassidy et al. [6],
Charnes et al. [7], and Song [26]. Nash equilibrium in bi-matrix games and in 𝑛-person finite games have been
investigated using chance-programming in Singh et al. [25] and Singh and Lisser [24].

Z-equilibrium has not been investigated in games with random payoffs. The contribution of this paper is to
initiate the study of Z-equilibrium in games with random payoffs. As a first step, we consider a bi-matrix game in
which the payoffs are random variables. The main difficulty in the study of these games is the comparison between
payoff values associated with different strategies of the players. Using probability tools, for such games, we
introduce a concept of equilibrium based on Z-equilibrium and we establish sufficient conditions for its existence.
Furthermore, we show that the computation of this equilibrium can be transformed into the computation of
a Pareto optimal solution of a bi-criteria optimization problem. We use chance-constrained programming to
formulate Z-equilibrium. However, our approach differs from the existing ones. Following the satisficing principle
of Simon [23], we first ask the players to provide satisfaction levels in terms of payoffs, then we formulate new
payoffs as probabilities of achieving those levels. In existing works, payoffs are formulated as values that are
achieved with given confidence levels.

The rest of the paper is organized as follows. The next section is devoted to the description and the introduc-
tion of the proposed solution called RZ-equilibrium (random Z-equilibrium). In Section 3, we present sufficient
conditions for the existence of this equilibrium. In Section 4, we show that the computation of the RZ-equilibrium
can be formulated as a bi-criteria optimization problem that can be solved using methods of multiple criteria
optimization. A numerical example is given in Section 5. Section 6 discusses related work. Section 7 concludes
the paper.

2. Problem description and its solution

2.1. Z-equilbrium in a deterministic game

To help the unfamiliar reader understand the Z-equilibrium [29], we recall its definition for a deterministic
strategic two-person game.
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Consider the two-person strategic game

𝐺 =< 𝑁, 𝑋1 ×𝑋2, (𝑈1(𝑥1, 𝑥2), 𝑈2(𝑥1, 𝑥2)) >,

where 𝑁 = {1, 2} is the set of players; 𝑋𝑖 ⊂ R𝑛𝑖 , 𝑛𝑖 ∈ N*, 𝑋𝑖 the set of strategies of the 𝑖-th player, 𝑖 = 1, 2.
𝑈𝑖 : 𝑋1 × 𝑋2 −→ R, is the payoff function of the 𝑖-th player. The aim of each player is to maximize her/his
payoff function.
Notation. In the following, we use the notation: for all (𝑟1, 𝑟2), (𝑟1, 𝑟2) ∈ R2,

(𝑟1, 𝑟2) - (𝑟1, 𝑟2) ⇐⇒ (∀𝑘 ∈ {1, 2}, 𝑟𝑘 ≤ 𝑟𝑘 and ∃𝑙 ∈ {1, 2}, 𝑟𝑙 < 𝑟𝑙).

Definition 2.1. 𝑥* ∈ 𝑋1 × 𝑋2 is said to be a Z-equilibrium for the game 𝐺 if and only if the following two
conditions hold.

(1)
{︂
∀𝑥1 ∈ 𝑋1, ∃𝑥2 ∈ 𝑋2, 𝑈1(𝑥1, 𝑥2) ≤ 𝑈1(𝑥*);
∀𝑥2 ∈ 𝑋2, ∃𝑥1 ∈ 𝑋1, 𝑈2(𝑥1, 𝑥2) ≤ 𝑈2(𝑥*).

(2) It does not exist a strategy profile (𝑥1, 𝑥2) ∈ 𝑋1 ×𝑋2, such that

(𝑈1(𝑥*), 𝑈2(𝑥*)) - (𝑈1(𝑥1, 𝑥2), 𝑈2(𝑥1, 𝑥2)).

Remark 2.2. – The condition 1 of Definition 2.1 means that for any deviation 𝑥𝑖 of the 𝑖-th player (𝑖 ∈ {1, 2})
from her/his equilibrium strategy, the other player can punish her/him by choosing a specific strategy 𝑥𝑁−𝑖

that prevents him/her from being better off. This condition guarantees the stability of Z-equilibrium.
– Condition 2 of Definition 2.1 means that 𝑥* is Pareto optimal for the players, that is, 𝑥* is not dominated

in payoff space. It is interesting to note that the set of Z-equilibria is a subset of the 𝛼-core of Aumann [3]
in two-player games. Further, if we consider a stronger version of the 𝛼-core where a coalition can block a
solution if it can guarantee a greater or equal payoff for all its members with a strictly greater payoff for at
least one of them, then the Z-equilibrium generalizes the 𝛼-core in 𝑛-person games with 𝑛 ≥ 2.

– A Nash equilibrium that is Pareto optimal is a Z-equilibrium. Indeed, each player can use her/his Nash
equilibrium strategy to punish the other player for deviating from the equilibrium.

Example 2.3. Consider the prisoner dilemma game.

𝑏1 𝑏2

𝑎1

𝑎2

(︂
(10, 10) (1, 15)
(15, 1) (4, 4)

)︂
.

Note that the profile (𝑎2, 𝑏2) is a Nash equilibrium. It is easy to see that (𝑎1, 𝑏1) is a Z-equilibrium. That is,
Z-equilibrium captures the cooperative profile in the prisoner dilemma game. Note that experimental evidence
has shown that in 50% of the cases, players choose the cooperative profile (𝑎1, 𝑏1) (Z-equilibrium) rather than
Nash equuilibrium in a two person prisoner dilemma game Sally [22]. When the game is repeated, following
Z-equilibrium, player I (resp. player II) can punish player II (resp. player I) by selecting 𝑎2 (resp. 𝑏2) to stabilise
the game at (𝑎1, 𝑏1).

Example 2.4. Consider the following bi-matrix game.

𝑏1 𝑏2 𝑏3

𝑎1

𝑎2

(︂
(3, 2) (2, 7) (5, 4)
(1, 2) (4, 1) (6, 1)

)︂
where 𝑋1 = {𝑎1, 𝑎2} and 𝑋2 = {𝑏1, 𝑏2, 𝑏3} are the set of pure strategies for row player and column player,
respectively.

This game has no Nash equilibrium. The strategy profile (𝑎1, 𝑏3) is a Z-equilibrium.
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– Condition 1 of Definition 2.1 guarantees the stability of Z-equilibrium. Indeed, for each deviation 𝑥1 ∈ 𝑋1

(resp. 𝑥2 ∈ 𝑋2) of the row player (resp. column player) from her/his Z-equilibrium strategy, the other player
has a counter strategy 𝑡2 ∈ 𝑋2 (resp. 𝑡1 ∈ 𝑋1) to punishes her/him. Indeed,

for the deviation of the row player to 𝑎2 ∈ 𝑋1, the column player has the strategy 𝑏1 ∈ 𝑋2, such that
𝑈1(𝑎2, 𝑏1) = 1 ≤ 𝑈1(𝑎1, 𝑏3) = 5;
for the deviation of the column player to 𝑏2 ∈ 𝑋2, the row player has the strategy 𝑎2 ∈ 𝑋2, such that
𝑈2(𝑎2, 𝑏2) = 1 ≤ 𝑈2(𝑎1, 𝑏3) = 4;
for the deviation of the column player to 𝑏1 ∈ 𝑋2, the row player has the strategy 𝑎1 ∈ 𝑋1, such that
𝑈2(𝑎1, 𝑏1) = 2 ≤ 𝑈2(𝑎1, 𝑏3) = 4.

– Clearly, condition 2 of Definition 2.1 is satisfied by the pair of pure strategies (𝑎1, 𝑏3). Indeed, (𝑎1, 𝑏3) is
Pareto optimal for the players, that is, this pair is not dominated in payoff space.

As the game has no Nash equilibrium, the players can adopt Z-equilibrium as a solution for its desirable
properties, especially if the game is repeated.

The following theorem guarantees the existence of Z-equilibrium [29].

Theorem 2.5. Assume that

(i) the sets of strategies 𝑋1 and 𝑋2 are non empty and compact;
(ii) the functions 𝑈1 and 𝑈2 are continuous on 𝑋1 ×𝑋2.

Then, 𝐺 has at least one Z-equilibrium.

