
RAIRO-Oper. Res. 56 (2022) 1079–1088 RAIRO Operations Research
https://doi.org/10.1051/ro/2022045 www.rairo-ro.org

PERFORMANCE GUARANTEE OF THE JUMP NEIGHBORHOOD FOR
SCHEDULING JOBS ON UNIFORMLY RELATED MACHINES

Felipe T. Muñoz1,* and Alejandro A. Pinochet2

Abstract. We study the worst case performance guarantee of locally optimal solutions for the problem
of scheduling jobs on uniformly related parallel machines with the objective of minimizing the total
weighted completion time. The quality of locally optimal solutions under the jump neighborhood is
analyzed, which consists of iteratively moving a single job from one machine to another, improving the
total weighted completion time in each iteration and stopping once improvement is no longer possible.
We propose an upper bound for the total weighted completion time for the solutions obtained by this
local search, and upper and lower bounds for the performance guarantee of the obtained locally optimal
solutions. Additionally, the case of identical parallel machines is analyzed.

Mathematics Subject Classification. 90B35, 90C59, 68M20, 68W40.

Received December 8, 2021. Accepted March 18, 2022.

1. Introduction

Local search methods are widely used to solve scheduling problems and exhibit good empirical behavior,
but little is known about their theoretical worst-case performance. The reader is referred to [3,24] for a survey
of performance guarantees and other theoretical aspects of local search for a wide variety of combinatorial
problems, including scheduling problems.

The problem of scheduling jobs on uniformly related parallel machines is considered with the objective
of minimizing the total weighted completion time. This problem is denoted by 𝑄||

∑︀
𝑤𝑗𝐶𝑗 in the three-field

scheduling notation [19]. More precisely, we are given a set of 𝑛 jobs to be scheduled on a set of 𝑚 machines.
The jobs must be scheduled without interruption on a single machine, and each machine can process one job at
a time. Each job has a non-negative weight and a non-negative processing requirement.

The solution called schedule, is an assignment of jobs to machines together with a sequence of the jobs within
each machine. Here, it is considered that the sequence within a machine is always taken to be the decreasing
order of weight to processing time requirement ratio, also known as the Smith ratio [28]. Therefore, a schedule is
fully determined by the assignment of jobs to machines. Given a schedule, we denote by 𝐶𝑗 the completion time
of job 𝑗, with which the total weighted completion time can be computed by

∑︀
𝑗 𝑤𝑗𝐶𝑗 , where 𝑤𝑗 is the weight

of job 𝑗. If jobs have unitary weight, the problem consists in minimizing the total completion time (
∑︀

𝑗 𝐶𝑗).

Keywords. Parallel machines, total weighted completion time, local search, performance guarantee.

1 Department of Industrial Engineering, Universidad del B́ıo-B́ıo, Concepción, Chile.
2 Faculty of Forestry Sciences, Universidad de Concepción, Concepción, Chile.
*Corresponding author: fmunoz@ubiobio.cl

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2022045
https://www.rairo-ro.org
https://orcid.org/0000-0003-1213-3217
mailto:fmunoz@ubiobio.cl
https://creativecommons.org/licenses/by/4.0

1080 F.T. MUÑOZ AND A.A. PINOCHET

Two problems have particular interest for our purpose. The first being the particular case where all machines
work at the same speed, denoted by 𝑃 ||

∑︀
𝑤𝑗𝐶𝑗 . The second one is the most general case where the jobs have

arbitrary process times, denoted by 𝑅||
∑︀

𝑤𝑗𝐶𝑗 .
Minimizing the total completion time on parallel machine environments can be solved in polynomial time.

The problem 𝑅||
∑︀

𝐶𝑗 , can be solved by bipartite matching techniques [20]. The problem 𝑄||
∑︀

𝐶𝑗 can be solved
in 𝑂(𝑛 log 𝑛𝑚) [11,21]. For the problem 𝑃 ||

∑︀
𝐶𝑗 , complexity decreases to 𝑂(𝑛 log 𝑛) [11]. If the objective is to

minimize the total weighted completion time, the problems are NP-hard [18], even for the case of two identical
machines [8, 22].

