Sharp Lagrange multipliers for set-valued optimization problems
RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 619-635

In this paper, we give a comparison among some notions of weak sharp minima introduced in Amahroq et al. [Le matematiche J. 73 (2018) 99–114], Durea and Strugariu [Nonlinear Anal. 73 (2010) 2148–2157] and Zhu et al. [Set-Valued Var. Anal. 20 (2012) 637–666] for set-valued optimization problems. Besides, we establish sharp Lagrange multiplier rules for general constrained set-valued optimization problems involving new scalarization functionals based on the oriented distance function. Moreover, we provide sufficient optimality conditions for the considered problems without any convexity assumptions.

DOI : 10.1051/ro/2022034
Classification : 49J53, 54C60, 90C25, 90C29
Keywords: Set-valued optimization, sharp minimizers, oriented distance function, sharp Fritz-John multipliers, sharp Karush–Kuhn–Tucker multipliers, optimality conditions
@article{RO_2022__56_2_619_0,
     author = {Oussarhan, Abdessamad and Amahroq, Tijani},
     title = {Sharp {Lagrange} multipliers for set-valued optimization problems},
     journal = {RAIRO. Operations Research},
     pages = {619--635},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/ro/2022034},
     mrnumber = {4407589},
     zbl = {1487.49017},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022034/}
}
TY  - JOUR
AU  - Oussarhan, Abdessamad
AU  - Amahroq, Tijani
TI  - Sharp Lagrange multipliers for set-valued optimization problems
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 619
EP  - 635
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022034/
DO  - 10.1051/ro/2022034
LA  - en
ID  - RO_2022__56_2_619_0
ER  - 
%0 Journal Article
%A Oussarhan, Abdessamad
%A Amahroq, Tijani
%T Sharp Lagrange multipliers for set-valued optimization problems
%J RAIRO. Operations Research
%D 2022
%P 619-635
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022034/
%R 10.1051/ro/2022034
%G en
%F RO_2022__56_2_619_0
Oussarhan, Abdessamad; Amahroq, Tijani. Sharp Lagrange multipliers for set-valued optimization problems. RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 619-635. doi: 10.1051/ro/2022034

[1] T. Amahroq and A. Oussarhan, Existence of pseudo-relative sharp minimizers in set-valued optimization. Appl. Math. Optim. 84 (2021) 2969–2984. | MR | Zbl | DOI

[2] T. Amahroq and A. Taa, On Karush–Kuhn–Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997) 159–172. | MR | Zbl | DOI

[3] T. Amahroq and L. Thibault, On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems. Numer. Funct. Anal. Optim. 16 (1995) 1293–1307. | MR | Zbl | DOI

[4] T. Amahroq, A. Jourani and L. Thibault, A general metric regularity in asplund banach spaces. Numer. Funct. Anal. Optim. 19 (1998) 215–226. | MR | Zbl | DOI

[5] T. Amahroq, I. Daidai and A. Syam, Optimality conditions for sharp minimality of order γ in set-valued optimization. Le matematiche J. 73 (2018) 99–114. | MR | Zbl

[6] A. Auslender, Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984) 239–254. | MR | Zbl | DOI

[7] H. H. Bauschke, J. M. Borwein and W. Li, Strong conical hull intersection property, bounded linear regularity, Jameson’s property ( G ) and error bounds in convex optimization. Math. Program. 86 (1999) 135–160. | MR | Zbl | DOI

[8] E. M. Bednarczuk, Weak sharp efficiency and growth condition for vector-valued functions with applications. Optimization 53 (2004) 455–474. | MR | Zbl | DOI

[9] J. M. Borwein and R. Goebel, Notions of relative interior in Banach spaces. J. Math. Sci. (NY) 115 (2003) 2542–2553. | MR | Zbl | DOI

[10] J. V. Burke and M. C. Ferris, Weak sharp minima in mathematical programming. SIAM J. Control Opt. 31 (1993) 1340–1359. | MR | Zbl | DOI

[11] F. H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, (1983). | MR | Zbl

[12] L. Cromme, Strong uniqueness: a far reaching criterion for the convergence of iterative procedures. Numer. Math. 29 (1978) 179–193. | MR | Zbl | DOI

[13] M. Durea and R. Strugariu, Necessary optimality conditions for weak sharp minima in set-valued optimization. Nonlinear Anal. 73 (2010) 2148–2157. | MR | Zbl | DOI