2.2. The bi-matrix game with random payoffs

In the classical bi-matrix games, the payoffs of the two players are real numbers. They are precisely known.
However, real-life decisions problems often involve randomness. Neglecting randomness in modeling when it
exists, may lead to poor quality decisions. Therefore, in this section, we focus on bi-matrix games, where the
payoffs are random variables.

We consider a bi-matrix game in which the players have exactly defined their pure strategies but are uncertain
about the induced payoffs. In the following, we assume that this uncertainty is modeled by random variables.

A random bi-matrix game is given by ⟨
{I, II}, 𝑋 × 𝑌,

(︁ ̃︀𝐴, ̃︀𝐵)︁⟩ , (2.1)

where 𝑋 = {1, 2, . . . ,𝑚} and 𝑌 = {1, 2, . . . , 𝑛} are the sets of pure strategies for player I and player II,
respectively.

Let (Ω, 𝐹, P) be a probability space, ̃︀𝑎𝑖𝑗 : Ω −→ R and ̃︀𝑏𝑖𝑗 : Ω −→ R, (𝑖, 𝑗) ∈ {1, . . . ,𝑚} × {1, . . . , 𝑛} are
random variables on (Ω, 𝐹, 𝑃 ).

The random payoff matrices to the row player I and column player II are ̃︀𝐴 = [̃︀𝑎𝑖𝑗 ] and ̃︀𝐵 = [̃︀𝑏𝑖𝑗 ], respectively.
We denote the sets of mixed strategies of players I and II, which represent weights assigned to their pure

strategies, by

𝑃 =

{︃
𝑝𝑇 = (𝑝1, . . . , 𝑝𝑚),

𝑚∑︁
𝑖=1

𝑝𝑖 = 1, 𝑝𝑖 ∈ [0, 1]

}︃
and

𝑄 =

⎧⎨⎩𝑞𝑇 = (𝑞1, . . . , 𝑞𝑛),
𝑛∑︁

𝑗=1

𝑞𝑗 = 1, 𝑞𝑗 ∈ [0, 1]

⎫⎬⎭ ,

respectively, where 𝑇 represents the transpose operator. They can also be interpreted as probabilities that
players choose their particular pure strategies. Then, a mixed strategy game with random payoffs is given as
follows ⟨

{I, II}, 𝑃 ×𝑄,
(︁ ̃︀𝐴, ̃︀𝐵)︁⟩ .
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The payoffs induced when players I and II choose the mixed strategies 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄 are 𝑝𝑇 𝐴𝑞 and 𝑝𝑇 𝐵̃𝑞,
respectively.

In this game, it is assumed that the players are rational and each of them knows the set of strategies of the
other player. It is also assumed that each player knows the distribution of every random entry in ̃︀𝐴 and ̃︀𝐵. The
aim of each player is to maximize her/his payoff.

As a solution for the game (2.1), we propose a concept based on the notion of Z-equilibrium [29], which takes
into account the random aspect of the game. For this purpose, we formulate the payoff of each player using a
chance constraint. Following Simon [23] satisficing principle, for predetermined satisfaction levels 𝛿1 (resp. 𝛿2)
∈ R, we assume that player I aims to maximize the probability of the random event

{︁
𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
and player

II aims to maximize the probability of the random event
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁
.

Definition 2.6. For predetermined satisfaction levels 𝛿1, 𝛿2, a pair (𝑝*, 𝑞*) is called a RZ-equilibrium (random
Z-equilibrium) of the game (2.1) at (𝛿1, 𝛿2) satisfaction levels, if it satisfies

(1) {︂
∀𝑝 ∈ 𝑃, ∃𝑞 ∈ 𝑄, P{𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1} ≥ P{𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1};
∀𝑞 ∈ 𝑄, ∃𝑝 ∈ 𝑃, P{𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2} ≥ P{𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2}.

(2) There is no strategy profile (𝑝, 𝑞) ∈ 𝑃 ×𝑄, such that(︁
P
{︁

𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
, P

{︁
𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁)︁
-
(︁
P
{︁

𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
, P

{︁
𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁)︁
.

Definition 2.6 means that (𝑝*, 𝑞*) is a Z-equilibrium of the following chance-constrained game⟨
{I, II}, 𝑃 ×𝑄, (𝑢𝛿1

1 , 𝑢𝛿2
2 )
⟩

,

where 𝑢𝛿1
1 (𝑝, 𝑞) = P

{︁
𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
and 𝑢𝛿2

2 (𝑝, 𝑞) = P
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁
.

Remark 2.7. – The first condition of Definition 2.6 means that for any deviation 𝑝 (resp. 𝑞) of the player I
(player II) from her/his equilibrium strategy 𝑝* (𝑞* resp.), the other player can punish her/him by choosing
some strategy 𝑞 (resp. 𝑝), so that at the resulting profile (𝑝, 𝑞), her/his payoff is less (or equal) than at the
profile (𝑝*, 𝑞*). This condition guarantees the stability of the Z-equilibrium (𝑝*, 𝑞*).

– If the maxmin values

𝜆1 = max
𝑝

min
𝑞

P
{︁

𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
and 𝜆2 = max

𝑞
min

𝑝
P
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁
exist, then the first condition of Definition 2.6 is equivalent to⎧⎨⎩𝜆1 ≤ P

{︁
𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
;

𝜆2 ≤ P
{︁

𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁
;

which means that the strategy profile (𝑝*, 𝑞*) satisfies the principle of individual rationality.
– The second condition of Definition 2.6 means that (𝑝*, 𝑞*) is Pareto optimal for the players in the game⟨

{I, II}, 𝑃 ×𝑄,
(︁
𝑢𝛿1

1 , 𝑢𝛿2
2

)︁⟩
, with 𝑢𝛿1

1 (𝑝, 𝑞) = P
{︁

𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
and 𝑢𝛿2

2 (𝑝, 𝑞) = P
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁
.

Note that in existing literature of finite random games Singh et al. [25] and Singh and Lisser [24], in equilibrium
definition, the maximum achieved value with a given confidence level is considered as payoff, while we use
probabilities of achieving a given satisfaction level as payoff. We discuss this aspect in Section 6 in more detail.
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3. Existence of the RZ-equilibrium

In this section, the problem of the existence of RZ-equilibrium is investigated. Using probability tools, suffi-
cient conditions for the existence of RZ-equilibrium are established in two important cases: (i) the entries of the
payoff matrices are normally distributed random variables; (ii) the entries of the payoffs matrices are Cauchy
distributed random variables.

3.1. Payoffs following normal distribution

In the following theorem, we present sufficient conditions of RZ-equilibrium existence in the game (2.1) when
payoffs follow a normal distribution.

Theorem 3.1. Assume that the random variables ̃︀𝑎𝑖𝑗 and ̃︀𝑏𝑖𝑗, 𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , 𝑛 are independent

and satisfy ̃︀𝑎𝑖𝑗 ∼ 𝑁
(︁
𝜇𝑎𝑖𝑗 , 𝜎

2
𝑎𝑖𝑗

)︁
and ̃︀𝑏𝑖𝑗 ∼ 𝑁

(︁
𝜇𝑏𝑖𝑗 , 𝜎

2
𝑏𝑟𝑗

)︁
, that is, they are normally distributed on (Ω, 𝐹, 𝑃 ),

with 𝜎𝑎𝑖𝑗
> 0 and 𝜎𝑏𝑖𝑗

> 0, for 𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , 𝑛.
Then, the game (2.1) has at least one RZ-equilibrium at (𝛿1, 𝛿2) levels, for all (𝛿1, 𝛿2) ∈ R× R.

Proof. Under the conditions of Theorem 3.1, using the properties of the Gaussian random variables, 𝑝𝑇 ̃︀𝐴𝑞 =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 is a Gaussian random variable.