Since for the total weighted completion time objective the problem becomes NP-hard, it is natural to
look for approximate solutions. Polynomial time approximation schemes (PTAS) for problems 𝑃 ||

∑︀
𝑤𝑗𝐶𝑗 and

𝑄||
∑︀

𝑤𝑗𝐶𝑗 are studied in [14,27] respectively. While the best approximation reported for 𝑅||
∑︀

𝑤𝑗𝐶𝑗 problem
is 3/2 − 𝑐, for 𝑐 > 1/6000 [4, 23]. Another approach, vastly implemented in practice and the main focus of
this paper is to use local search techniques. There are two important aspects that determine the efficiency of a
local search algorithm: neighborhood size and local optimum quality [2]. One way to evaluate the quality of a
local optimum is by worst-case analysis. Specifically, we study the Jump neighborhood, also known as move or
insertion, which is defined as moving a single job from one machine to another.

Given a problem 𝒫 and a neighborhood structure 𝒩 , the performance guarantee of a minimization criterion
is defined as the maximum possible ratio of a local optimal solution with respect to the global optimum. More
precisely, the performance guarantee can be formally defined by:

𝑝𝑔(𝒫,𝒩) = sup
𝑘∈ℐ

sup
𝜎∈ℒ𝑘

{︂
𝑐𝑜𝑠𝑡(𝜎)
𝑜𝑝𝑡(𝑘)

}︂
,

where ℐ is the set of instances of the problem 𝒫, ℒ𝑘 is the set of locally optimal solutions of instance 𝑘 for
neighborhood 𝒩 , 𝑐𝑜𝑠𝑡(𝜎) is the cost of solution 𝜎 (objective function), and 𝑜𝑝𝑡(𝑘) is the optimal cost for the
instance 𝑘. To determine the performance guarantee for a jump neighborhood, an upper bound is established
and then an instance is proposed to establish a lower bound for the performance guarantee.

The study of performance guarantees for locally optimal solutions under a jump neighborhood on paral-
lel machine environments is more extensive for the makespan objective than the total weighted completion
time objective. The performance guarantees for the makespan objective has been studied for identical parallel
machines [7, 15, 26], uniformly related parallel machines [9, 26] and unrelated parallel machines [26]. The per-
formance guarantees considering machine eligibility restrictions for identical and uniformly unrelated parallel
machines was studied in [25].

For the total weighted completion time objective, the performance guarantees for the 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 problem
has been studied in [6], and it was determined that the performance guarantees are at least 1.2 and at most
(3𝑚−1)/(2𝑚). The 𝑅||

∑︀
𝑤𝑗𝐶𝑗 problem was studied in [1,12] , establishing that the performance guarantee is at

most 2.618. The performance guarantees considering machine eligibility restrictions for identical and uniformly
unrelated parallel machines was studied in [12]. In [5, 26] several related problems are studied.

Other neighborhoods that have been used for scheduling in parallel machine environments include lexjump,
push, multi-exchange and split. Lexjump is a polynomial size neighborhood and is an extension of the jump
neighborhood used for minimizing the makespan [7,25,26]. Push is also a polynomial size neighborhood, which
was introduced in [26] for the minimization of makespan on identical and uniformly related parallel machine
environments. Multi-exchange is an exponential size neighborhood introduced in [16] for unrelated parallel
machine environments, and then used for other parallel machine environments in [26]. Split is another expo-
nential size neighborhood introduced in [7] for the minimization of makespan on identical parallel machines.
Combined Jump neighborhood with other neighborhoods was studied in [7].

In [1,6,12] the proof techniques used consist of establishing a local optimality condition and then using certain
mathematical properties to establish the bound for the performance guarantee. In [1, 12] a mapping proposed
by Cole et al. [10] is used. With this mapping, a schedule can be mapped into an inner product space so that
the norm of the mapping is closely related to the total weighted completion time of the schedule. On the other

PERFORMANCE GUARANTEE OF THE JUMP NEIGHBORHOOD 1081

hand, [6] uses an inequality proposed by Eastman et al. [13]. This inequality is presented in Section 2.3. Our
proof technique is similar to the one used in [6].

Our results. It is proved that the performance guarantee for locally optimal solutions under jump neighborhood
for 𝑄||

∑︀
𝑤𝑗𝐶𝑗 problem is at least 1.42285 and at most

min
{︂

2
(︂

1− 2
𝑚 + 2

)︂ (︂
𝑠max

𝑠min
+

1
2𝑚

)︂
, 2.618

}︂
.

Additionally, it is proved that the performance guarantee for 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 is at most (3/2)− (1/2𝑚). This bound
was known from [6]. However, our proof treats the identical parallel machines case as a particular case of the
uniformly related parallel machines. We also prove some inequalities for the total weighted completion time of
optimal and locally optimal solutions.

