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SHARP LAGRANGE MULTIPLIERS FOR SET-VALUED OPTIMIZATION
PROBLEMS

E ’
ABDESSAMAD OUSSARHAN'*® AND TIJANI AAMAHROQ2

Abstract. In this paper, we give a comparison among some notions of weak sharp minima introduced
in Amahroq et al. [Le matematiche J. 73 (2018) 99-114], Durea and Strugariu [Nonlinear Anal. 73
(2010) 2148-2157] and Zhu et al. [Set-Valued Var. Anal. 20 (2012) 637-666] for set-valued optimiza-
tion problems. Besides, we establish sharp Lagrange multiplier rules for general constrained set-valued
optimization problems involving new scalarization functionals based on the oriented distance function.
Moreover, we provide sufficient optimality conditions for the considered problems without any convexity
assumptions.
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1. INTRODUCTION

The concept of sharp minimizer has been investigated for different types of optimization problems: real-valued,
vector-valued as well as set-valued optimization problems. For real-valued optimization problems, Auslender [6]
has established necessary and sufficient optimality conditions for a local sharp minimizer of order v € {1,2}
where the objective function is locally lipschitzian and the feasible set is closed. To the same problem, Studniarski
[34] comes to extend the results of Auslender [6] for any extended real-valued objective function (not necessary
locally lipschitzian) and the feasible set not necessary closed where the order of sharp minimizer (v > 2). Ward
[36] follows the line of Studniarski with different way.

For vector-valued optimization problems, Jiménez [19] has introduced the notion of sharp minimizer of order
7, in addition, he has developed with Novo in Jiménez [20] and Jiménez and Novo [21] the theory on minimizer of
order (v > 1 integer) considering different frameworks. Two years after, Bednarczuk [8] has defined the notion
of weak sharp minimizer of order v where the ordering cone is assumed to be closed, convex, and pointed.
This concept was used to prove conditions for upper Holderness continuity and Holder calmness of the solution
mappings to parametric vector optimization problems. Later, Studniarski [35] introduced the notion of weak
1p-sharp local minima in vector optimization problems. Besides, he has extended some necessary and sufficient
optimality conditions obtained by Jiménez [19].
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To shed light on the study of sharp minimality in set-valued optimization problems we may refer to the
papers [5, 13,14, 40]. In [14] Flores-Bazdn and Jiménez introduced the concept of sharp minima for a set-
valued optimization problem and provided some optimality conditions. In connection with the paper of Durea
and Strugariu [13], the sharp minimizer was introduced by means of the oriented distance function and its
necessary optimality conditions are established with the use of the Mordukhovich generalized differentiation.
Later, Zhu et al. [40] proposed the concept of the sharp minimizer by means of the distance function, they have
extended the Fermat rules for the local minimizer of the constrained set-valued optimization problem to sharp
and weak sharp minimizers in Banach spaces or Asplund spaces by means of the Mordukhovich generalized
differentiation and the normal cone. Very recently, Amahroq et al. [5] introduced this notion in set-valued
optimization problems without recourse to the use of distances adopted in Durea and Strugariu [13] and Zhu
et al. [40]. They have established necessary and sufficient optimality conditions involving set-valued derivatives,
besides they have provided optimality conditions in terms of Fritz-John multipliers under convexity assumptions
on the objective set-valued mapping using the classical separation theorem. A new concept of sharp minima
in set-valued optimization problems by means of the pseudo-relative interior, namely pseudo-relative ¢-sharp
minimizer, is proposed and studied in Amahroq and Oussarhan [1].

The importance of the study of weak sharp minima arises in the stability analysis, the sensitivity analysis,
and in the study of the convergence of iterative numerical procedures, for instance, see [6,10,12,15,27,38]. It
is worth also to mention that the study of weak sharp minimizers is closely related to the study of the error
bound in optimization, for more details we refer to Bednarczuk [8], Zheng et al. [39] and the references therein.

The tools used in the paper of Durea and Strugariu [13] to derive necessary optimality conditions in terms
of multiplier rules require that the function 1 given in Definition 2.2 be Frchet differentiable at 0 and that

v (0) > 0,

which is not the case for ¥(t) = t7 with v # 1. In this paper, we will study three notions of weak sharp
minima those introduced in Amahroq et al. [5], Durea and Strugariu [13], Zhu et al. [40] and we will provide a
comparison among them. Due to the concept of sharp minimizer given in Amahroq et al. [5], we will generalize
the results of Amahroq et al. [5] and those of Durea and Strugariu [13] when () = ¢7 and + is an integer, by
establishing Lagrange multiplier rules to the general constrained and explicit constrained set-valued optimization
problems in terms of Fritz-John as well as Karush—Kuhn—Tucker multipliers, named, sharp Fritz-John as well as
sharp Karush-Kuhn—Tucker multipliers. To do this, we will introduce some scalarization techniques which are
suitable for sharp minima based on the oriented distance function. Moreover, we will provide sufficient optimality
conditions for global sharp minimizers of order v > 0 that have not been done in Durea and Strugariu [13].

The rest of the paper is organized as follows: In Section 2, we recall some definitions and we prove some
preliminary results needed in the sequel of the paper. In Sections 3 and 4, we establish sharp Fritz-John
multipliers as well as sharp Karush—-Kuhn—Tucker multipliers of order v = 1 in the weak sense. In Section 5, we
derive necessary optimality conditions in terms of multiplier rules for sharp minimizers of higher order v > 2 (y
integer) in the weak sense. Necessary optimality conditions for sharp minima in the strong sense are established
in Section 6. In Section 7, we provide sufficient optimality conditions for global sharp minima (v > 0) in the weak
sense without any convexity assumptions. In addition, we show that necessary optimality conditions obtained
in Sections 3-5 may be sufficient optimality conditions under suitable assumptions.