Then for given levels (𝛿1, 𝛿2) ∈ R× R, we have the following chain of equalities

𝑢𝛿1
1 (𝑝, 𝑞) = P

{︁
𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
= P

⎧⎨⎩𝜔 :
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 ≥ 𝛿1

⎫⎬⎭

= P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝜔 :

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 −
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗⎯⎸⎸⎸⎷Var

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗

⎞⎠
≥

𝛿1 −
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗⎯⎸⎸⎸⎷Var

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗

⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1− P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
𝜔 :

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 −
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗⎯⎸⎸⎸⎷Var

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗

⎞⎠
≤

𝛿1 −
𝑖=𝑚∑︁
1=

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗⎯⎸⎸⎸⎷Var

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗

⎞⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1− P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔 :

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 −𝑀1(𝑝, 𝑞)√︀
𝑉1(𝑝, 𝑞)

≤ 𝛿1 −𝑀1(𝑝, 𝑞)√︀
𝑉1(𝑝, 𝑞)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

where

𝑀1(𝑝, 𝑞) = E

⎛⎝𝑖=𝑚∑︁
1=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗

⎞⎠ =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗
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and

𝑉1(𝑝, 𝑞) = Var

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗

⎞⎠ =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

(𝑝𝑖𝑞𝑗)2𝜎2
𝑎𝑖𝑗

.

As
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 is𝒩 (𝑀1(𝑝, 𝑞), 𝑉1(𝑝, 𝑞)), then

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗 −𝑀1(𝑝, 𝑞)

√
𝑉1(𝑝,𝑞)

is a zero mean unit variance Gaussian

variable, that is 𝒩 (0, 1), then

𝑢𝛿1
1 (𝑝, 𝑞) = 1− Φ

(︃
𝛿1 −𝑀1√︀
𝑉1(𝑝, 𝑞)

)︃
,

where Φ is the standardized normal distribution function. Let 𝑔𝛿1
1 (𝑝, 𝑞)) = 𝛿1−𝑀1(𝑝,𝑞)√

𝑉1(𝑝,𝑞)
.

The function (𝑝, 𝑞) ↦−→ Φ(𝑔𝛿1
1 (𝑝, 𝑞)) is continuous on 𝑃 ×𝑄.

Similarly, we prove that

𝑢𝛿2
2 (𝑝, 𝑞) = P

{︁
𝑤 : 𝑝𝑇 ̃︀𝐵𝑞 ≥ 𝛿2

}︁
= 1− Φ

(︃
𝛿2 −𝑀2(𝑝, 𝑞)√︀

𝑉2(𝑝, 𝑞)

)︃
.

Let 𝑔𝛿2
2 (𝑝, 𝑞)) = 𝛿2−𝑀2(𝑝,𝑞)

𝑉2(𝑝,𝑞) . The function (𝑝, 𝑞) ↦−→ Φ
(︁
𝑔𝛿2
2 (𝑝, 𝑞)

)︁
is also continuous on 𝑃 ×𝑄, where

𝑀2(𝑝, 𝑞) = E

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗
̃︀𝑏𝑖𝑗

⎞⎠ =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑏𝑖𝑗

and

𝑉2(𝑝, 𝑞) = Var

⎛⎝𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗
̃︀𝑏𝑖𝑗

⎞⎠ =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

(𝑝𝑖𝑞𝑗)2𝜎2
𝑏𝑖𝑗

.

The existence of RZ-equilibrium of the game (2.1) at (𝛿1, 𝛿2) levels is equivalent to the existence of a Z-
equilibrium in the game ⟨

{I, II}, 𝑃 ×𝑄,
(︁

1− Φ ∘ 𝑔𝛿1
1 , 1− Φ ∘ 𝑔𝛿2

2

)︁⟩
.

Since all the conditions of Zhukovskii theorem [29] (see Thm. 2.5 in Sect. 2) are satisfied in this game, we
conclude that at least one RZ-equilibrium at levels (𝛿1, 𝛿2) exists. �

3.2. Payoffs following Cauchy distribution

In the following theorem, we present sufficient conditions of RZ-equilibrium existence in the game (2.1) when
payoffs follow Cauchy distribution.

Theorem 3.2. Assume that ̃︀𝑎𝑖𝑗 and ̃︀𝑏𝑖𝑗, 𝑖 = 1, 2, . . . ,𝑚, 𝑗 = 1, 2, . . . , 𝑛 are independent Cauchy random vari-
ables on (Ω, 𝐹, 𝑃 ), where the location and scale parameters of ̃︀𝑎𝑖𝑗 , 𝑖 ∈ {1, 2, . . . ,𝑚}, 𝑗 ∈ {1, 2, . . . , 𝑛} are 𝜇𝑎𝑖𝑗 ∈ R
and 𝜎𝑎𝑖𝑗

> 0 respectively and the location and scale parameters of ̃︀𝑏𝑖𝑗 , 𝑖 ∈ {1, 2, . . . ,𝑚}, 𝑗 ∈ {1, 2, . . . , 𝑛} are
𝜇𝑏𝑖𝑗

∈ R and 𝜎𝑏𝑖𝑗
> 0 respectively. Then, the game (2.1) has at least one RZ-equilibrium at (𝛿1, 𝛿2) levels, for

all (𝛿1, 𝛿2) ∈ R× R.

Proof. Let (𝛿1, 𝛿2) ∈ R×R. It is well known that a linear combination of independent Cauchy random variables
is a Cauchy random variable [14], then, for a given strategy profile (𝑝, 𝑞),
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– the payoff 𝑝𝑇 ̃︀𝐴𝑞 of the row player follows a Cauchy distribution with location parameter

𝜇𝑎(𝑝, 𝑞) =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗
and scale parameter 𝜎𝑎(𝑝, 𝑞) =

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜎𝑎𝑖𝑗
;

– the payoff 𝑝𝑡 ̃︀𝐵𝑞 of the column player follows a Cauchy distribution with location parameter 𝜇𝑏(𝑝, 𝑞) =
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑏𝑖𝑗 and scale parameter 𝜎𝑏(𝑝, 𝑞) =
𝑖=𝑚∑︁
1=𝑖

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜎𝑏𝑖𝑗 .

Therefore,

𝑢𝛿1
1 (𝑝, 𝑞) = P

{︁
𝜔 : 𝑝𝑇 ̃︀𝐴𝑞 ≥ 𝛿1

}︁
= P

⎧⎨⎩𝜔 :
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗(𝜔) ≥ 𝛿1

⎫⎬⎭

= P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔 :

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗(𝜔)− 𝜇𝑎(𝑝, 𝑞)

𝜎𝑎(𝑝, 𝑞)
≥ 𝛿1 − 𝜇𝑎(𝑝, 𝑞)

𝜎𝑎(𝑝, 𝑞)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

= 1− P

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝜔 :

𝑖=𝑚∑︁
1=𝑖

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗(𝜔)− 𝜇𝑎(𝑝, 𝑞)

𝜎𝑎(𝑝, 𝑞)
≤ 𝛿1 − 𝜇𝑎(𝑝, 𝑞)

𝜎𝑎(𝑝, 𝑞)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

where

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗̃︀𝑎𝑖𝑗(𝜔)− 𝜇𝑎(𝑝, 𝑞)

𝜎𝑎(𝑝,𝑞) follows a standard Cauchy distribution.

Let 𝑇 (.) be the distribution function of a standard Cauchy random variable and 𝑓𝛿1
1 (𝑝, 𝑞) = 𝛿1−𝜇𝑎(𝑝,𝑞)

𝜎𝑎(𝑝,𝑞) . Then,

𝑢𝛿1
1 (𝑝, 𝑞) = P

{︁
𝜔 : 𝑝𝑇 ̃︀𝐴𝑞 ≥ 𝛿1

}︁
= 1− 𝑇

(︂
𝛿1 − 𝜇𝑎(𝑝, 𝑞)

𝜎𝑎(𝑝, 𝑞)

)︂
= 1− 𝑇 ∘ 𝑓𝛿1

1 (𝑝, 𝑞).