The remainder of this paper is structured as follows. We present preliminary background in Section 2. All
aspects related to the upper bound for the performance guarantee are included in Section 3. A lower bound for
the performance guarantee is presented in Section 4. Finally, Section 5 provides the conclusions.

2. Preliminaries

2.1. Notation and problem statement

Throughout this paper, let 𝒥 be the set of 𝑛 jobs to be scheduled on a set ℳ of 𝑚 ≥ 2 machines. Let 𝑝𝑗

and 𝑤𝑗 denote the non-negative processing requirement and weight of job 𝑗 ∈ 𝒥 respectively. Jobs must be
scheduled on a single machine, and each machine can process one job at a time without preemptions. In addition
all jobs and machines are available from the beginning.

Machines have different speeds, therefore, let 𝑠 be the vector for the speeds, with 𝑠𝑖 > 0 as the speed
of machine 𝑖. Then, the processing time for job 𝑗 on machine 𝑖 is 𝑝𝑗/𝑠𝑖. From vector 𝑠, the maximum and
minimum speeds are identified, 𝑠max and 𝑠min respectively. Without loss of generality, the speed and order of
the machines is rescaled such that

1 = 𝑠1 ≤ 𝑠2 ≤ 𝑠3 ≤ · · · ≤ 𝑠𝑚 =
𝑠max

𝑠min
· (2.1)

A schedule corresponds to an assignment of jobs to machines represented by a vector 𝑥, where 𝑥𝑗 gives the
machine to which job 𝑗 is assigned, that is, 𝑥𝑗 = 𝑖 if job 𝑗 is assigned to machine 𝑖 in schedule 𝑥. As a result
of a schedule, each job 𝑗 ∈ 𝒥 will have a completion time with which the total weighted completion time is
computed. Let 𝐶𝑗(𝑥, 𝑠) the completion time of job 𝑗 in schedule 𝑥 at speeds 𝑠. The sequencing of jobs for any
schedule is solved by the weighted shortest processing time (WSPT) rule ([28], Thm. 3) which simply sequences
jobs in decreasing order of 𝑤𝑗/𝑝𝑗 ratio. When there are ties in the ratio, these are broken arbitrarily and to
avoid confusion we denote by ≺ the precedence relation of jobs. Therefore, letting 𝒥𝑖(𝑥) the set of jobs assigned
to machine 𝑖 in schedule 𝑥, we can write the completion time of job 𝑗 in schedule 𝑥 as

𝐶𝑗(𝑥, 𝑠) =
𝑝𝑗

𝑠𝑥𝑗

+
∑︁

𝑘∈𝒥𝑥𝑗
(𝑥)

𝑘≺𝑗

𝑝𝑘

𝑠𝑥𝑗

=
∑︁

𝑘∈𝒥𝑥𝑗
(𝑥)

𝑘⪯𝑗

𝑝𝑘

𝑠𝑥𝑗

·

Here, for convenience, we have introduced the notation ⪯ to include all predecessors of a job and the job itself.
The total weighted completion time and the weighted sum of processing times of schedule 𝑥 are defined as

follows:

𝐶(𝑥, 𝑠) =
∑︁
𝑗∈𝒥

𝑤𝑗𝐶𝑗(𝑥, 𝑠) =
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥)

𝑤𝑗𝐶𝑗(𝑥, 𝑠), (2.2)

1082 F.T. MUÑOZ AND A.A. PINOCHET

𝜂(𝑥) =
∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗

𝑠𝑥𝑗

=
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥)

𝑤𝑗𝑝𝑗

𝑠𝑖
· (2.3)

With the previous definitions, the following identities, (2.4) and (2.5), are immediate:

𝐶(𝑥, 𝑠) =
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥)

∑︁
𝑘∈𝒥𝑖(𝑥)

𝑘⪯𝑗

𝑤𝑗𝑝𝑘

𝑠𝑖
= 𝜂(𝑥) +

∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥)

∑︁
𝑘∈𝒥𝑖(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠𝑖

= 𝜂(𝑥) +
∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥𝑥𝑗

(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠𝑥𝑗

, (2.4)

𝐶(𝑥, 𝑠) =
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥)

∑︁
𝑘∈𝒥𝑖(𝑥)

𝑘⪰𝑗

𝑤𝑘𝑝𝑗

𝑠𝑖
= 𝜂(𝑥) +

∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥)

∑︁
𝑘∈𝒥𝑖(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑖

= 𝜂(𝑥) +
∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥𝑥𝑗

(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑥𝑗

· (2.5)

