In this paper, we give a comparison among some notions of weak sharp minima introduced in Amahroq et al. [Le matematiche J. 73 (2018) 99–114], Durea and Strugariu [Nonlinear Anal. 73 (2010) 2148–2157] and Zhu et al. [Set-Valued Var. Anal. 20 (2012) 637–666] for set-valued optimization problems. Besides, we establish sharp Lagrange multiplier rules for general constrained set-valued optimization problems involving new scalarization functionals based on the oriented distance function. Moreover, we provide sufficient optimality conditions for the considered problems without any convexity assumptions.
Keywords: Set-valued optimization, sharp minimizers, oriented distance function, sharp Fritz-John multipliers, sharp Karush–Kuhn–Tucker multipliers, optimality conditions
@article{RO_2022__56_2_619_0,
author = {Oussarhan, Abdessamad and Amahroq, Tijani},
title = {Sharp {Lagrange} multipliers for set-valued optimization problems},
journal = {RAIRO. Operations Research},
pages = {619--635},
year = {2022},
publisher = {EDP-Sciences},
volume = {56},
number = {2},
doi = {10.1051/ro/2022034},
mrnumber = {4407589},
zbl = {1487.49017},
language = {en},
url = {https://www.numdam.org/articles/10.1051/ro/2022034/}
}
TY - JOUR AU - Oussarhan, Abdessamad AU - Amahroq, Tijani TI - Sharp Lagrange multipliers for set-valued optimization problems JO - RAIRO. Operations Research PY - 2022 SP - 619 EP - 635 VL - 56 IS - 2 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/ro/2022034/ DO - 10.1051/ro/2022034 LA - en ID - RO_2022__56_2_619_0 ER -
%0 Journal Article %A Oussarhan, Abdessamad %A Amahroq, Tijani %T Sharp Lagrange multipliers for set-valued optimization problems %J RAIRO. Operations Research %D 2022 %P 619-635 %V 56 %N 2 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/ro/2022034/ %R 10.1051/ro/2022034 %G en %F RO_2022__56_2_619_0
Oussarhan, Abdessamad; Amahroq, Tijani. Sharp Lagrange multipliers for set-valued optimization problems. RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 619-635. doi: 10.1051/ro/2022034
[1] and , Existence of pseudo-relative sharp minimizers in set-valued optimization. Appl. Math. Optim. 84 (2021) 2969–2984. | MR | Zbl | DOI
[2] and , On Karush–Kuhn–Tucker multipliers for multiobjective optimization problems. Optimization 41 (1997) 159–172. | MR | Zbl | DOI
[3] and , On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems. Numer. Funct. Anal. Optim. 16 (1995) 1293–1307. | MR | Zbl | DOI
[4] , and , A general metric regularity in asplund banach spaces. Numer. Funct. Anal. Optim. 19 (1998) 215–226. | MR | Zbl | DOI
[5] , and , Optimality conditions for sharp minimality of order in set-valued optimization. Le matematiche J. 73 (2018) 99–114. | MR | Zbl
[6] , Stability in mathematical programming with nondifferentiable data. SIAM J. Control Optim. 22 (1984) 239–254. | MR | Zbl | DOI
[7] , and , Strong conical hull intersection property, bounded linear regularity, Jameson’s property and error bounds in convex optimization. Math. Program. 86 (1999) 135–160. | MR | Zbl | DOI
[8] , Weak sharp efficiency and growth condition for vector-valued functions with applications. Optimization 53 (2004) 455–474. | MR | Zbl | DOI
[9] and , Notions of relative interior in Banach spaces. J. Math. Sci. (NY) 115 (2003) 2542–2553. | MR | Zbl | DOI
[10] and , Weak sharp minima in mathematical programming. SIAM J. Control Opt. 31 (1993) 1340–1359. | MR | Zbl | DOI
[11] , Optimization and Nonsmooth Analysis. Wiley-Interscience, New York, (1983). | MR | Zbl