Similarly, we show that

𝑢𝛿2
2 (𝑝, 𝑞) = P

{︁
𝜔 : 𝑝𝑇 ̃︀𝐵𝑞 ≥ 𝛿2

}︁
= 1− 𝑇

(︂
𝛿2 − 𝜇𝑏(𝑝, 𝑞)

𝜎𝑏(𝑝, 𝑞)

)︂
= 1− 𝑇 ∘ 𝑓𝛿2

2 (𝑝, 𝑞), with 𝑓𝛿2
2 (𝑝, 𝑞) =

𝛿2 − 𝜇𝑏(𝑝, 𝑞)
𝜎𝑏(𝑝, 𝑞)

·

Since 𝑇 (.) is continuous, we deduce that these two functions are continuous on 𝑃 × 𝑄. Proceeding as in
the proof of Theorem 3.1, we deduce the existence of at least one RZ-equilibrium of game (2.1) at (𝛿1, 𝛿2)
levels. �

Remark 3.3. If the Cauchy random variables ̃︀𝑎𝑖𝑗 , 𝑖 ∈ {1, · · · , 𝑚}, 𝑗 ∈ {1, · · · , 𝑛} are independent and iden-
tically distributed (i.i.d.) and the Cauchy random variables ̃︀𝑏𝑖𝑗 , 𝑖 ∈ {1, · · · , 𝑚}, 𝑗 ∈ {1, · · · , 𝑛} are i.i.d., the

functions P
{︁

𝜔 : 𝑝𝑇 ̃︀𝐴𝑞 ≥ 𝛿1

}︁
= 1 − 𝑇

(︁
𝛿1−𝜇𝑎(𝑝,𝑞)

𝜎𝑎(𝑝,𝑞)

)︁
and P

{︁
𝜔 : 𝑝𝑇 ̃︀𝐵𝑞 ≥ 𝛿1

}︁
= 1 − 𝑇

(︁
𝛿1−𝜇𝑏(𝑝,𝑞)

𝜎𝑏(𝑝,𝑞)

)︁
are constant.

Consequently, every strategy profile (𝑝, 𝑞) ∈ 𝑃 ×𝑄 is a RZ-equilibrium of the game (2.1) at (𝛿1, 𝛿2) levels.
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4. Computation of RZ-equilibria

In this section, we show that the problem of determination of a RZ-equilibrium can be transformed into a
problem of computation of a Pareto optimal solution of a bi-criteria minimization problem. Then, from this
problem, we derive an algorithm for the computation of RZ-equilibria.

Remark 4.1. – If the conditions of Theorem 3.1 (or Thm. 3.2) are satisfied, the maxmin values

𝜆1 = max
𝑝∈𝑃

min
𝑞∈𝑄

P
{︁

𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
and 𝜆2 = max

𝑞∈𝑄
min
𝑝∈𝑃

P
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁
exist and condition 1 of Definition 2.6 is equivalent to⎧⎨⎩𝜆1 ≤ P

{︁
𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
;

𝜆2 ≤ P
{︁

𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁
.

– In RZ-equilibrium, player I (resp. player II) guarantees a gain greater than or equal to what she/he can
obtain using her/his maxmin (secure) strategy which is given by 𝑝* ∈ 𝐴𝑟𝑔 max

𝑝∈𝑃
min
𝑞∈𝑄

P
{︁

𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
(︂

resp. 𝑞* ∈ Arg max
𝑞∈𝑄

min
𝑝∈𝑃

P
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿2

}︁)︂
.

In order to deal with the problem of computation of a RZ-equilibrium, we recall that a bi-criteria optimisation
(minimization/maximization) is an optimization problem that involves two objective functions. The general
formulation of a bi-criteria optimization problem is{︂

opt(𝐿1(𝑧), 𝐿2(𝑧));
s.t. 𝑧 ∈ 𝐸,

where 𝐸 is the feasible set of decision vectors, 𝐸 ⊂ R𝑛, 𝑛 ∈ N*;

𝐿 = (𝐿1, 𝐿2) : 𝐸 −→ R𝑛, 𝐿(𝑧) = (𝐿1(𝑧), 𝐿2(𝑧)), 𝑧 ∈ 𝐸.

In the rest of this paper, we use the following notation of the bi-criteria optimization problem.

⟨𝐸, (𝐿1, 𝐿2)⟩.

The concept of solution in bi-criteria optimization is based on Pareto optimality.

4.1. Payoffs following normal distribution

Theorem 4.2. Under the assumptions of Theorem 3.1, (𝑝*, 𝑞*) is a RZ-equilibrium of the game (2.1), if and
only if it is a Pareto optimal solution of the bi-criteria minimization problem⟨

𝐻,
(︁
𝑔𝛿1
1 , 𝑔𝛿2

2

)︁⟩
; (4.1)

where
𝐻 =

{︁
(𝑝, 𝑞) ∈ 𝑃 ×𝑄 : 𝛾1 ≥ 𝑔𝛿1

1 (𝑝, 𝑞) and 𝛾2 ≥ 𝑔𝛿2
2 (𝑝, 𝑞)

}︁
and

𝛾1 = min
𝑝∈𝑃

max
𝑞∈𝑄

𝑔𝛿1
1 (𝑝, 𝑞) and 𝛾2 = min

𝑞∈𝑄
max
𝑝∈𝑃

𝑔𝛿2
2 (𝑝, 𝑞).
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Proof. Indeed, from Remark 2.2 and Definition 2.6, we have the following equivalence (𝑝*, 𝑞*) is a RZ-equilibrium
of the game (2.1) at (𝛿1, 𝛿2) levels ⇐⇒ (𝑝*, 𝑞*) is Pareto optimal solution for the maximization problem
⟨𝑀, (𝐹1, 𝐹2)⟩, with 𝑀 =

{︁
(𝑝, 𝑞) ∈ 𝑃 ×𝑄 : 𝑢𝛿1

1 (𝑝, 𝑞) ≥ 𝜆1 and 𝑢𝛿2
2 (𝑝, 𝑞) ≥ 𝜆2

}︁
, 𝑢𝛿1

1 (𝑝, 𝑞) = 1 − Φ
(︁

𝛿1−𝑀1(𝑝,𝑞)
𝑉1(𝑝,𝑞)

)︁
=

1− Φ ∘ 𝑔𝛿1
1 (𝑝, 𝑞) and 𝑢𝛿2

2 (𝑝, 𝑞) = 1− Φ
(︁

𝛿2−𝑀2(𝑝,𝑞)
𝑉2(𝑝,𝑞)

)︁
= 1− Φ ∘ 𝑔𝛿2

2 (𝑝, 𝑞).
First, we prove that 𝐻 = 𝑀 , considering that Φ is continuous and strictly increasing on R, and 𝑀1 and 𝑉1

are continuous on the compact set 𝑃 ×𝑄 and 𝑉1 > 0, we obtain the equalities

𝜆1 = max
𝑝∈𝑃

min
𝑞∈𝑄

(︃
1− Φ

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃)︃

= 1−min
𝑝∈𝑃

max
𝑞∈𝑄

(︃
Φ

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃)︃

= 1− Φ

(︃
min
𝑝∈𝑃

max
𝑞∈𝑄

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃)︃
.

Then,

𝑈 𝛿1
1 (𝑝, 𝑞) = 1− Φ

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃
≥ 𝜆1

⇐⇒

1− Φ

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃
≥ 1− Φ

(︃
min
𝑝∈𝑃

max
𝑞∈𝑄

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃)︃
⇐⇒

Φ

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃
≤ Φ

(︃
min
𝑝∈𝑃

max
𝑞∈𝑄

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃)︃
⇐⇒

𝑔𝛿1
1 (𝑝, 𝑞) =

𝛿1 −𝑀1(𝑝, 𝑞)√︀
𝑉1(𝑝, 𝑞)

≤ 𝛾1 = min
𝑝∈𝑃

max
𝑞∈𝑄

𝛿1 −𝑀1(𝑝, 𝑞)√︀
𝑉1(𝑝, 𝑞)

·

In the same way, we have

𝑢𝛿2
2 (𝑝, 𝑞) ≥ 𝜆2 ⇐⇒ 𝑔𝛿2

2 (𝑝, 𝑞) =
𝛿2 −𝑀2(𝑝, 𝑞)√︀

𝑉2(𝑝, 𝑞)
≤ 𝛾2 = min

𝑞∈𝑄
max
𝑝∈𝑃

𝛿2 −𝑀2(𝑝, 𝑞)√︀
𝑉2(𝑝, 𝑞)

·

Then 𝑀 =
{︁

(𝑝, 𝑞) ∈ 𝑃 ×𝑄 : 𝛾1 ≥ 𝑔𝛿1
1 (𝑝, 𝑞) and 𝛾2 ≥ 𝑔𝛿2

2 (𝑝, 𝑞)
}︁

= 𝐻. Next, we prove that a Pareto optimal

solution of the bi-criteria maximization problem
⟨
𝑀,
(︁
𝑢𝛿1

1 , 𝑢𝛿2
2

)︁⟩
is a Pareto optimal solution for the bi-criteria

minimization problem
⟨
𝐻,
(︁
𝑔𝛿1
1 , 𝑔𝛿2

2

)︁⟩
. For all (𝑝, 𝑞) ∈ 𝑀 , the vector inequality(︁

𝑢𝛿1
1 (𝑝*, 𝑞*), 𝑢𝛿2

2 (𝑝*, 𝑞*)
)︁
-
(︁
𝑢𝛿1

1 (𝑝, 𝑞), 𝑢𝛿2
2 (𝑝, 𝑞)