2.2. Jump neighborhood

We study the Jump neighborhood, also known as move or insertion neighborhood, which is a polynomial size
neighborhood. A jump move is defined as moving a single job from one machine to another. A successful jump
reduces the objective function. Given a solution, if it is not possible to improve in this way, we have a local
optimum and call this solution Jump-Opt. More precisely, let 𝛿𝑗(𝑥) be the amount by which 𝐶(𝑥, 𝑠) decreases if
job 𝑗 is removed from machine 𝑥𝑗 , and 𝛿′𝑗(𝑥, ℎ) the increment in 𝐶(𝑥, 𝑠) if job 𝑗 is moved to machine ℎ. Observe
that job 𝑗 has to be inserted on machine ℎ at the appropriate position (defined by WSPT rule). Thus,

𝛿𝑗(𝑥) = 𝑤𝑗𝐶𝑗(𝑥, 𝑠) +
∑︁

𝑘∈𝒥𝑥𝑗
(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑥𝑗

,

𝛿′𝑗(𝑥, ℎ) =
𝑤𝑗𝑝𝑗

𝑠ℎ
+

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠ℎ
+

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠ℎ
·

Therefore, schedule 𝑥 will be a Jump-Opt schedule for 𝑄||
∑︀

𝑤𝑗𝐶𝑗 problem, if and only if

𝛿𝑗(𝑥) ≤ 𝛿′𝑗(𝑥, ℎ) ∀𝑗 ∈ 𝒥 , ℎ ∈ℳ ∖ {𝑥𝑗}. (2.6)

2.3. Properties of the optimal schedules

In this section, two properties of the optimal schedules are presented that will be used to establish the upper
bounds for the performance guarantees of Jump-Opt solutions. The first one is the inequality presented in
Theorem 1 of [13], this is

𝑍 ≤ 𝑚𝐶(𝑥̃,1)− (𝑚− 1)
2

∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 , (2.7)

where 𝑥̃ is the optimal solution if all machines have unitary speed, 𝐶(𝑥̃,1) is the total weighted completion
time of 𝑥̃ at unitary speed machines, and

𝑍 =
∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥
𝑘⪯𝑗

𝑤𝑗𝑝𝑘 =
∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥
𝑘⪰𝑗

𝑤𝑘𝑝𝑗 , (2.8)

is the total weighted completion time, if all jobs are assigned to a single machine that works at unitary speed.
The second inequality is presented in the following lemma.

PERFORMANCE GUARANTEE OF THE JUMP NEIGHBORHOOD 1083

Lemma 2.1. Given a set of jobs, the optimal total weighted completion time on identical and uniformly related
parallel machines at speeds 𝑠, satisfy

𝐶(𝑥̃,1) ≤
(︂

𝑠max

𝑠min

)︂
𝐶(𝑥*, 𝑠).

Proof. First, note that if 𝑥̃ is the optimal solution when all machines have unitary speed, and 𝑥* is the optimal
solution if machines work at speeds 𝑠, then

𝐶(𝑥̃,1) ≤ 𝐶(𝑥*,1). (2.9)

Moreover, from Assumption (2.1) and (2.4), we have

𝐶(𝑥*, 𝑠) =
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥*)

∑︁
𝑘∈𝒥𝑖(𝑥

*)
𝑘⪯𝑗

𝑤𝑗𝑝𝑘

𝑠𝑖
≥

∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑥*)

∑︁
𝑘∈𝒥𝑖(𝑥

*)
𝑘⪯𝑗

𝑤𝑗𝑝𝑘

𝑠𝑚
=

𝐶(𝑥*,1)
𝑠𝑚

·

Therefore,

𝐶(𝑥*,1) ≤ 𝑠𝑚𝐶(𝑥*, 𝑠) =
(︂

𝑠max

𝑠min

)︂
𝐶(𝑥*, 𝑠).

Finally, using (2.9) we conclude the proof. �

3. Performance guarantee

3.1. Uniformly related machines

In this section a parametric upper bound is established for the total weighted completion time of Jump-Opt
solutions for 𝑄||

∑︀
𝑤𝑗𝐶𝑗 problem, and an upper bound is established for performance guarantee.

Lemma 3.1. For any Jump-Opt schedule 𝑥 of 𝑄||
∑︀

𝑤𝑗𝐶𝑗, it holds that

𝐶(𝑥, 𝑠) ≤
(︂

𝑠max

𝑠min

)︂
𝐶(𝑥*, 𝑠) +

(𝑚− 2)
2𝑚

𝜂(𝑥) +
1

2𝑚
𝜂(𝑥*).