2. PRELIMINARIES

Let F' be a set-valued map between Banach spaces X and Y, Ky C Y be a pointed (i.e., Ky N(—Ky) = {0})
closed solid (i.e., with nonempty interior, int(Ky) # @) convex cone and G be a set-valued map from X to a
Banach space Z which is ordered by the pointed closed convex cone K C Z. We write ||(z,y)|| = ||=| + ||ly|| for
the norm on the product space X x Y. In the sequel the domain and the graph of F are respectively given by

Dom(F) :={x € X | F(x) # 0},
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gr(F) :={(z,y) e X xY |y € F(x)}.
If A is a nonempty subset of X and B is a nonempty subset of Y, then F(A) = UycaF(x) and F~(B) = {z €
X | F(x)N B # (}.
Throughout this paper, X*, Y* and Z* denote the continuous duals of X, Y and Z respectively, and we

write (-,-) for the canonical bilinear forms with respect to the dualities (X*, X), (Y*,Y) and (Z*, Z).
For a nonempty subset S C Y, let us recall the oriented distance function Ag (see [37]) which is defined by

—d(y, (Y\S)) ifyes

As(s) = d(n.8) = dln (\8) = { % nres (2.1)
where d(-, S) is the usual distance function
d(va) :Suelg”y*SHa for allyEY

In the next proposition we collect some useful properties of Ag.

Proposition 2.1 ([37]). Let S CY be nonempty and S #Y . Then the following assertions hold:

(i) Ag is real-valued and 1-Lipschitzian.
) Ag is convex if S is conve.
) Ag is positively homogenous if S is a cone.
) Ag(y) <0, if and only if, y € int(S).
v) Ag(y) > 0, if and only if, y € int(Y'\5).
) As(y) =0, if and only if, y € bd(S), where bd(S) is the boundary of S.
) ForallyeY, 0¢ 0As(y) if S is a convex cone with nonempty interior, where d is the subdifferential in
the sense of Clarke and convex analysis since Ag is convex.
(viii)) Ag satisfies the triangle inequality when S is a convex cone, i.e.,

As(yr +y2) < As(yr) +As(yz), for any yi,y2 €Y.
(ix) If S is closed, then it holds that S = {y € Y | As(y) <0}.
We consider the following set-valued optimization problem

Minimize F'(x)
(SP1) :
subject to «x € C,

where C' is a nonempty subset of X. It is said that (Z,7) € gr(F) N (C x Y) is a local weak Pareto minimizer
for (SPy) if there exists a neighborhood U of Z such that

(F(UNC) —7g)N (—int(Ky)) = 0.

Let us recall the following notions of weak sharp minima for (SP1) those introduced respectively in Durea
and Strugariu [13], Zhu et al. [40] and Amahroq et al. [5].

Definition 2.2 ([13]). Let € > 0 and 9 : (—¢,+00) — R be a nondecreasing function on [0, 400 with the
property that ¢ (¢) = 0 if and only if ¢ = 0. One says that a point (Z,7) € gr(F) N (C x Y) is a local weak -
sharp Pareto minimizer for (SPy), if there exist ¢ > 0 and a neighborhood U of Z such that for every z € UNC,
y € F(x) one has

e (d(2,C)) < A kv (v - 1), (2.2)

where C = {z € C | § € F(z)}. If C = {Z} and one takes 9(t) = ¢, then relation (2.2) becomes: for every
xeUNC, ye F(z) one has
clz =zl <A kv (y—9),

and in this case one says that (Z, %) is a local sharp minimizer for (SP;).
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Definition 2.3 ([40]). (Z,7) € gr(F) N (C x Y) is a local weak sharp minimizer for (SP;), if there exist a
neighborhood U of Z and real numbers ¢, n > 0 such that

cd(m, 5) <dly—y,—Ky)+nd(z,C), VreU Vye F(z), (2.3)

where C' = {z € C |y € F(x)}. Specially, if U = X, then (Z, ) is said to be a global weak sharp minimizer for
(SP1).

Definition 2.4 ([5]). Let v > 0. It is said that (Z,9) € gr(F)N(C xY) is a local sharp minimizer of order v in
the strong sense (resp. in the weak sense) for (SPy), if there exist ¢ > 0 and a neighborhood U of Z such that
foralzeUNC

F(2)+cllz — z[|"By C g+ (Y\(—Ky)) U{0},
(resp. F(z)+c|lz — z||"By C g+ (Y\(~int(Ky)))

where By is the closed unit ball in Y. When (2.4) (resp. (2.5)) holds for all z € C, then (Z,%) is said to be a
global sharp minimizer of order v in the strong sense (resp. in the weak sense) for (SPy).

Remark 2.5. It is easy to see that,

(i) a sharp minimizer of order v in the strong sense is a sharp minimizer of order « in the weak sense. Hence,
each necessary condition for the existence of sharp minima in the weak sense is also a necessary condition
for the existence of sharp minima in the strong sense.

(ii) for ¢(t) = t, a weak t-sharp minimizer in the sense of Definition 2.2 is a weak sharp minimizer in the sense
of Definition 2.3.