[14] F. Flores-Bazán and B. Jiménez, Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48 (2009) 881–908. | MR | Zbl | DOI

[15] R. Henrion and J. Outrata, A subdifferential condition for calmness of multifunctions. J. Math. Anal. App. 258 (2001) 110–130. | MR | Zbl | DOI

[16] A. D. Ioffe, Approximate subdifferential and applications, Part 3. Mathematika 36 (1989) 1–38. | Zbl | DOI

[17] A. D. Ioffe, Metric regularity and subdifferential calculus. Russ. Math. Surv. 55 (2000) 501–558. | Zbl | MR | DOI

[18] A. D. Ioffe, Variational Analysis of Regular Mappings Theory and Applications. Springer, Cham (2017). | MR | DOI

[19] B. Jiménez, Strict efficiency in vector optimization. J. Math. Anal. Appl. 265 (2002) 264–284. | MR | Zbl | DOI

[20] B. Jiménez, Strict minimality conditions in nondifferentiable multiobjective programming. J. Optim. Theory Appl. 116 (2003) 99–116. | MR | Zbl | DOI

[21] B. Jiménez and V. Novo, Higher-order optimality conditions for strict local minima. Ann. Oper. Res. 157 (2008) 183–192. | MR | Zbl | DOI

[22] A. Jourani, Formules d’intersection dans un Espace de Banach. C.R.A.S. Paris 317 (1993) 825–828. | MR | Zbl

[23] A. Jourani and L. Thibault, Approximate subdifferentials of composite functions. Bull. Aust. Math. Soc. 47 (1993) 443–455. | MR | Zbl | DOI

[24] A. Y. Kruger and N. H. Thao, Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164 (2015) 41–67. | MR | Zbl | DOI

[25] A. Y. Kruger, D. R. Luke and N. H. Thao, About subtransversality of collections of sets. Set-Valued Var. Anal. 25 (2017) 701–729. | MR | Zbl | DOI

[26] A. Y. Kruger, D. R. Luke and N. H. Thao, Set regularities and feasibility problems. Math. Program. 168 (2018) 279–311. | MR | Zbl | DOI

[27] A. S. Lewis and J. S. Pang, Eror bounds for convex inequality systems. In: Proceedings of the 5th symposium on generalized convexity, edited by J.-P. Crouzeix. Marseille, France (1996). | Zbl

[28] S. J. Li, K. W. Meng and J.-P. Penot, Calculus rules for derivatives of multimaps. Set-Valued Var. Anal. 17 (2009) 21–39. | MR | Zbl | DOI

[29] S. Li, J.-P. Penot and X. Xue, Codifferential calculus. Set-Valued Var. Anal. 19 (2011) 505–536. | MR | Zbl | DOI

[30] K. F. Ng and R. Zang, Linear regularity and ϕ-regularity of nonconvex sets. J. Math. Anal. Appl. 328 (2007) 257–280. | MR | Zbl | DOI

[31] H. V. Ngai and M. Théra, Metric inequality, subdifferential calculus and applications. Set-Valued Var. Anal. 9 (2001) 187–216. | MR | Zbl | DOI

[32] J.-P. Penot, Metric estimates for the calculus of multimapping. Set-Valued Var. Anal. 5 (1997) 291–308. | MR | Zbl | DOI

[33] J.-P. Penot, Calculus Without Derivatives. Springer, New York (2013). | MR | Zbl | DOI

[34] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986) 1044–1049. | MR | Zbl | DOI

[35] M. Studniarski, Weak sharp minima in multiobjective optimization. Control Cybern. 36 (2007) 925–937. | MR | Zbl

[36] D. E. Ward, Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80 (1994) 551–571. | MR | Zbl | DOI

[37] A. Zaffaroni, Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42 (2003) 1071–1086. | MR | Zbl | DOI

[38] C. Zălinescu, Convex Analysis in General Vector Spaces. World Scientific, Singapore, (2002). | MR | Zbl | DOI

[39] X.-Y. Zheng and K. F. Ng, Hölder stable minimizers, tilt stability and Hölder metric regularity of subdifferentials. SIAM J. Optim. 25 (2015) 416–438. | MR | Zbl | DOI

[40] S. K. Zhu, S. J. Li and X. W. Xue, Strong fermat rules for constrained set-valued optimization problems on banach spaces. Set-Valued Var. Anal. 20 (2012) 637–666. | MR | Zbl | DOI

Cité par Sources :