Proof. From local optimality condition (2.6), we have

𝑤𝑗𝐶𝑗(𝑥, 𝑠) +
∑︁

𝑘∈𝒥𝑥𝑗
(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑥𝑗

≤ 𝑤𝑗𝑝𝑗

𝑠ℎ
+

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠ℎ

+
∑︁

𝑘∈𝒥ℎ(𝑥)
𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠ℎ
, ∀𝑗 ∈ 𝒥 , ℎ ∈ℳ ∖ {𝑥𝑗}.

Summing over all ℎ ∈ℳ ∖ {𝑥𝑗}, gives

(𝑚− 1)𝑤𝑗𝐶𝑗(𝑥, 𝑠) + (𝑚− 1)
∑︁

𝑘∈𝒥𝑥𝑗
(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑥𝑗

≤
∑︁

ℎ∈ℳ

𝑤𝑗𝑝𝑗

𝑠ℎ
− 𝑤𝑗𝑝𝑗

𝑠𝑥𝑗

+
∑︁

ℎ∈ℳ

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠ℎ
−

∑︁
𝑘∈𝒥𝑥𝑗

(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠𝑥𝑗

+
∑︁

ℎ∈ℳ

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠ℎ
−

∑︁
𝑘∈𝒥𝑥𝑗

(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑥𝑗

·

1084 F.T. MUÑOZ AND A.A. PINOCHET

Summing over all 𝑗 ∈ 𝒥 , using (2.4) and (2.5), and grouping some terms, gives us

2𝑚𝐶(𝑥, 𝑠) ≤ 𝑚𝜂(𝑥) +
∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ

𝑤𝑗𝑝𝑗

𝑠ℎ
+

∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠ℎ

+
∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠ℎ
· (3.1)

On the other hand, by using (2.1) and (2.8) we have the following three results:∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ

𝑤𝑗𝑝𝑗

𝑠ℎ
=

∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗

𝑠𝑥*𝑗

+
∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ∖{𝑥*𝑗 }

𝑤𝑗𝑝𝑗

𝑠ℎ
= 𝜂(𝑥*) +

∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ∖{𝑥*𝑗 }

𝑤𝑗𝑝𝑗

𝑠ℎ

≤ 𝜂(𝑥*) +
∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ∖{𝑥𝑗}

𝑤𝑗𝑝𝑗 = 𝜂(𝑥*) + (𝑚− 1)
∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 , (3.2)

∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠ℎ
=

∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥
𝑘≺𝑗

𝑤𝑗𝑝𝑘

𝑠𝑥𝑘

≤
∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥
𝑘≺𝑗

𝑤𝑗𝑝𝑘 = 𝑍 −
∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 , (3.3)

∑︁
𝑗∈𝒥

∑︁
ℎ∈ℳ

∑︁
𝑘∈𝒥ℎ(𝑥)

𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠ℎ
=

∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥
𝑘≻𝑗

𝑤𝑘𝑝𝑗

𝑠𝑥𝑘

≤
∑︁
𝑗∈𝒥

∑︁
𝑘∈𝒥
𝑘≻𝑗

𝑤𝑘𝑝𝑗 = 𝑍 −
∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 . (3.4)

Combining (3.2), (3.3) and (3.4) in (3.1), gives us

2𝑚𝐶(𝑥, 𝑠) ≤ 𝑚𝜂(𝑥) + 𝜂(𝑥*) + (𝑚− 3)
∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 + 2𝑍.

By (2.7), we have
2𝑚𝐶(𝑥, 𝑠) ≤ 𝑚𝜂(𝑥) + 𝜂(𝑥*)− 2

∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 + 2𝑚𝐶(𝑥̃,1).

From (2.1), we have 𝑠𝑖 ≥ 1 for all 𝑖 ∈ℳ, then
∑︀

𝑗∈𝒥 𝑤𝑗𝑝𝑗 ≥
∑︀

𝑗∈𝒥
𝑤𝑗𝑝𝑗

𝑠𝑥𝑗
= 𝜂(𝑥). Thus,

2𝑚𝐶(𝑥, 𝑠) ≤ (𝑚− 2)𝜂(𝑥) + 𝜂(𝑥*) + 2𝑚𝐶(𝑥̃,1).

Note that in any parallel machine environment it is true that 𝑚 > 1. Finally, using Lemma 2.1 we can conclude
the proof. �

With the upper bound presented in Lemma 3.1, we can establish the following upper bound for the perfor-
mance guarantee of Jump-Opt solutions for the 𝑄||

∑︀
𝑤𝑗𝐶𝑗 problem.