(iii) for ¢(t) = t7, a local minimizer of Definition 3.1 from [14] is a local sharp minimizer of order  in the
strong sense.
(iv) weak sharp minimizers in the sense of Definitions 2.2 and 2.4 are weak Pareto minimizers for (SP).

Note that, Definition 2.2 also works in the case when int(Ky) = {); while the weak part in Definition 2.4
does not. In fact, the word “weak” in these definitions refers to different things: in Definition 2.2 it signifies the
fact that the set C' can have more than one element, while in Definition 2.4 it indicates exactly the presence of
int(Ky ). In the next proposition we give some links between these two definitions when C' = {Z} and ¢(t) = t7.

Proposition 2.6. Let (Z,7) € gr(F) with € C and v > 0. Assume that C = {Z} and ¢(t) = t7. The following
assertions hold:

(i) (z,9) is a local sharp minimizer of order vy in the weak sense for (SP1) if and only if (Z,§) is a local weak
W-sharp Pareto minimizer for (SP1) in the sense of Definition 2.2.
(i1) If (Z,9) is a local weak -sharp Pareto minimizer for (SP1) in the sense of Definition 2.2 and §j € MinF(Z),
that is
(F(@) - 5) N (~Ky) = {0},

then (Z,9) is a local sharp minimizer of order 7 in the strong sense for (SPy).

Proof. (i) Since int(Ky) # 0, by applying Proposition 3 of [1] for ¢ = ¢ and W = C = {z}, together with
Theorem 2.12 of [9], we conclude the required equivalence.

(ii) By assumption, there exist ¢ > 0 and a neighborhood U of Z such that for all z € UNC and y € F(x) one
has

A gy (y—9) Zcllz— 2|
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Hence
dly—9,—Ky) > c|lz = Z||", forall z € (UNC)\{Z} and y € F(x).

This equivalent to

F(z) —j+cl|lz — z||"By C Y\(—Ky), forallz € (UnNC)\{z}.
Since § € MinF'(Z), it follows that

F(z) —y+clz —z||"By C (Y\(-Ky))U{0}, forallz € UNC.

Whence (Z,7) is a local sharp minimizer of order v in the strong sense for (SPy).

The following examples give a comparison among the above notions of sharp minimizers.

Example 2.7. Let X =Y =R, Ky =R, C =R and F': X =2 Y defined by

[z, 2 + 1] ifex<—1
F(z)=< [—]z|,0] if x € [—-1,1]
[z, —z + 1] if x> 1.

Here we observe that (Z,7) = (0,0) is a local weak sharp minimizer for (SP;) in the sense of Definition 2.3.
However, (Z,¥) is not a local weak sharp minimizer for (SP;) neither in the sense of Definition 2.2 nor in the
sense of Definition 2.4. Also, (Z, ) is not a weak Pareto minimizer for (SPy). Thus the inclusion in Remark 2.5(ii)
is strict.

Example 2.8. Let X =R, Y =R?, Ky = Rfu C=Rand F: X =2Y defined by

F(z) = { [0, -1), (ja.—5)]  ifw i 0
{(0,0)} if =0,

where [(a, b), (¢, d)] is the line segment between (a,b) and (c, d). Here we observe that (Z,7) = (0, (0,0)) is a local
weak Pareto minimizer for (SP;) but not a local weak sharp minimizer neither in the sense of Definition 2.2 nor
in the sense of Definition 2.3. Whence the inclusions in Remark 2.5(iv) are strict.

Remark 2.9. From the above examples we observe that,

(i) the notion of weak Pareto minimizer and weak sharp minimizer in the sense of Definition 2.3 are distinct,
so a weak sharp minimizer in the sense of Definition 2.3 is not necessary a weak Pareto minimizer.

(ii) weak sharp minimizers in the sense of Definitions 2.2 and 2.4 are necessarily weak Pareto minimizers.
Therefore, they seem as natural extensions of the notion of weak sharp minimizer to set-valued maps.

In the sequel we shall establish necessary optimality conditions for sharp minimizers in the weak sense for
the problem (SP;) and the following explicit constrained set-valued optimization problem (SPs2)

Minimize F(z)

(SP2) {subject to zeC, Gz)N(-Kz) #0.

Now we start with our first preliminary results which will be crucial steps in the sequel.
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Proposition 2.10. Let (Z,y
in the weak sense for (SPq)
problem (S) :

y) € gr(F) with z € C and v > 0. If (z,7) is a local sharp minimizer of order
then there exists ¢ > 0 such that (Z,y) is a local minimal solution for the scalar

g {Minimize o(z,y)
subject to (z,y) € gr(F)N(C xY),
where
o(z,y) == Ak, (y =) +cllz — 2|7
Furthermore, if v € N* then (Z,7) is a local minimal solution for the unconstrained scalar problem

(8" {Minimize o(z,y) + ed((z,y),gr(F)N(C xY))
subject to  (z,y) € X x Y,

where ¢ = max(1, ¢y).

Proof. By assumption there exist ¢ > 0 and a neighborhood U of z such that, for all z € UNC and y € F(x)
one has

(y— g +cllz — 2|"By) N (—int(Ky)) =0,
by Proposition 2.1(iv), A_k, is positive on Y\ (—int(Ky)), then
Ak, (y—7g+c||lz—z||"b) >0, for all b € By-.
Since Ky is a convex cone, Proposition 2.1(iii) and (viii) give that
A gy (y—79) + |z —z||"A_k, (b) >0, for all b € By-.