)︁
, is impossible

is equivalent to for all (𝑝, 𝑞) ∈ 𝑀 , the vector inequality(︁
Φ ∘ 𝑔𝛿1

1 (𝑝, 𝑞), Φ ∘ 𝑔𝛿2
2 (𝑝, 𝑞)

)︁
-
(︁

Φ ∘ 𝑔𝛿1
1 (𝑝*, 𝑞*), Φ ∘ 𝑔𝛿2

2 (𝑝*, 𝑞*)
)︁

, is impossible.
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Then, using the properties of the standardized normal distribution Φ, it is also equivalent to for all (𝑝, 𝑞) ∈ 𝑀 ,
the system of inequalities(︁

𝑔𝛿1
1 (𝑝, 𝑞), 𝑔𝛿2

2 (𝑝, 𝑞)
)︁
-
(︁
𝑔𝛿1
1 (𝑝*, 𝑞*), 𝑔𝛿2

2 (𝑝*, 𝑞*)
)︁

, is impossible,

which concludes the proof. �

4.1.1. Algorithm

To find Pareto optimal solutions of problem (4.1), we use the scalarization approach by choosing a pair of
weights (𝛽1, 𝛽2) ∈ [0, 1]× [0, 1] for 𝑔𝛿1

1 and 𝑔𝛿2
2 , such that 𝛽1 + 𝛽2 = 1. Thus, to compute RZ-equilibria, we just

need to solve a deterministic optimization problem. We present the computation of RZ-equilibria in the form
of an algorithm as follows.

Algorithm 1
(1) Initialization: Let 𝐴, 𝐵̃, 𝛽1 ≥ 0, 𝛽2 ≥ 0 (𝛽1 + 𝛽2 = 1), 𝛿1 and 𝛿2 be given.
(2) Compute 𝑔𝛿1

1 (𝑝, 𝑞) and 𝑔𝛿2
2 (𝑝, 𝑞), 𝛾1 and 𝛾2.

(3) Solve the problem

(𝑃1)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min(𝛽1𝑔
𝛿1
1 (𝑝, 𝑞) + 𝛽2𝑔

𝛿2
2 (𝑝, 𝑞))

subject to

𝛾1 ≥ 𝑔𝛿1
1 (𝑝, 𝑞)

𝛾2 ≥ 𝑔𝛿2
2 (𝑝, 𝑞)

(𝑝, 𝑞) ∈ 𝑃 ×𝑄.

Any solution of (𝑃1) is a RZ-equilibrium of the game (2.1).

4.2. Payoffs following Cauchy distribution

Theorem 4.3. Under the assumptions of Theorem 3.2, (𝑝*, 𝑞*) is a RZ-equilibrium of the game (2.1), if and
only if it is a Pareto optimal solution of the bi-criteria minimization problem⟨

𝑆,
(︁
𝑓𝛿1
1 , 𝑓𝛿2

2

)︁⟩
, (4.2)

where
𝑆 =

{︁
(𝑝, 𝑞) ∈ 𝑃 ×𝑄 : 𝜃1 ≥ 𝑓𝛿1

1 (𝑝, 𝑞) and 𝜃2 ≥ 𝑓𝛿2
2 (𝑝, 𝑞)

}︁
and

𝜃1 = min
𝑝∈𝑃

max
𝑞∈𝑄

𝑓𝛿1
1 (𝑝, 𝑞), 𝜃2 = min

𝑞∈𝑄
max
𝑝∈𝑃

𝑓𝛿2
2 (𝑝, 𝑞).

𝑓𝛿1
1 (𝑝, 𝑞) =

𝛿1 − 𝜇𝑎(𝑝, 𝑞)
𝜎𝑎(𝑝, 𝑞)

and 𝑓𝛿2
2 (𝑝, 𝑞) =

𝛿2 − 𝜇𝑏(𝑝, 𝑞)
𝜎𝑏(𝑝, 𝑞)

·

Proof. Using the Cauchy distribution properties, the proof of this result is analogous to that of
Theorem 4.2. �

4.2.1. Algorithm

Here we give an algorithm for finding RZ-equilibria by finding Pareto optimal solutions of the problem (4.2),
using the scalarization approach by choosing a pair of weights (𝛽1, 𝛽2) ∈ [0, 1]×[0, 1] for 𝑓𝛿1

1 and 𝑓𝛿2
2 , respectively,

such that 𝛽1 + 𝛽2 = 1.
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Algorithm 2

(1) Initialization: Let ̃︀𝐴, ̃︀𝐵, 𝛽1 ≥ 0, 𝛽2 ≥ 0 (𝛽1 + 𝛽2 = 1), 𝛿1 and 𝛿2 be given.
(2) Compute 𝑓𝛿1

1 (𝑝, 𝑞), 𝑓𝛿2
2 (𝑝, 𝑞), 𝜃1 and 𝜃2.

(3) Solve the problem

(𝑃2)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min(𝛽1𝑓
𝛿1
1 (𝑝, 𝑞) + 𝛽2𝑓

𝛿2
2 (𝑝, 𝑞))

subject to

𝜃1 ≥ 𝑓𝛿1
1 (𝑝, 𝑞)

𝜃2 ≥ 𝑓𝛿2
2 (𝑝, 𝑞)

(𝑝, 𝑞) ∈ 𝑃 ×𝑄.

Any solution of the problem (P2) problem is a RZ-equilibrium of the game (2.1).

5. Numerical examples

Example 5.1. In order to show the applicability of the proposed approach, let us assume that, in the game
(2.1), the payoffs matrices of player I and player II are, respectively

𝐴 =
(︂
𝒩 (1, 1) 𝒩 (0, 2)
𝒩 (3,

√
2) 𝒩 (4, 1)

)︂
,

and

𝐵̃ =
(︂
𝒩 (1, 2) 𝒩 (3, 1)
𝒩 (2, 1) 𝒩 (4, 2)

)︂
.

Assume that the conditions of Theorem 4.2 are satisfied for the given satisfaction levels 𝛿1 and 𝛿2.
Let 𝑝 = (𝑝1, 𝑝2)𝑇 and 𝑞 = (𝑞1, 𝑞2)𝑇 , with 𝑝2 = 1− 𝑝1 and 𝑞2 = 1− 𝑞1. Then,

𝑔𝛿1
1 (𝑝, 𝑞) =

𝛿1 − 2𝑝1𝑞1 + 𝑞1 + 4𝑝1 − 4√︀
8𝑝2

1𝑞
2
1 + 5𝑝2

1 + 3𝑞2
1 − 10𝑝2

1𝑞1 − 6𝑝1𝑞2
1 + 4𝑝1𝑞1 − 2𝑞1 − 2𝑝1 + 1

,

𝑔𝛿2
2 (𝑝, 𝑞) =

𝛿2 + 𝑝1 + 2𝑞1 − 4√︀
10𝑝2

1𝑞
2
1 + 5𝑝2

1 + 5𝑞2
1 − 10𝑝2

1𝑞1 − 10𝑝1𝑞2
1 − 8𝑝1 − 8𝑞1 + 16𝑝1𝑞1 + 4

and
𝛾1 = min

𝑝1∈[0,1]
max

𝑞1∈[0,1]
𝑔𝛿1
1 (𝑝, 𝑞) and 𝛾2 = min

𝑞1∈[0,1]
max

𝑝∈[0,1]
𝑔𝛿2
2 (𝑝, 𝑞).

