Performance guarantee of the jump neighborhood for scheduling jobs on uniformly related machines
RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 1079-1088

We study the worst case performance guarantee of locally optimal solutions for the problem of scheduling jobs on uniformly related parallel machines with the objective of minimizing the total weighted completion time. The quality of locally optimal solutions under the jump neighborhood is analyzed, which consists of iteratively moving a single job from one machine to another, improving the total weighted completion time in each iteration and stopping once improvement is no longer possible. We propose an upper bound for the total weighted completion time for the solutions obtained by this local search, and upper and lower bounds for the performance guarantee of the obtained locally optimal solutions. Additionally, the case of identical parallel machines is analyzed.

DOI : 10.1051/ro/2022045
Classification : 90B35, 90C59, 68M20, 68W40
Keywords: Parallel machines, total weighted completion time, local search, performance guarantee
@article{RO_2022__56_2_1079_0,
     author = {Mu\~noz, Felipe T. and Pinochet, Alejandro A.},
     title = {Performance guarantee of the jump neighborhood for scheduling jobs on uniformly related machines},
     journal = {RAIRO. Operations Research},
     pages = {1079--1088},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/ro/2022045},
     mrnumber = {4407599},
     zbl = {1487.90310},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022045/}
}
TY  - JOUR
AU  - Muñoz, Felipe T.
AU  - Pinochet, Alejandro A.
TI  - Performance guarantee of the jump neighborhood for scheduling jobs on uniformly related machines
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 1079
EP  - 1088
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022045/
DO  - 10.1051/ro/2022045
LA  - en
ID  - RO_2022__56_2_1079_0
ER  - 
%0 Journal Article
%A Muñoz, Felipe T.
%A Pinochet, Alejandro A.
%T Performance guarantee of the jump neighborhood for scheduling jobs on uniformly related machines
%J RAIRO. Operations Research
%D 2022
%P 1079-1088
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022045/
%R 10.1051/ro/2022045
%G en
%F RO_2022__56_2_1079_0
Muñoz, Felipe T.; Pinochet, Alejandro A. Performance guarantee of the jump neighborhood for scheduling jobs on uniformly related machines. RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 1079-1088. doi: 10.1051/ro/2022045

[1] F. Abed, J. R. Correa and C. C. Huang, Optimal coordination mechanisms for multi-job scheduling games. In: ESA (2014). | MR | Zbl

[2] R. Ahuja, O. Ergun, J. Orlin and A. Punnen, A survey of very large-scale neighborhood search techniques. Disc. Appl. Math. 123 (2002) 75–102. | MR | Zbl | DOI

[3] E. Angel, A survey of approximation results for local search algorithms. In: Efficient Approximation and Online Algorithms, edited by E. Bampis, K. Jansen and C. Kenyon. Springer (2006) 30–73. | MR | Zbl

[4] N. Bansal, A. Srinivasan and O. Svensson, Lift-and-round to improve weighted completion time on unrelated machines. In: STOC (2016). | MR

[5] P. Brucker, J. Hurink and F. Werner, Improving local search heuristics for some scheduling problems. Part II. Disc. Appl. Math. 72 (1997) 47–69. | MR | Zbl | DOI

[6] T. Brueggemann, J. L. Hurink and W. Kern, Quality of move-optimal schedules for minimizing total weighted completion time. Oper. Res. Lett. 34 (2006) 583–590. | MR | Zbl | DOI

[7] T. Brueggemann, J. L. Hurink, T. Vredeveld and G. J. Woeginger, Exponential size neighborhoods for makespan minimization scheduling. Naval Res. Logist. 58 (2011) 795–803. | MR | Zbl | DOI

[8] J. Bruno, E. G. Coffman and R. Sethi, Scheduling independent tasks to reduce mean finishing time. Commun. ACM 17 (1974) 382–387. | MR | Zbl | DOI

[9] Y. Cho and S. Sahni, Bounds for list schedules on uniform processors. SIAM J. Comput. 9 (1980) 91–103. | MR | Zbl | DOI

[10] R. Cole, J. R. Correa, V. Gkatzelis, V. Mirrokni and N. Olver, Decentralized utilitarian mechanisms for scheduling games. Games Econ. Behav. 92 (2015) 306–326. | MR | Zbl | DOI

[11] R. W. Conway, W. L. Maxwell and L. W. Miller, Theory of Scheduling. Addison-Wesley (1967). | MR | Zbl

[12] J. R. Correa and F. T. Muñoz, Performance guarantees of local search for minsum scheduling problems. Math. Program. (2020). | DOI | MR | Zbl

[13] W. L. Eastman, S. Even and I. M. Isaacs, Bounds for the optimal scheduling of n jobs on m processors. Manage Sci. 11 (1964) 268–279. | MR | DOI

[14] L. Epstein and J. Sgall, Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorithmica 39 (2004) 43–57. | MR | Zbl | DOI

[15] G. Finn and E. Horowitz, A linear time approximation algorithm for multiprocessor scheduling. BIT Numer. Math. 19 (1979) 312–320. | MR | Zbl | DOI

[16] A. Frangioni, E. Necciari and M. G. Scutellà, A multi-exchange neighborhood for minimum makespan parallel machine scheduling problems. J. Comb. Optim. 8 (2004) 195–220. | MR | Zbl | DOI

[17] M. Garey and D. Johnson, Strong NP-completeness results: Motivation, examples, and implications. J. ACM 25 (1978) 499–508. | MR | Zbl | DOI

[18] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman and Co., San Francisco (1979). | Zbl

[19] R. L. Graham, E. L. Lawler, J. K. Lenstra and A. H. G. Rinooy Kan, Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Disc. Math. 5 (1979) 287–326. | MR | Zbl | DOI

[20] W. A. Horn, Minimizing average flow time with parallel machines. Oper. Res. 21 (1973) 846–847. | Zbl | DOI

[21] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23 (1976) 317–327. | MR | Zbl | DOI

[22] J. K. Lenstra, A. H. G. Rinooy Kan and P. Brucker, Complexity of machine scheduling problems. Ann. Disc. Math. 1 (1977) 343–362. | MR | Zbl | DOI

[23] S. Li, Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations. In: FOCS (2017). | MR

[24] W. Michiels, E. Aarts and J. Korst, Theoretical Aspects of Local Search. Springer Science & Business Media, Berlin (2007). | MR | Zbl

[25] C. Rutten, D. Recalde, P. Schuurman and T. Vredeveld, Performance guarantees of jump neighborhoods on restricted related parallel machines. Oper. Res. Lett. 40 (2012) 287–291. | MR | Zbl | DOI

[26] P. Schuurman and T. Vredeveld, Performance guarantees of local search for multiprocessor scheduling. INFORMS J. Comput. 19 (2007) 52–63. | MR | Zbl | DOI

[27] M. Skutella and G. J. Woeginger, A PTAS for minimizing the total weighted completion time on identical parallel machines. Math. Oper. Res. 25 (2000) 63–75. | MR | Zbl | DOI

[28] W. E. Smith, Various optimizers for single-stage production. Naval Res. Logist. 3 (1956) 59–66. | MR | DOI

Cité par Sources :