From the fact that A_ g, (0) = 0 and A_g.,. is 1-Lipschitz, it follows that (Z, %) solves locally the problem (S).
On the other hand, to show that (Z, 7) is a local minimal solution of (S”) it suffices to show that the function
¢ is ¢-Lipschitz around (Z,y). Let (z1,y1), (x2,y2) € B(Z,1) X Y we have

0(w1,91) = D@2, 92)| = [Aky (91 = §) = Aky (Y2 = §) + cllor = 2|7 — cflzo — 27|
<Ak (11 = 9) = Aok, (2 = P + clllzr = 2|7 — 22 — 2|7

IN

lyr = woll + cller = 2| = ez — 2| Y _llar — 2" [l — 2|
i=1

< llyr — ol + eyllzr — 22|
<cll(z1,y1) — (w2, 92)]-

Then ¢ is ¢-Lipschitz around (Z,7), and hence by the Clarke penalization ([11], Prop. 2.4.3), (Z,7) is a local
minimal solution of (57). O

The following scalarization result will be useful to establish necessary conditions in terms of Fritz-John
multipliers for (SP3).
Proposition 2.11. Let (Z,7) € gr(F) withz € C and v € N*. If (Z,7) is a local sharp minimizer of order v in
the weak sense for (SPy) then there exists ¢ > 0 such that for all Z € G(Z) N (—Kz), (Z,7, 2) is a local minimal
solution of the unconstrained scalar problem (Ss) :

g {Minimize g(x,y,z) +ed((z,y, 2),gr(F,G) N (C xY x Z))
(52) subject to  (z,y,2) € X XY X Z,
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where
g(xayv Z) = maX(A—KY (y - ?]) + CHJ? - i‘H’Y, A—KZ (Z)),

¢ =max(1l,cy), and (F,G) is the set-valued mapping defined from X toY x Z by (F,G)(z) := (F(x),G(z)) =
F(z) x G(x), for allz € X.

Proof. Tt suffices to show that (Z,7, z) is a local minimal solution of the problem

{Minimize g(z,y,2)
subject to  (z,y,2) € gr(F,G)N(C' xY x Z).

Indeed. Suppose the contrary. Then there exists a sequence (z,,, yn, 2,) € gr(F,G) N (C x Y x Z) such that
(TnyYn,2n) — (Z,9,2) and  g(Tpn,Yn, 2n) < 9(Z,7,2) =0 for all n € N.
Hence, for all n € N, we get that
A_ky (Yo —y) +cllzn —2)" <0 and A_g,(zn) <0,
this implies that, for all b € By
A gy (Yn —9) +cllzn —Z)|"A_k, (b)) <0 and 2z, € G(z,) N (—Kz).
Proposition 2.1(iii) and (viii) give that
A gy (Yn —g+cl|zn —Z||'0) <0 and 2z, € G(z,) N (—Kyz),

and then
Yn — Y+ cllz, —Z||"b € —int(Ky), y, € F(z,) and 2z, € G(z,)N(—Kz).

This contradicts the fact that (Z,%) is a local sharp minimizer of order «y in the weak sense for (SP2). Since ¢
is &-Lipschitz, the Clarke penalization ([11], Prop. 2.4.3) completes the proof. |

3. SHARP FRITZ-JOHN MULTIPLIERS (FOR 7 = 1)

In the sequel, for a closed cone K of Y, K° will be the polar cone of K defined by
K°={y"eY" | (y",k) <0, VkeK}.

For a Lipschitzian function h on X, we will denote by 0h(Z) the Clarke subdifferential of h at T € X.
Let Cy;, i = 1,2,...,n, be nonempty subsets of X. Recall [16,31] that the sets C; satisfy the metric inequality
at £ € C1N---NC,, if there are a > 0 and a neighborhood U of Z such that for each x € U

dz,CiN---NCy) <ald(z,Cy) + -+ d(z,Cp)]. (3.1)

The above inequality is very well studied in literature and it is known under various names: bounded linear
regularity [7], metric regularity [17], local linear regularity [30], linear coherence [33], subtransversality [18] (more
details can be found in [7,16-18,22,24-26,28-33] and in the references therein). Note that, several authors have
established the conditions ensuring this inequality. Among them, we may cite, Proposition 1 of [25] in the
setting of normed linear spaces, Theorem 5.1 of [16], Proposition 3.1 of [22] and Theorem 3.1(ii) of [24] in the
setting of general Banach spaces, Theorem 1 of [26] in the setting of Euclidean spaces, Theorem 6.44 of [33] and
Theorem 3.1 and Corollary 3.2 of [31] in the case of Asplund spaces, and Corollary 4.2 of [30] in the setting of
Reflexive spaces.
We can now state necessary conditions for the problem (SPy).



626 A. OUSSARHAN AND T. AMAHROQ

Theorem 3.1. Let (z,7) € gr(F) with & € C. Assume that (3.1) holds for C; = (C xY) and Cy = gr(F). If
(Z,9) is a local sharp minimizer of order v = 1 in the weak sense for (SP1) then there exist ¢ > 0, x¥, x5 €
X*x X* and y* € (—Ky)°\{Oy~} such that

(—a] — a5, —y") € dd((Z,7),er(F)) with ||zi||x- <c¢ and z5¢€ N(z,C),
where N(Z,C) is the Clarke normal cone of C' at .