Assume that the players set their satisfaction levels at 𝛿1 = 10 and 𝛿2 = 10.
A Pareto optimal solution of Problem (4.1), with 𝛽1 = 0.5 and 𝛽2 = 0.5, is given by solving the problem

(𝑃1), which is equivalent to

(𝑃1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(︂

𝛽1(𝛿1−2𝑝1𝑞1+𝑞1+4𝑝1−4)√
8𝑝2

1𝑞2
1+5𝑝2

1+3𝑞2
1−10𝑝2

1𝑞1−6𝑝1𝑞2
1+4𝑝1𝑞1−2𝑞1−2𝑝1+1

+ 𝛽2(𝛿2+𝑝1+2𝑞1−4)√
10𝑝2

1𝑞2
1+5𝑝2

1+5𝑞2
1−10𝑝2

1𝑞1−10𝑝1𝑞2
1−8𝑝1−8𝑞1+16𝑝1𝑞1+4

)︂
subject to

𝛾1 ≥ 𝛿1−2𝑝1𝑞1+𝑞1+4𝑝1−4√
8𝑝2

1𝑞2
1+5𝑝2

1+3𝑞2
1−10𝑝2

1𝑞1−6𝑝1𝑞2
1+4𝑝1𝑞1−2𝑞1−2𝑝1+1

;

𝛾2 ≥ 𝛿2+𝑝1+2𝑞1−4√
10𝑝2

1𝑞2
1+5𝑝2

1+5𝑞2
1−10𝑝2

1𝑞1−10𝑝1𝑞2
1−8𝑝1−8𝑞1+16𝑝1𝑞1+4

;

(𝑝1, 𝑞1) ∈ [0, 1]2.

First, we use the mesh of the set [0, 1]× [0, 1] for computing 𝛾1 and 𝛾2. We get 𝛾1 = 7.776 and 𝛾2 = 7.6155.
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To obtain the global optimal solutions of (𝑃1), we use BARON solver [12], which is a computational
system for solving non-convex optimization problems for global optimality. The solution is the pure strat-
egy profile (𝑝*, 𝑞*) = ((0, 1), (0, 1)), which is a RZ-equilibrium at (10, 10) satisfaction levels and probabilities(︁
P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 10

)︁
, P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 10

)︁)︁
= (0, 0.001).

These probabilities are not acceptable, which means that the players are too optimistic. To increase them,
the players need to decrease the satisfaction levels 𝛿1 and 𝛿2.

Consider the levels (𝛿1, 𝛿2) = (3, 2) with 𝛽1 = 𝛽2 = 1
2 . The RZ-equilibrium is (𝑝*, 𝑞*) = ((0, 1), (0, 1)) and the

probabilities are P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 3

)︁
= 0.8413 and P

(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 2

)︁
= 0.8413.

Example 5.2. In order to show the applicability of the proposed approach in the case where the payoffs follow
Cauchy distribution, let us assume that in the game (2.1) the payoffs matrices of player I and player II are,
respectively ̃︀𝐴 =

(︂
𝒞(1, 2) 𝒞(2, 3)
𝒞(3, 1) 𝒞(4, 2)

)︂
, ̃︀𝐵 =

(︂
𝒞(4, 4) 𝒞(3, 1)
𝒞(3, 2) 𝒞(5, 3)

)︂
.

Assume that the conditions of Theorem 4.2 are satisfied for the given satisfaction levels 𝛿1 and 𝛿2.
We have

𝑓𝛿1
1 (𝑝, 𝑞) =

𝛿1 + 2𝑝1 + 𝑞1 − 4
𝑝1 − 𝑞1 + 2

, 𝑓𝛿2
2 (𝑝, 𝑞) =

𝛿2 − 3𝑝1𝑞1 + 2𝑝1 + 2𝑞1 − 5
4𝑝1𝑞1 − 𝑞1 − 2𝑝1 + 3

,

𝜃1 = min
𝑝1∈[0,1]

max
𝑞1∈[0,1]

𝑓𝛿1
1 (𝑝, 𝑞) and 𝜃2 = min

𝑞1∈[0,1]
max

𝑝1∈[0,1]
𝑓𝛿2
2 (𝑝, 𝑞).

Assume that the players set their satisfaction levels at 𝛿1 = 10 and 𝛿2 = 10. A Pareto optimal solution of
Problem (4.2), with 𝛽1 = 0.5 and 𝛽2 = 0.5, is given by solving the following problem

(𝑃2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(︁

𝛽1(𝛿1+2𝑝1+𝑞1−4)
𝑝1−𝑞1+2 + 𝛽2(𝛿2−3𝑝1𝑞1+2𝑝1+2𝑞1−5)

4𝑝1𝑞1−𝑞1−2𝑝1+3

)︁
subject to

𝜃1 ≥ 𝛿1+2𝑝1+𝑞1−4
𝑝1−𝑞1+2

𝜃2 ≥ 𝛿2+3𝑝1𝑞1+2𝑝1+2𝑞1−5
4𝑝1𝑞1−𝑞1−2𝑝1+3 ·

(𝑝1, 𝑞1) ∈ [0, 1]2.

We use the mesh of the set [0, 1]× [0, 1] for computing 𝜃1 and 𝜃2. Thus, 𝜃1 = 4, 5 and 𝜃2 = 2, 47151564.
To obtain the global optimal solutions of (𝑃2), we use BARON solver [12]. The solution is the pure strategy

profile (𝑝*, 𝑞*) = ((0, 1), (0, 1)), which is an RZ-equiibrium at (10, 10) satisfaction levels and(︁
P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 10

)︁
,
(︁
P(𝑝*𝑇 𝐵̃𝑞* ≥ 10)

)︁)︁
= (0.1024, 0.1720).

6. Related work

Z-equilibrium in games with uncertain payoffs in the form 𝑢𝑖(𝑥, 𝑦), where 𝑥 is a strategy profile and 𝑦 is
a parameter with unknown behavior has been investigated in Larbani and Lebbah [16]. In these games, the
payoffs are not completely uncertain, they are represented by a parameter only. In the present work, the payoffs
do not involve any parameter. In this sense, it is more general. Recently, Achemine et al. [2] have investigated
Z-equilibrium in bi-matrix games with uncertain payoffs in the sense of Liu [17]. The present work fundamentally
differs from this work as it deals with games with random (uncertainty of probability type) payoffs. The difference
between probability theory and Liu uncertainty theory is that the latter is based on a credibility measure that
is introduced to measure the credibility of a fuzzy event, while the former deals with random phenomena. Fuzzy
set theory mainly deals with subjective uncertainty i.e., imprecision in human judgment and evaluation of events
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and phenomena. Therefore, the scopes of application of the two papers differ considerably as they model two
different types of uncertainty. Thus, compared to Achemine et al. [2], the present paper is a new theoretical and
application contribution.

Further, the literature on games with random payoffs is mainly concentrated on the investigation of Nash
equilibrium, its existence and computation. We mention and compare our work to two prominent works on this
area of research, Singh and Lisser [24] that deals with bi-matrix games with random payoffs and Singh et al.
[25] that investigates 𝑛-person finite games.

The main differences between the present paper and the mentioned two papers are that (i) the two papers
deal with existence, and computation of Nash equilibrium, while ours deals with Z-equilibrium, and (ii) in the
two papers the payoffs are defined by fixing a probability (confidence) level, then finding the maximum payoff
that can be obtained for this level; formally, they use the formulas

𝑢𝛼𝑖
𝑖 (𝑝, 𝑞) = sup

{︁
𝑣𝑖 : P

(︁
𝑝𝑇 𝐴𝑞 ≥ 𝑣𝑖

)︁
≥ 𝛼𝑖

}︁
(6.1)

𝑢𝛼𝑖
𝑖 (𝜏) = sup {𝑣𝑖 : P(𝜔|𝑟𝜔

𝑖 (𝜏, 𝜔) ≥ 𝑣𝑖) ≥ 𝛼𝑖} (6.2)

respectively, where 𝛼𝑖 is a given confidence level. In our paper, we use the formula

𝑢𝛿𝑖
𝑖 (𝑝, 𝑞) = P

(︁
𝑝𝑇 𝐴𝑞 ≥ 𝛿𝑖

)︁
(6.3)

where 𝛿𝑖 is a given satisfaction level in terms of payoff.
As (6.1) and (6.2) are based on the same idea, we will compare (6.1) to (6.3) because they deal with the same

type of games, bi-matrix games. In (6.1), the used payoff to define Nash equilibrium is defined as the supremum
of the set of 𝑣𝑖 values such that P

(︁
𝑝𝑇 𝐴𝑞 ≥ 𝑣𝑖

)︁
≥ 𝛼𝑖. Then a RZ-equilibrium in the sense of Singh and Lisser

payoffs can be defined as follows.