Lemma 3.2. An upper bound for the performance guarantee of Jump-Opt solutions for the 𝑄||
∑︀

𝑤𝑗𝐶𝑗 problem
is

2
(︂

1− 2
𝑚 + 2

)︂ (︂
𝑠max

𝑠min
+

1
2𝑚

)︂
.

Proof. Note that 𝑚 ≥ 2 in any parallel machine environments. From (2.4), we have 𝜂(𝑥) ≤ 𝐶(𝑥, 𝑠) and
𝜂(𝑥*) ≤ 𝐶(𝑥*, 𝑠). Then, using Lemma 3.1 we have(︂

1− (𝑚− 2)
2𝑚

)︂
𝐶(𝑥, 𝑠) ≤

(︂
𝑠max

𝑠min
+

1
2𝑚

)︂
𝐶(𝑥*, 𝑠).

From here, the proof is immediate. �

PERFORMANCE GUARANTEE OF THE JUMP NEIGHBORHOOD 1085

Here, our main result is presented, which is based on the performance guarantee of Jump-Opt solutions of
𝑅||

∑︀
𝑤𝑗𝐶𝑗 problem determined in [12] and the Lemma 3.2. Note that the performance guarantee of Jump-

Opt solutions for 𝑅||
∑︀

𝑤𝑗𝐶𝑗 can be considered as an upper bound for the performance guarantee of Jump-Opt
solutions for 𝑄||

∑︀
𝑤𝑗𝐶𝑗 . From Theorems 1 and 5 of [12] we have that the performance guarantee for 𝑅||

∑︀
𝑤𝑗𝐶𝑗

is 1 + 𝜑 ≈ 2.618, where 𝜑 is the golden ratio.

Theorem 3.3. The performance guarantee of Jump-Opt solutions for 𝑄||
∑︀

𝑤𝑗𝐶𝑗 problem is at most

min
{︂

2
(︂

1− 2
𝑚 + 2

)︂ (︂
𝑠max

𝑠min
+

1
2𝑚

)︂
, 2.618

}︂
.

From the previous theorem, we have that the upper bound proposed in the Lemma 3.2 will be useful if and
only if

𝑠max

𝑠min
≤ 𝜑2

2
+

1
𝑚

(︂
𝜑 +

1
2

)︂
.

For two machines this bound is approximately 2.368, and when 𝑚 grows this bound decreases monotonically
and converges to 1.309.

3.2. Identical machines

In this section, an upper bound is presented for the performance guarantee of Jump-Opt solutions for the
problem of scheduling jobs on identical parallel machines with a total weighted completion time objective. This
problem is denoted by 𝑃 ||

∑︀
𝑤𝑗𝐶𝑗 in the three-field scheduling notation [19].

For this case, we have that the machines have the same speed. Without loss of generality, it is assumed that
this speed is unitary. Here, the following notations are redefined:

𝐶(𝑥*) = 𝐶(𝑥*,1),
𝐶(𝑥) = 𝐶(𝑥,1),

𝜂 = 𝜂(𝑥) = 𝜂(𝑥*) =
∑︁
𝑗∈𝒥

𝑤𝑗𝑝𝑗 .

Then, from (2.4) we can determine the cost of any schedule 𝑧 as

𝐶(𝑧) =
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑧)

∑︁
𝑘∈𝒥𝑖(𝑧)

𝑘⪯𝑗

𝑤𝑗𝑝𝑘 = 𝜂 +
∑︁
𝑖∈ℳ

∑︁
𝑗∈𝒥𝑖(𝑧)

∑︁
𝑘∈𝒥𝑖(𝑧)

𝑘≺𝑗

𝑤𝑗𝑝𝑘. (3.5)

Theorem 3.4. The performance guarantee of Jump-Opt solutions for 𝑃 ||
∑︀

𝑤𝑗𝐶𝑗 is at most 3
2 −

1
2𝑚 .

Proof. For this problem we can rewrite Lemma 3.1 as,

𝐶(𝑥) ≤ 𝐶(𝑥*) +
(𝑚− 1)

2𝑚
𝜂.

From (3.5), we have 𝜂 ≤ 𝐶(𝑥*). Then,
𝐶(𝑥)
𝐶(𝑥*)

≤
(︂

3𝑚− 1
2𝑚

)︂
. �

This upper bound for the performance guarantee was previously determined by [6], who also show a lower
bound of 1.2.