Proof. By assumptions, Proposition 2.10 gives that, (Z,y) is a local minimal solution for the unconstrained

scalar problem
Minimize ¢(z,y) + agld((x,y), gr(F)) + d(z, C)]
subject to  (z,y) € X XY,

where ¢(z,y) = A_k, (y — §) + ¢||z — Z||. Since ¢ and the distance function are Lipschitzians we obtain that
(0,0) € 0[¢ + acd(- , gr(F)) + acd(- ,C)](z,9),
C (el - =2|))(x) x OA_k, (0) + acdd(- ,gr(F))(Z,y) + acdd(- ,C)(z) x {0},
C Bx- x (—Ky)° + acdd((7, 7). &x(F)) + N(z,C) x {0},

because IA_k, (0) C (—Ky)°. Thus, there exist 2] € X* with ||z}]|x+ < ¢, 25 € N(z,C) and y* € (—=Ky)°
such that
(=21 — a5, —y") € 9d((Z, 7). gr(F)).
Proposition 2.1(vi7) gives that y* # 0y« and the proof is complete. O
Next, we establish implicit Fritz-John multipliers for (SP3).

Theorem 3.2. Let (z,7) € gr(F) withZ € C and zZ € G(Z)N(—Kz). Assume that (3.1) holds for C1 = (C'xY x
Z) and Cy = gr(F,G). If (Z,7) is a local sharp minimizer of order v = 1 in the weak sense for (SPg) then there
existc > 0, (z1,23) € X*xN(z,C), y* € (—Ky)°\{0y+}, z* € (—K2)°\{0z+} and (a1, a2) € (R4 xR4)\{0,0}
such that

(i) llzillx- <¢,
(i) (+*,2) = —d(z,(2\ - K2),
(iii) (—z3 — arxf, —aqy™, —aez™) € 0d((Z, ¥, 2), gr(F, G)).
Proof. By Proposition 2.11 together with the assumption (3.1) we obtain that

(0,0,0) € 9[g + acd(- ,gr(F,G)) + acd(-,C)|(z, ¥y, Z)
C co([0(c|| - —Z|)(Z) x OA_K, (0)]UOA_k,(Z)) + acdd((Z, 7, Z), gr(F, G)) + acdd(Z, C) x {(0,0)},

where co is the convex hull. Hence there are 23 € N(Z,C) and (a1, a2) € (Ry x Ry)\{(0,0)} such that
(—25,0,0) € an[0(c| - —=Z|)(Z) x OA_k, (0)] x {0} +{(0,0)} x a20A_k,(Z) + acdd((Z, g, Z), gr(F, G)).

By using similar arguments as in the proof of Theorem 3.1, there exist 27 € X* with ||z7||x~ < ¢, y* €
(—Ky)°\{Oy~} and z* € OA_k, (Z) such that

(_l‘; - Oé]_l’y{, _aly*a _QQZ*) € ad((‘f7 ]], 2)7 gI‘(F, G))
On the other hand one has

(2",2—2Z) <A_k,(2) — A_k,(2), for all z € Z. (3.2)
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Taking in (3.2), z = 2Z and z = 3z, it follows that

1
(27,2) = A_k,(2) = —d(z,(Z\ — Kz)). (3.3)
Combining (3.2) and (3.3) we get that
(z*,2) <0 forall z€ —Ky,
that is z* € (—Kz)°. Proposition 2.1(viz) implies that z* # 0z« and the proof is complete. O

Remark 3.3. The assumption (3.1) in the above theorems is always true in the case of unconstrained set-
valued optimization problems. Besides, the results obtained here are different than those of Amahroq and Taa
[2]. Indeed, z7 is not necessarily zero as in Amahroq and Taa [2]. Comparing with the results of Durea and
Strugariu [13], in the above theorems the graph of F' (resp, the set-valued data F') is not necessarily locally
closed (resp. locally Lipschitz-like) and X, Y are Banach spaces. The Lipschitz-like condition in Durea and
Strugariu [13] is replaced here by (3.1). Obviously, the Asplund space condition in Durea and Strugariu [13]
is more restrictive, but their conclusion uses the Mordukhovich normal cone which is smaller than the Clarke
normal cone considered above.

4. SHARP KARUSH-KUHN-TUCKER MULTIPLIERS (FOR 7 = 1)

In order to establish necessary optimality conditions in terms of Karush-Kuhn—Tucker multipliers for the
constrained problem (SP3) we shall use the following metrical regularity condition.

Definition 4.1. A set-valued map G is said to be metrically regular at (z,2) € gr(G) with z € (—Kz) relative
to — Kz if there exist k£ > 0 and neighborhoods V' and W of & and Z respectively such that

d(z,G™(~Kz)) < kd(z,(—Kz)),
forall z € V and z € W N G(x).

This regularity condition is well known in the literatures when G is a single valued mapping (see [23] and the
references therein) and in the above general form it has been considered in Amahroq and Thibault [3] and
studied in Amahroq et al. [4]. For verifiable conditions ensuring this condition by virtue of the set-valued map
M, see Amahroq et al. [4].

Now we state sharp Karush-Kuhn—Tucker multipliers of order v = 1 for the constrained problem (SPs).