Definition 6.1. For predetermined confidence levels 𝛼1, 𝛼2, a pair (𝑝*, 𝑞*) is called a RZ-equilibrium (random
Z-equilibrium) of the game (2.1) at (𝛼1, 𝛼2) levels, if it satisfies

(1)
{︂
∀𝑝 ∈ 𝑃, ∃𝑞 ∈ 𝑄, 𝑢𝛼1

1 (𝑝, 𝑞) ≤ 𝑢𝛼1
1 (𝑝*, 𝑞*)

∀𝑞 ∈ 𝑄, ∃𝑝 ∈ 𝑃, 𝑢𝛼2
2 (𝑝, 𝑞) ≤ 𝑢

𝛼𝑞

2 (𝑝*, 𝑞*).
(2) There is no strategy profile (𝑝, 𝑞) ∈ 𝑃 ×𝑄, such that

(𝑢𝛼1
1 (𝑝*, 𝑞*), 𝑢𝛼2

2 (𝑝*, 𝑞*)) - (𝑢𝛼1
1 (𝑝, 𝑞), 𝑢𝛼2

2 (𝑝, 𝑞)) .

That is, using Singh and Lisser’s definition of payoffs, the players must first provide confidence levels (values
of the probability parameters 𝛼𝑖, 𝑖 = 1, 2), then if a pair (𝑝*, 𝑞*) of mixed strategies is a Z-equilibrium, the
payoffs 𝑢𝛼𝑖

𝑖 (𝑝*, 𝑞*), 𝑖 = 1, 2 satisfy the confidence levels 𝛼𝑖, 𝑖 = 1, 2, that is P
(︀
𝑝*𝑇 𝐴𝑞* ≥ 𝑢𝛼1

1 (𝑝*, 𝑞*)
)︀
≥ 𝛼1, and

P
(︀
𝑝*𝑇 𝐵𝑞* ≥ 𝑢𝛼2

2 (𝑝*, 𝑞*)
)︀
≥ 𝛼2.

In our work, we proceed in the other way around, we first ask the players to provide their satisfaction levels,
𝛿𝑖, 𝑖 = 1, 2, in terms of payoffs and then define the RZ-equilibrium in terms of probabilities of events where
payoffs satisfy those levels. Then, if a pair (𝑝*, 𝑞*) of mixed strategies is a RZ-equilibrium, the payoffs are
expressed in terms of probabilities 𝑢𝛿𝑖

𝑖 (𝑝*, 𝑞*) = P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 𝛿𝑖

)︁
, and 𝑢𝛿2

2 (𝑝*, 𝑞*) = P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

)︁
.

Our approach that is based on considering probabilities as payoffs in defining RZ-equilibrium makes theoreti-
cal and practical sense. In fact, asking the players to provide a satisfaction level, we use the Simon’s “satisficing
principle” [23] which means that in non-trivial real-life decision problems, decision-makers look for satisficing
alternatives rather than maximizing ones. As uncertain payoff games are highly complex because they involve
strategic uncertainty and payoff uncertainty, this principle is highly relevant and appropriate. Further, it also
makes sense to express the attainment of the given satisfaction level in terms of probability as the payoffs are of
probability uncertainty type. Consequently, as we are in a game context, it makes sense to define Z-equilibrium
in terms of the probability of attainment of satisfaction levels.
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Now let us investigate the two definitions of RZ-equilibrium, our Definition 2.6 and Sing and Lisser inspired
Definition 6.1. For the sake of discussion, assume that the entries of the payoff matrices in the game (2.1) satisfy
the conditions of Theorem 3.1. The relation between the two RZ-equilibrium definitions is that with each given
pair of confidence levels (𝛼1, 𝛼2), and RZ-equilibrium (𝑝*, 𝑞*) in the sense of Definition 6.1, we can associate a
Z-equilibrium (𝑝*, 𝑞*) in the sense of our Definition 2.6 as follows. Let

𝑢𝛼𝑖
𝑖 (𝑝*, 𝑞*) = 𝛿𝑖, 𝑖 = 1, 2,

then Theorem 3.1 guarantees the existence of RZ-equilibrium in the sense of Definition 2.6 with satisfaction
levels 𝛿1 = 𝑢𝛼1

1 (𝑝*, 𝑞*), 𝛿2 = 𝑢𝛼2
2 (𝑝*, 𝑞*). That is, with each RZ-equilibrium in the sense of Definition 6.1, we

associate a RZ-equilibrium in the sense of Definition 2.6 that guarantees (in probability sense) the payoffs of the
former RZ-equilibrium, that is P

{︁
𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
and P

{︁
𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁
. And based on RZ-equilibrium

Pareto optimality condition, each equilibrium is not Pareto-dominated by the other in the sense of the definition
that is used to find it, that is, on the one hand the inequality

(𝑢𝛼1
1 (𝑝*, 𝑞*), 𝑢𝛼2

2 (𝑝*, 𝑞*)) - (𝑢𝛼1
1 (𝑝*, 𝑞*), 𝑢𝛼2

2 (𝑝*, 𝑞*)) .

is impossible. On the other hand, the inequality(︁
P
{︁

𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
, P

{︁
𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁)︁
-
(︁
P
{︁

𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
, P

{︁
𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁)︁
.

is impossible.
Therefore, from this point of view, no equilibrium has an advantage over the other in terms of payoffs. One

may argue that the probabilities P
{︁

𝜔 : 𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

}︁
and P

{︁
𝜔 : 𝑝*𝑇 𝐵̃𝑞* ≥ 𝛿2

}︁
at the Z-equilibrium in the sense

of Definition 2.6 can be small and may not be attractive to the players even if the satisfaction levels, 𝛿𝑖, 𝑖 = 1, 2
are large. As stated above, because of the Pareto optimality of RZ-equilibrium, even if the probabilities are
small at the equilibrium, they are not Pareto dominated by the probabilities of any other strategy profile (𝑝, 𝑞).
Another argument is that, in fact, these probabilities depend on the satisfaction levels 𝛿𝑖, 𝑖 = 1, 2 and the
probability distributions of the payoffs. For example, in the case the entries of the payoff matrices of the game

(2.1) are normally distributed, for the first player, we have P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 𝛿1

)︁
= 1−Φ

(︂
𝛿1−E(𝑝*𝑇 𝐴𝑞*)√

𝑉1(𝑝,𝑞)

)︂
, (see the

proof of Thm. 3.1), then the larger the number
𝛿1−E(𝑝*𝑇 𝐴𝑞*)√

𝑉1(𝑝,𝑞)
, the smaller the probabilities. In other words, to

get larger probabilities, the players should choose smaller satisfaction levels than the averages E
(︁
𝑝*𝑇 𝐴𝑞*

)︁
and

E
(︁
𝑝*𝑇 𝐵̃𝑞*

)︁
.

Now, we explain how to get RZ-equilibrium with desired probabilities.
For player I, we have

E
(︁
𝑝𝑇 𝐴𝑞

)︁
= E

⎛⎝𝑖=𝑚∑︁
1=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗 𝑎̃𝑖𝑗

⎞⎠
=

𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗𝜇𝑎𝑖𝑗 ≤
𝑖=𝑚∑︁
𝑖=1

𝑗=𝑛∑︁
𝑗=1

𝑝𝑖𝑞𝑗max𝑖,𝑗𝜇𝑎𝑖𝑗 = max𝑖,𝑗𝜇𝑎𝑖𝑗 = 𝜇𝑎,max.

Similarly, for player II, we have E
(︁
𝑝𝑇 𝐵̃𝑞

)︁
≤ max𝑖,𝑗𝜇𝑏𝑖𝑗

= 𝜇𝑏,max.

We have also

P
{︁

𝜔 : 𝑝𝑇 𝐴𝑞 ≥ 𝛿1

}︁
= 1− Φ

(︃
𝛿1 −𝑀1(𝑝, 𝑞)√︀

𝑉1(𝑝, 𝑞)

)︃
≤ 1− Φ

(︃
𝛿1 − 𝜇𝑎,max√︀

𝑉1(𝑝, 𝑞)

)︃
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and

P
{︁

𝜔 : 𝑝𝑇 𝐵̃𝑞 ≥ 𝛿1

}︁
= 1− Φ

(︃
𝛿2 −𝑀2(𝑝, 𝑞)√︀

𝑉2(𝑝, 𝑞)

)︃
≤ 1− Φ

(︃
𝛿2 − 𝜇𝑏,max√︀

𝑉2(𝑝, 𝑞)

)︃
.