1086 F.T. MUÑOZ AND A.A. PINOCHET

Figure 1. Gantt chart for optimal and Jump-Opt solutions. (A) Optimal solution. (B) Jump-
Opt solution.

4. Lower bound

In order to establish a lower bound for the performance guarantee of Jump-Opt solutions, we propose the
following instance.

Lemma 4.1. The performance guarantee of Jump-Opt solutions for 𝑄||
∑︀

𝑤𝑗𝐶𝑗 is at least 1.423.

Proof. An instance ℐ is considered with 𝑛 = 3 jobs and 𝑚 = 3 machines. Jobs have identical weight and
processing requirements, 𝑝1 = 𝑤1 = 𝑘 and 𝑝𝑗 = 𝑤𝑗 = 1 for 𝑗 = 2, 3. The processing speed of the machines are
𝑠1 = 1, 𝑠2 = 2𝑘

𝑘+2 and 𝑠3 = 2.
The optimal and Jump-Opt solutions are 𝑥* = (3, 1, 2) and 𝑥 = (2, 3, 3) respectively (Fig. 1 shows a Gantt

chart for 𝑥* and 𝑥). For 𝑥, the local optimality conditions from (2.6) are reduced to 𝑘 ≥ 2. Then for 𝑘 ≥ 2 it
is not possible to make jump moves without increasing the total weighted completion time. The total weighted
completion time for 𝑥* and 𝑥 are

𝐶(𝑥*, 𝑠) = 1 +
1
𝑠2

+
𝑘2

2
=

𝑘3 + 3𝑘 + 2
2𝑘

, and

𝐶(𝑥, 𝑠) =
𝑘2

𝑠2
+

1
2

+
2
2

=
𝑘3 + 2𝑘2 + 3𝑘

2𝑘
·

Then, the performance guarantee for 𝑥 is

𝐶(𝑥, 𝑠)
𝐶(𝑥*, 𝑠)

=
𝑘3 + 2𝑘2 + 3𝑘

𝑘3 + 3𝑘 + 2
·

Therefore, to determine the bound it is necessary to solve the problem

argmax
𝑘≥2

{︂
𝑘3 + 2𝑘2 + 3𝑘

𝑘3 + 3𝑘 + 2

}︂
.

Finally, 𝑘* = 2 + 9
√

2
16 is an approximation to the solution of the problem, where 𝐶(𝑥,𝑠)

𝐶(𝑥*,𝑠) ≈ 1.423. �

5. Conclusion

In this paper we establish an upper bound on the performance guarantee for the Jump neighborhood in
uniformly related parallel machines environment with the objective of minimizing the total weighted completion

PERFORMANCE GUARANTEE OF THE JUMP NEIGHBORHOOD 1087

time. The rough idea is to first establish a necessary condition for local optimality that takes the form of a
certain inequality. Then we apply some inequalities to obtain the final guarantee. We also propose an instance
to establish a lower bound for the performance guarantee.

Acknowledgements. The authors gratefully acknowledge to Francisco Ramis and Centro Avanzado de Simulación de
Procesos (CASP) of University of B́ıo-B́ıo. They also thank the editor-in-chief, the area editor, and the anonymous
reviewers for their valuable comments on the earlier version of this manuscript.

References

[1] F. Abed, J.R. Correa and CC. Huang, Optimal coordination mechanisms for multi-job scheduling games. In: ESA
(2014).

[2] R. Ahuja, O. Ergun, J. Orlin and A. Punnen, A survey of very large-scale neighborhood search techniques. Disc. Appl. Math.
123 (2002) 75–102.

[3] E. Angel, A survey of approximation results for local search algorithms. In: Efficient Approximation and Online Algorithms,
edited by E. Bampis, K. Jansen and C. Kenyon. Springer (2006) 30–73.

[4] N. Bansal, A. Srinivasan and O. Svensson, Lift-and-round to improve weighted completion time on unrelated machines. In:
STOC (2016).

[5] P. Brucker, J. Hurink and F. Werner, Improving local search heuristics for some scheduling problems. Part II. Disc. Appl.
Math. 72 (1997) 47–69.

[6] T. Brueggemann, J.L. Hurink and W. Kern, Quality of move-optimal schedules for minimizing total weighted completion time.
Oper. Res. Lett. 34 (2006) 583–590.

[7] T. Brueggemann, J.L. Hurink, T. Vredeveld and G.J. Woeginger, Exponential size neighborhoods for makespan minimization
scheduling. Naval Res. Logist. 58 (2011) 795–803.