Theorem 4.2. Let (Z,y) € gr(F) with & € C and z € G(Z) N (—Kz). Assume that (3.1) holds for C; =
G (—Kz)xY,Cy=CxY and C3 = gr(F), and G is metrically reqular at (Z,Z) relative to —Kz. If (Z,79)
is a local sharp minimizer of order v = 1 in the weak sense for (SP3) then there exist ¢ > 0, z* € X*,
y* € (—Ky)°\{O0y~}, z* € (—Kz)° and r > 0 such that

(i) |lz*||x~ < c and (z*,Z) =0,
(ii) (y*,y) 4+ (z*,2) <0, for all y € (—Ky) and z € (—Kz),
(iii) (—z*, —y*,—2*) € dd((z, ), gr(F)) x {0} + N(z,C) x {(0,0)} + roh(z, ¥, z),
where h(x,y,z) = d((z, 2), gr(Q)).
Proof. Applying again the Proposition 2.10 with the feasible set G~ (—Kz) N C, so (Z, ) is a local solution of

the unconstrained scalar problem (S7) and by the metric regularity assumption together with (3.1), we obtain
that (Z, 7, ) is a local minimizer of the problem

Minimize ¢(z,y) + oc[d((z,y),gr(F)) + d(z,C) + kd(z, —K z)]
subject to z €V, y €Y and z € WNG(z),
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where V, W and k are given by Definition 4.1. Applying the Clarke penalization ([11], Prop. 2.4.3), we get that
(Z,7, %) is a local minimizer of the unconstrained problem

Minimize ¢(z,y) + acld((z,y),gr(F)) + d(z,C) + kd(z, —Kz)| + rd((z, z),gr(G))
subject to  (z,y,2) € X XY x Z,

where 7 = &(1 + 2a + ak). Hence
(0,0,0) € 9¢(z,7) x {0} + acdd((Z,y),gr(F)) x {0} + N(z,C) x {(0,0)} + {(0,0)} x N(z,—Kz) + roh(z,y, z).
Then there exist (z*,y*) € 0¢(Z,y) and z* € N(Z,—Kz) such that
(=%, —y", —=2%) € 0d((%, 9), gr(F)) x {0} + N(z,C) x {(0,0)} + rdd((z, 2), gr(G))-
By using similar arguments as in the proof of Theorem 3.1, we obtain that ||z*||x« < ¢ and the fact that
y* € (=Ky)°\{Oy-}.
On the other hand, z* € N(z, —Kz) implies that
(z",2—2z) <0, for all z € (—Kz), (4.1)
and therefore (by taking z = 2z and z = %2 in the previous inequality)
(2*,z) = 0. (4.2)
Combining (4.1) and (4.2) we get that
(z",2) <0, forall ze (—Kgz),

that is z* € (—Kz)°. Whence (ii) holds from the fact that y* € (—Ky)° and z* € (—Kz)°. O

5. NECESSARY CONDITIONS FOR SHARP MINIMA OF HIGHER ORDER IN THE WEAK SENSE

The following results provide necessary conditions for sharp minimizers of order v > 2 in the weak sense
where 7 is integer.

Theorem 5.1. Let v > 2 (v integer), (Z,7) € gr(F) with T € C. Assume that (3.1) holds for C;1 = (C xY)
and Cy = gr(F). If (Z,7) is a local sharp minimizer of order v in the weak sense for (SPi1) then there erist
¢, ¢, > 0 such that

(07 O) € 8[A*Ky( - 27) + C” : _‘fH’y + CYEd(- ,gl"(F))](.f‘,g) + N(jv C) X {0}
Proof. Tt is enough to apply Proposition 2.10 together with the assumption (3.1) to get the proof. (I

Theorem 5.2. Let v > 2 (v integer), (Z,9) € gr(F) with T € C and z € G(z) N (—Kz). Assume that (3.1)
holds for C; = (C xY x Z) and Co = gr(F,G). If (Z,9) is a local sharp minimizer of order 7y in the weak sense
for (SPy) then there exist ¢,é,a > 0 and z* € N(&,C) such that

(*,I*, 0, O) € a[maX(A—KY ( - g) + CH ! 7j||’ya A—Kz) + aad(' ,gI‘(F, G))](ja Y, 2)'

Proof. The proof follows directly from Proposition 2.11 together with the assumption (3.1). O
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Theorem 5.3. Let v > 2 (v integer), (z,9) € gr(F) and z € G(Z) N (—Kz). Assume that (3.1) holds for
Ci =G (-Kz)xY,Cy =CxY and C3 = gr(F), and G is metrically reqular at (Z,Zz) relative to —Ky.
If (z,9) is a local sharp minimizer of order v in the weak sense for (SP3) then there exist x* € N(C,Zz),
z* € (=Kz)° and a,r,c,é > 0 such that

(=2%,0,-2%) € 0(A gy (- —9) + ¢l - —Z[|" + acd(:, gr(F)))(Z, §) + rOh(T, 7, 2),
where h(x,y,z) = d((z, 2), gr(Q)).
Proof. By using the same reasoning as in the proof of Theorem 4.2 we obtain that
(0,0,0) € d[¢ + acd(:, gr(F)) +d(-,C) + kd(-, —Kz)] + rd(-,gr(G))](z, 7, 2),
where ¢(z,y) = A_k, (y — §) + ¢||lz — Z||”. Thus the proof is completed. O

Remark 5.4. The conclusions in Theorems 5.1-5.3 are presented in terms of Fermat rules, because if we apply
the subdifferential of the sum we will lose the dependence with ~.

6. NECESSARY CONDITIONS FOR SHARP MINIMA IN THE STRONG SENSE

It is worth noting that Definitions 2.2 and 2.3 still work when int(Ky ) = (. Therefore, some discussion on
necessary optimality conditions for sharp minima in the strong sense will be of interest, especially when the
interior of the ordering cone Ky is empty.