[12] , Strong uniqueness: a far reaching criterion for the convergence of iterative procedures. Numer. Math. 29 (1978) 179–193. | MR | Zbl | DOI
[13] and , Necessary optimality conditions for weak sharp minima in set-valued optimization. Nonlinear Anal. 73 (2010) 2148–2157. | MR | Zbl | DOI
[14] and , Strict efficiency in set-valued optimization. SIAM J. Control Optim. 48 (2009) 881–908. | MR | Zbl | DOI
[15] and , A subdifferential condition for calmness of multifunctions. J. Math. Anal. App. 258 (2001) 110–130. | MR | Zbl | DOI
[16] , Approximate subdifferential and applications, Part 3. Mathematika 36 (1989) 1–38. | Zbl | DOI
[17] , Metric regularity and subdifferential calculus. Russ. Math. Surv. 55 (2000) 501–558. | Zbl | MR | DOI
[18] , Variational Analysis of Regular Mappings Theory and Applications. Springer, Cham (2017). | MR | DOI
[19] , Strict efficiency in vector optimization. J. Math. Anal. Appl. 265 (2002) 264–284. | MR | Zbl | DOI
[20] , Strict minimality conditions in nondifferentiable multiobjective programming. J. Optim. Theory Appl. 116 (2003) 99–116. | MR | Zbl | DOI
[21] and , Higher-order optimality conditions for strict local minima. Ann. Oper. Res. 157 (2008) 183–192. | MR | Zbl | DOI
[22] , Formules d’intersection dans un Espace de Banach. C.R.A.S. Paris 317 (1993) 825–828. | MR | Zbl
[23] and , Approximate subdifferentials of composite functions. Bull. Aust. Math. Soc. 47 (1993) 443–455. | MR | Zbl | DOI
[24] and , Quantitative characterizations of regularity properties of collections of sets. J. Optim. Theory Appl. 164 (2015) 41–67. | MR | Zbl | DOI
[25] , and , About subtransversality of collections of sets. Set-Valued Var. Anal. 25 (2017) 701–729. | MR | Zbl | DOI
[26] , and , Set regularities and feasibility problems. Math. Program. 168 (2018) 279–311. | MR | Zbl | DOI
[27] and , Eror bounds for convex inequality systems. In: Proceedings of the 5th symposium on generalized convexity, edited by . Marseille, France (1996). | Zbl
[28] , and , Calculus rules for derivatives of multimaps. Set-Valued Var. Anal. 17 (2009) 21–39. | MR | Zbl | DOI
[29] , and , Codifferential calculus. Set-Valued Var. Anal. 19 (2011) 505–536. | MR | Zbl | DOI
[30] and , Linear regularity and ϕ-regularity of nonconvex sets. J. Math. Anal. Appl. 328 (2007) 257–280. | MR | Zbl | DOI
[31] and , Metric inequality, subdifferential calculus and applications. Set-Valued Var. Anal. 9 (2001) 187–216. | MR | Zbl | DOI
[32] , Metric estimates for the calculus of multimapping. Set-Valued Var. Anal. 5 (1997) 291–308. | MR | Zbl | DOI
[33] , Calculus Without Derivatives. Springer, New York (2013). | MR | Zbl | DOI
[34] , Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986) 1044–1049. | MR | Zbl | DOI
[35] , Weak sharp minima in multiobjective optimization. Control Cybern. 36 (2007) 925–937. | MR | Zbl
[36] , Characterizations of strict local minima and necessary conditions for weak sharp minima. J. Optim. Theory Appl. 80 (1994) 551–571. | MR | Zbl | DOI
[37] , Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42 (2003) 1071–1086. | MR | Zbl | DOI
[38] , Convex Analysis in General Vector Spaces. World Scientific, Singapore, (2002). | MR | Zbl | DOI
[39] and , Hölder stable minimizers, tilt stability and Hölder metric regularity of subdifferentials. SIAM J. Optim. 25 (2015) 416–438. | MR | Zbl | DOI
[40] , and , Strong fermat rules for constrained set-valued optimization problems on banach spaces. Set-Valued Var. Anal. 20 (2012) 637–666. | MR | Zbl | DOI
Cité par Sources :