[8] J. Bruno, E.G. Coffman and R. Sethi, Scheduling independent tasks to reduce mean finishing time. Commun. ACM 17 (1974)
382–387.

[9] Y. Cho and S. Sahni, Bounds for list schedules on uniform processors. SIAM J. Comput. 9 (1980) 91–103.

[10] R. Cole, J.R. Correa, V. Gkatzelis, V. Mirrokni and N. Olver, Decentralized utilitarian mechanisms for scheduling games.
Games Econ. Behav. 92 (2015) 306–326.

[11] R.W. Conway, W.L. Maxwell and L.W. Miller, Theory of Scheduling. Addison-Wesley (1967).

[12] J.R. Correa and F.T. Muñoz, Performance guarantees of local search for minsum scheduling problems. Math. Program. (2020).
https://doi.org/10.1007/s10107-020-01571-5.

[13] W.L. Eastman, S. Even and I.M. Isaacs, Bounds for the optimal scheduling of 𝑛 jobs on 𝑚 processors. Manage Sci. 11 (1964)
268–279.

[14] L. Epstein and J. Sgall, Approximation schemes for scheduling on uniformly related and identical parallel machines. Algorith-
mica 39 (2004) 43–57.

[15] G. Finn and E. Horowitz, A linear time approximation algorithm for multiprocessor scheduling. BIT Numer. Math. 19 (1979)
312–320.

[16] A. Frangioni, E. Necciari and M.G. Scutellà, A multi-exchange neighborhood for minimum makespan parallel machine schedul-
ing problems. J. Comb. Optim. 8 (2004) 195–220.

[17] M. Garey and D. Johnson, Strong NP-completeness results: Motivation, examples, and implications. J. ACM 25 (1978)
499–508.

[18] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman and Co.,
San Francisco (1979).

[19] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinooy Kan, Optimization and approximation in deterministic sequencing
and scheduling: A survey. Ann. Disc. Math. 5 (1979) 287–326.

[20] W.A. Horn, Minimizing average flow time with parallel machines. Oper. Res. 21 (1973) 846–847.

[21] E. Horowitz and S. Sahni, Exact and approximate algorithms for scheduling nonidentical processors. J. ACM 23 (1976)
317–327.

[22] J.K. Lenstra, A.H.G. Rinooy Kan and P. Brucker, Complexity of machine scheduling problems. Ann. Disc. Math. 1 (1977)
343–362.

[23] S. Li, Scheduling to minimize total weighted completion time via time-indexed linear programming relaxations. In: FOCS
(2017).

[24] W. Michiels, E. Aarts and J. Korst, Theoretical Aspects of Local Search. Springer Science & Business Media, Berlin
(2007).

[25] C. Rutten, D. Recalde, P. Schuurman and T. Vredeveld, Performance guarantees of jump neighborhoods on restricted related
parallel machines. Oper. Res. Lett. 40 (2012) 287–291.

[26] P. Schuurman and T. Vredeveld, Performance guarantees of local search for multiprocessor scheduling. INFORMS J. Comput.
19 (2007) 52–63.

https://doi.org/10.1007/s10107-020-01571-5

1088 F.T. MUÑOZ AND A.A. PINOCHET

[27] M. Skutella and G.J. Woeginger, A PTAS for minimizing the total weighted completion time on identical parallel machines.
Math. Oper. Res. 25 (2000) 63–75.

[28] W.E. Smith, Various optimizers for single-stage production. Naval Res. Logist. 3 (1956) 59–66.

This journal is currently published in open access under a Subscribe-to-Open model (S2O). S2O is a transformative
model that aims to move subscription journals to open access. Open access is the free, immediate, online availability of
research articles combined with the rights to use these articles fully in the digital environment. We are thankful to our
subscribers and sponsors for making it possible to publish this journal in open access, free of charge for authors.

Please help to maintain this journal in open access!

Check that your library subscribes to the journal, or make a personal donation to the S2O programme, by contacting
subscribers@edpsciences.org

More information, including a list of sponsors and a financial transparency report, available at: https://www.
edpsciences.org/en/maths-s2o-programme

mailto:subscribers@edpsciences.org
https://www.edpsciences.org/en/maths-s2o-programme
https://www.edpsciences.org/en/maths-s2o-programme

	Introduction
	Preliminaries
	Notation and problem statement
	Jump neighborhood
	Properties of the optimal schedules

	Performance guarantee
	Uniformly related machines
	Identical machines

	Lower bound
	Conclusion
	References