Therefore, 𝜇𝑎,max and 𝜇𝑏,max can be used as reference points for computing RZ-equilibria with desired prob-

abilities for given satisfaction levels. For example, for 𝛿1 = 𝜇𝑎,max, 𝛿2 = 𝜇𝑏,max, P
(︁
𝑝𝑇 𝐴𝑞 ≥ 𝛿1

)︁
≤ 0.5 and

P
(︁
𝑝𝑇 𝐵̃𝑞 ≥ 𝛿1

)︁
≤ 0.5.

Clearly, the smaller than 𝜇𝑎,max, 𝜇𝑏,max the satisfaction levels 𝛿1, 𝛿2, the larger the probabilities P
(︁
𝑝𝑇 𝐴𝑞 ≥ 𝛿1

)︁
and P

(︁
𝑝𝑇 𝐵̃𝑞 ≥ 𝛿1

)︁
, respectively.

Let us illustrate this statement by the game of Example 5.1.

Example 6.2. Consider the game of Example 5.1 and compute RZ-equilibrium for decreasing values of the
satisfaction levels 𝛿𝑖, 𝑖 = 1, 2 with the same weights 𝛽𝑖 = 1

2 , 𝑖 = 1, 2. We have 𝜇𝑎,max = 4 and 𝜇𝑏,max = 4.

(1) For 𝛿1 = 10, 𝛿2 = 10, we have already computed the RZ-equilibrium in Example 5.1. It is (𝑝*, 𝑞*) =
((0, 1), (0, 1)). Then

P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 10

)︁
= 1− Φ

(︃
10−𝑀1((0, 1), (0, 1))√︀

𝑉1((0, 1), (0, 1))

)︃
= 1− Φ

(︂
10− 4

1

)︂
= 1− Φ(6) = 0.

P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 10

)︁
= 1− Φ

(︃
10−𝑀2((0, 1), (0, 1))√︀

𝑉2((0, 1), (0, 1))

)︃
= 1− Φ

(︂
10− 4

2

)︂
= 1− Φ(3) = 0.001.

Then (︁
P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 10

)︁
, P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 10

)︁)︁
= (0, 0.001).

(2) For 𝛿1 = 5 and 𝛿2 = 4, the RZ-equilibrium is (𝑝*, 𝑞*) = ((0, 1), (0, 1)). Then,(︁
P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 5

)︁
, P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 4

)︁)︁
= (0.1587, 0.5).

(3) 𝛿1 = 1, 𝛿2 = 2, the RZ-equilibrium is (𝑝*, 𝑞*) = ((0.0257, 0.9743), (0.2161, 0.7839)), then

P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 1

)︁
= 1− Φ(−3) = Φ(3) = 0.9986 ≃ 1.

P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 2

)︁
= 1− Φ(−1) = Φ(1) = 0.8413 and(︁

P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 1

)︁
, P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 2

)︁)︁
= (1, 0.8413).

Clearly, the probabilities decrease as 𝛿𝑖, 𝑖 = 1, 2 increase. Thus, starting from 𝛿1 = 𝜇𝑎max, 𝛿2 = 𝜇𝑏max, players
can get RZ-equilibrium with desired probabilities by increasing or decreasing 𝛿𝑖, 𝑖 = 1, 2.

Finally, an advantage of the payoffs in Definition 2.6 is that they are simpler as they are expressed by prob-
abilities only, while the payoffs in Definition 6.1 are expressed by probabilities and the “sup” operation. Thus,
the existence conditions and computation of RZ-equilibrium would be more difficult via the latter definition
than via the former.

Next, we provide an example with RZ-equilibrium and Nash equilibrium.

Example 6.3. Consider the random bi-matrix game

𝐴 =
(︂
𝒩 (1, 2) 𝒩 (1, 2)
𝒩 (1, 2) 𝒩 (1, 2)

)︂
,
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and

𝐵̃ =
(︂
𝒩 (2, 1) 𝒩 (2, 1)
𝒩 (2, 1) 𝒩 (2, 1)

)︂
.

According to Theorem 3.2 in Singh and Lisser [24], for all 𝛼1, 𝛼2 ∈ [0.5, 1], (𝑝, 𝑞) =
(︀(︀

1
2 , 1

2

)︀
,
(︀

1
2 , 1

2

)︀)︀
is a Nash equi-

librium. Using Lisser et al. [25], the payoffs of the players at this equilibrium are computed as (1.6915, 2.1728).
To compute RZ-equilibrium, we use the problem (𝑃1), which is equivalent to

(𝑃3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(︂

𝛽1(𝛿1−1)√
4(4𝑝2

1𝑞2
1+2𝑝2

1+2𝑞2
1−4𝑝2

1𝑞1−4𝑝1𝑞2
1+4𝑝1𝑞1−2𝑞1−2𝑝1+1)

+ 𝛽2(𝛿2−2)√
(4𝑝2

1𝑞2
1+2𝑝2

1+2𝑞2
1−4𝑝2

1𝑞1−4𝑝1𝑞2
1+4𝑝1𝑞1−2𝑞1−2𝑝1+1)

)︂
subject to

𝛾1 ≥ (𝛿1−1)√
4(4𝑝2

1𝑞2
1+2𝑝2

1+2𝑞2
1−4𝑝2

1𝑞1−4𝑝1𝑞2
1+4𝑝1𝑞1−2𝑞1−2𝑝1+1)

;

𝛾2 ≥ (𝛿2−2)√
(4𝑝2

1𝑞2
1+2𝑝2

1+2𝑞2
1−4𝑝2

1𝑞1−4𝑝1𝑞2
1+4𝑝1𝑞1−2𝑞1−2𝑝1+1)

;

(𝑝1, 𝑞1) ∈ [0, 1]2.

Comparing Nash equilibrium (𝑝*, 𝑞*) with RZ-equilibrium, we obtain.

(1) For 𝛽1 = 𝛽2 = 1
2 and 𝛿1 = 0.5, 𝛿2 = 0.5, (𝑝*, 𝑞*) = ((0.5, 0.5), (0.5, 0.5)) is a RZ-equilibrium with probabilities(︁

P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 0.5

)︁
, P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 0.5

)︁)︁
= (0.6915, 0.9986).

(2) When 𝛽1 = 𝛽2 = 1
2 and 𝛿1 = 1.6915, 𝛿2 = 2.1728, the RZ-equilibrium that guarantees the payoffs

(1.6915, 2.1728) of the Nash equilibrium
(︀(︀

1
2 , 1

2

)︀
,
(︀

1
2 , 1

2

)︀)︀
is (𝑝*, 𝑞*) = ((0, 1), (0, 1)) with probabilities(︁

P
(︁
𝑝*𝑇 𝐴𝑞* ≥ 1.6915

)︁
, P
(︁
𝑝*𝑇 𝐵̃𝑞* ≥ 2.1728

)︁)︁
= (0.3669, 0.4325).

Thus, in (1) with low satisfaction levels, 𝛿1 = 𝛿2 = 0.5, Nash equilibrium is also a RZ-equilibrium with high
probabilities. However, in (2), Nash equilibrium payoffs are achieved with low probabilities. These results can
be explained by the facts that (i) in general, Nash equilibrium is not Pareto optimal, while RZ-equilibrium is,
and (ii) a Nash equilibrium that is Pareto optimal is a Z-equilibrium.

7. Conclusion

In this paper, we have introduced the concept of RZ-equilibrium for a bi-matrix game with random payoffs
which is based on the notion of Z-equilibrium. Sufficient existence conditions are established in the cases where
the payoffs follow normal or Cauchy distributions. In both cases, we show that the chance-constrained game
can be formulated as an equivalent bi-criteria minimization problem, from which we derived algorithms for
the computation of RZ-equilibrium. In the future, we intend to extend this work to the case of multi-criteria
bi-matrix games with random payoffs. Finding conditions under which a game has at least one pure strategy
RZ-equilibrium is an interesting challenging research problem.

Acknowledgements. The authors would like to thank the two referees for their comments that helped to substantially
improve this article.
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