In this section, the interior of Ky is not necessarily nonempty. Let us start with the following scalarization
results which will be crucial steps in the sequel.

Proposition 6.1. Let (z,y) € gr(F) with T € C and v € N*. If (Z,7) is a local sharp minimizer of order
v in the strong sense for (SPy) then there exists ¢ > 0 such that (Z,y) is a local minimal solution for the
unconstrained scalar problem

Minimize ¢(z,y) + éd((z,y), gr(F)N(C xY))
{subject to (z,y) € X XY,

where ¢ = max(1, ¢).

Proof. By assumption there exist ¢ > 0 and a neighborhood U of T such that, for all x € UNC and y € F(x)
one has

y—§+clz—z|"By C (Y\(-Ky))U{0}, (6.1)
whence, for all b € By
y—grelo—zlbeY\(-Ky) o  y—g+eclo—alb=0, (6.2)
from the definition of A_g,. together with Proposition 2.1(vi), we get that
A gy(y—y+ellz—2[0) >0, or A g (y—y+clz—z[")=0.

Thus
A,Ky(y—:lj-i-clll‘—.’fllfyb)ZO, VbEEy.

The rest of the proof is practically the same as that of Proposition 2.10. O
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Proposition 6.2. Let (Z,y) € gr(F) with z € C and v € N*. If (Z,y) is a local sharp minimizer of order -y in
the strong sense for (SPa) then there exists ¢ > 0 such that for all z € G(Z)N(—Kz), (Z,7, Z) is a local minimal
solution of the unconstrained scalar problem

{Minimize g(x,y,2) +ed((x,y, 2),gr(F,G) N (C xY x Z))
subject to  (x,y,2) € X XY X Z,

where g, ¢ and (F,G) are defined in Proposition 2.11.

Proof. In the same manner as the proof of Proposition 2.11, we show that (Z, 7, Z) is a local minimal solution
of the problem

Minimize g¢(z,y,2)

subject to  (z,y,2) € gr(F,G)N(C' xY x Z).

Indeed. Suppose the contrary. Then there exists a sequence (zy, Yn, 2n) € gr(F,G) N (C x Y x Z) such that for
all b € By and n € N one has

A gy (Yn — g+ ||z, —Z||"0) <0 and  z, € G(z,) N (—Kz),
it follows from the definition of A_ g, together with Proposition 2.1(vi) that
Yn — Y+ cllzn —Z||'b € (=Ky)\{0}, yn € F(z,) and 2z, € G(z,) N (—Kjz).

This contradicts the fact that (Z,7) is a local sharp minimizer of order « in the strong sense for (SP5). The rest
of the proof is the same as that of Proposition 2.11. |

The following corollaries can be proved in the same manner as the proofs of Theorems 3.1, 3.2, 4.2, 5.1, 5.2,
and 5.3 respectively, based on Propositions 6.1 and 6.2.
Corollary 6.3. Under the setting of Theorem 3.1, if (Z,y) is a local sharp minimizer of order v = 1 in the
strong sense for (SP1) then there exist ¢ > 0, z7,25 € X* x X* and y* € (—Ky)°\{0y~} such that
(—x] — x5, —y") € dd((z,7),er(F)) with ||zi||x- <c and zie N(z,0),
where N(Z,C) is the Clarke normal cone of C' at Z.

Corollary 6.4. Under the setting of Theorem 3.2, if (Z,%) is a local sharp minimizer of order v = 1 in the
strong sense for (SPq) then there exist ¢ > 0, (z7,23) € X*XN(z,C), y* € (—Ky)°\{0y+}, 2* € (—Kz)°\{0z+}
and (a1, a2) € (Ry x Ry)\{0,0} such that

(i) [lz7l[x- <¢
(ll) <Z*a Z> = _d(57 (Z\ - KZ))a
(111) (_553 - alxiv _aly*v _CVQZ*) € ad((‘%v Y, 2)7 gI‘(F, G))
Corollary 6.5. Under the setting of Theorem 4.2, if (Z,%) is a local sharp minimizer of order v = 1 in the
strong sense for (SPg) then there exist ¢ > 0, z* € X*, y* € (—Ky)°\{0y~}, z* € (—Kz)° and r > 0 such that
(i) lla* - < c and (=*,2) = 0,
(i) (y*,y) + (2*,2) <0, for all y € (—Ky) and z € (—K ),
(i) (—a%, —y", —2") € 8d((z. 7), gr(F)) x {0} + N(z,C) x {(0,0)} + r0h(z,5,2),
where h(x,y,z) = d((z, 2), gr(Q)).
Corollary 6.6. Under the setting of Theorem 5.1, if (Z,7) is a local sharp minimizer of order v > 2 (v integer)
in the strong sense for (SPy) then there exist ¢, ¢, > 0 such that

(0,0) € I[A_ky (- — ) + || - —Z||" + acd(- ,gr(F))|(z,7) + N(z,C) x {0}.
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Corollary 6.7. Under the setting of Theorem 5.2, if (Z,9) is a local sharp minimizer of order v > 2 (v integer)
in the strong sense for (SP2) then there exist ¢, ¢, > 0 and x* € N(Z,C) such that

(—JJ*,0,0) € 6[maX(A—KY(' - Z]) + CH ’ _'fHPYaA—Kz) + aéd(' ,gI‘(F, G))](f,g,i)

Corollary 6.8. Under the setting of Theorem 5.3, if (Z,7) is a local sharp minimizer of order v > 2 (v integer)
in the strong sense for (SP2) then there exist * € N(C, ), z* € (—Kz)° and a,7,¢,¢ > 0 such that

(—{L‘*,O, _Z*) € a(A*KY(' - ﬂ) + C” ’ _jH’y + Oééd(-, gr(F)))(a’;g) + ré)h(:f,g, 2)7
where h(x,y, z) = d((z, ), gr(G)).

