Weak and strong domination on some graphs
RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2305-2314

Let G = (V(G), E(G)) be a graph and u v ε E . A subset D ⊆ V of vertices is a dominating set if every vertex in V − D is adjacent to at least one vertex of D. The domination number is the minimum cardinality of a dominating set. Let u and v be elements of V. Then, u strongly dominates u and v weakly dominates u if (i)uvεE and (ii)deg(u) ≥ deg(v). A set D ⊆ V is a strong (weak) dominating set (sd-set)(wd-set) of G if every vertex in V − D is strongly dominated by at least one vertex in D. The strong (weak) domination number γ$$(γ$$) of G is the minimum cardinality of a sd-set (wd-set). In this paper, the strong and weak domination numbers of comet, double comet, double star and theta graphs are given. The theta graphs are important geometric graphs that have many applications, including wireless networking, motion planning, MST construction and real-time animation.

DOI : 10.1051/ro/2022049
Classification : 68R10, 05C76, 05C70
Keywords: Graph theory, graph operations, domination
@article{RO_2022__56_4_2305_0,
     author = {Durgun, Derya Do\u{g}an and Kurt, Berna L\"ok\c{c}\"u},
     title = {Weak and strong domination on some graphs},
     journal = {RAIRO. Operations Research},
     pages = {2305--2314},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {4},
     doi = {10.1051/ro/2022049},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022049/}
}
TY  - JOUR
AU  - Durgun, Derya Doğan
AU  - Kurt, Berna Lökçü
TI  - Weak and strong domination on some graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 2305
EP  - 2314
VL  - 56
IS  - 4
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022049/
DO  - 10.1051/ro/2022049
LA  - en
ID  - RO_2022__56_4_2305_0
ER  - 
%0 Journal Article
%A Durgun, Derya Doğan
%A Kurt, Berna Lökçü
%T Weak and strong domination on some graphs
%J RAIRO. Operations Research
%D 2022
%P 2305-2314
%V 56
%N 4
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022049/
%R 10.1051/ro/2022049
%G en
%F RO_2022__56_4_2305_0
Durgun, Derya Doğan; Kurt, Berna Lökçü. Weak and strong domination on some graphs. RAIRO. Operations Research, Tome 56 (2022) no. 4, pp. 2305-2314. doi: 10.1051/ro/2022049

[1] K. S. Bagga, L. W. Beineke, W. E. Goddard, M.J. Lipman and R. E. Pippert, A survey of integrity. Discret. Appl. Math. 37 (1992) 13–28. | DOI

[2] R. S. Bhat, S. S. Kamath and S. R. Bhat, A bound on weak domination number using strong (weak) degree concepts in graphs. J. Int. Acad. Phys. Sci. 15 (2011) 303–317.

[3] R. Boutrig and M. Chellali, A note on a relation between the weak and strong domination numbers of a graph. Opusc. Math. 32 (2012) 235–238. | DOI

[4] G. Chartrand, L. Lesniak and P. Zhang, Textbooks in Mathematics, Graphs & Digraphs. 6th edition. A Chapman & Hall Book (2015).

[5] T. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to algorithms. 4th edition. The MIT Press (1990).

[6] M. Cygan, M. Philipczuk and R. Skrekovski, Relation between Randic index and avarage distance of trees. Match Commun. Math. Comput. Chem. 66 (2011) 605–612.

[7] A. R. Desai and D. B. Gangadharappa, Some bounds on strong domination number of a graph. J. Comput. Math. Sci. 2 (2011) 399–580.

[8] D. Doğan Durgun and B. Lökçü, Strong domination number of some graphs. Celal Bayar Univ. J. Sci. 11 (2015) 89–91.

[9] D. Doğan Durgun and B. Lökçü, Weak and strong domination in thorn graphs. Asian-Eur. J. Math. 13 (2020) 2050071. | DOI

[10] A. N. Gani and M. B. Ahamed, Strong and weak domination in fuzzy graphs. East Asian Math. J. 23 (2007) 1–8.

[11] J. W. Grossman, F. Harary and M. Klawe, Generalized ramsey theory for graphs, X: Double stars. Discret. Math. 28 (1979) 247–254. | DOI

[12] J. H. Hattingh and M. A. Henning, On strong domination in graphs. J. Comb. Math. Comb. Comput. 26 (1998) 73–82.

[13] J. H. Hattingh and R. C. Laskar, On weak domination in graphs. Ars Comb. 49 (1998) 205–216.

[14] S. T. Hedetniemi, T. W. Haynes and P. J. Slater, Fundementals of Domination in Graphs. Marcel Dekker, New York (1998).

[15] S. T. Hedetniemi, T. W. Haynes and P. J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker, New York (1998).

[16] D. Laiche, I. Bouchemakh and E. Spoena, On the Packing Coloring of Undirected and Oriented Generalized Theta Graphs. Preprint (2016). | arXiv

[17] P. Morin and S. Verdonschot, On the average number of edges in theta graphs. Preprint (2013). | arXiv

[18] D. Rautenbach, The influence of special vertices on strong domination. Discrete Math. 197 (1999) 683–690. | DOI

[19] D. Rautenbach, Bounds on the strong domination number. Discrete Math. 215 (2000) 201–212. | DOI

[20] D. Rautenbach and V. E. Zverovich, Perfect graphs of strong domination and independent strong domination. Discrete Math. 226 (2001) 297–311. | DOI

[21] E. Sampathkumar and L. P. Latha, Strong weak domination and domination balance in a graph. Discrete Math. 161 (1996) 235–242. | DOI

[22] V. Swaminathan and P. Thangaraju, Strong and weak domination in graphs. Electron. Notes Discrete Math. 15 (2003) 213–215. | DOI

[23] O. Uğurlu, M. E. Berberler and Z. N. Berberler, Strong weak domination: A mathematical programming strategy. Bull. Int. Math. Virtual Inst. 9 (2019) 513–519.

[24] S. K. Vaidya and R. N. Mehta, Steiner domination number of some wheel related graphs. Int. J. Math. Soft Comput. 5 (2015) 15–19. | DOI

[25] S. K. Vaidya and S. H. Karkar, Strong domination number of some path related graphs. Int. J. Math. Soft Comput. 7 (2017) 109–116. | DOI

[26] S. K. Vaidya and S. H. Karkar, Weak domination number of corona graphs. Math. Today 33 (2017) 18–23.

Cité par Sources :