7. SUFFICIENT CONDITIONS

Let S be a nonempty subset of X and let Z € S. The radial cone R(S,Z) of S at Z is the subset of X defined
by
R(S7 j) = CI(R-‘r(S - j))a

where cl denotes the closure. It is obvious to see that for all (Z,7) € gr(F)
[R(gr(F), (2,9))]” = {(=",y") € X* x Y™ [ ((2",y"), (z,9) — (,9)) <0, Y(z,y) € gr(F)}.
Note that, the Clarke normal cone N (S, Z) reduces to the normal cone of convex analysis when S' is convex, i.e.,
N(S,z) =[R(S,2)]° ={«" € X" | (", —Z) <0, VzeS}

We begin with the following theorem that provides sufficient optimality conditions for sharp minima in the
weak sense for (SP2) without any convexity assumption on the set-valued objective mapping.

Theorem 7.1. Let v > 0, (Z,7) € gr(F) and z € G(Z) N (—Kz). Assume that there exist y* € (—Ky)°\{0}
and z* € (—Kz)° such that

(0,—y",—2") € [R(M(gr(F),'y) N(C xY), (jvg))]o x {0z} + [R(C,2)]° x {(0y=,02+)} + Ao [R(gr(G), (2, 2))]°,

(7.1)
where Mge(py) = {(z,y+|z—Z|b) | (z,y) € gr(F), b € By} and A is defined from X* x Z* to X* xY* x Z*
by A(z*,z*) = (2*,0y«,2*). Then (Z,§) is a sharp minimizer of order v in the weak sense for the problem
(SP2).

Proof. Reasoning ad absurdum, suppose that (Z, ) is not a sharp minimizer of order ~ _in the weak sense for
the problem (SPj3). Then, there exist 21 € C, y; € F(x1), z1 € G(x1) N (—Kz) and b; € By such that

g—1v1+ ||z1 — Z||"by € int(Ky).
Since y* € (—=Ky)°\{Oy~}, we may choose yo € Y'\{0} such that
<_y*7y0> < 0.

As the sequence § — y1 + |21 — Z||7b1 — (n+ 1) 1yo converges to § — y1 + ||z1 — Z||7b1, there exists ng € N such
that for all n > ng
gy +llzr = 2[7by = (n+ 1) yo € int(Ky),

using the fact that y* € (—Ky)°, one has

("5 —v1 + llzr — 2|7y — (n+1)"'yo) >0,
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that is
("5 =y + [lzr = 2[701) > (n + 1) {y*, yo) > 0,

then
W9 —y1+ |lza —2[7b1) > 0. (7.2)

From (7.1), there exist z* € [R(C,7)]°, (uj,v*) € [R(Mg(r),y N (C xY),(2,7))]° and (u3,w*) €
[R(gr(G), (7, 2))]° such that
(=2% —y", =2%) = (U1 +up, v, w"). (7.3)
Since (z1,y1 — [[x1 — Z[|7b1) € M(ge(r),y) N (C x Y) and (21,21) € gr(G) one has
(u, 21 =) + (V591 =¥ — [lz1 — Z[701) <0, (7.4)

and
(u,z1 — ) + (W, 21 — 2) < 0. (7.5)

By adding the above relations (7.4) and (7.5) we get that
(2% = 2) + (—y"p1 — ¥ — [ler = 2[701) + (=27, 21 — 2) <0,
since z* € [R(C, 7)]° and z* € N(z, —Kz) we obtain that
W5 —y1+ |z —2|7b1) < (x", 21 —T) 4+ (2",21 — 2) <0,
which is a contradiction with (7.2). O

The following theorem is a direct consequence of Theorem 7.1.

Theorem 7.2. Let v > 0 and (Z,7) € gr(F). Assume that there exists y* € (—Ky )°\{0} such that
(Oa *y*) S [R(M(gr(F),'y) N (C X Y)v (ja g))]o + [R(07 3_7)]0 X {OY*}
Then (Z,7y) is a sharp minimizer of order ~y in the weak sense for the problem (SP1).

Proof. In Theorem 7.1 let us take G : X = Z with gr(G) = X x Z, of course, the hypotheses of the theorem
hold, so the conclusion follows. O

In the next results, we show that necessary conditions in Sections 3—5 may be sufficient conditions under some
convexity assumptions. For that purpose, we recall the following notion of y-strong convexity of a set-valued
map that introduced in Definition 2.9 of [5].

Definition 7.3. Let v > 0. It is said that F' is -strongly convex set-valued mapping with a constant ¢ > 0 if
there exists a function g : [0,1] — Rt with

_g0) o
lim=7==1 and ¢(0)=g(1) =0,

such that for all 21,22 € X and 6 € [0, 1]
OF (x1) + (1 — 0)F(x2) + cg(0)||z1 — 22| "By C F(0x1 + (1 — 0)x2).

Remark 7.4. It is obvious that, F' is v-strongly convex set-valued mapping implies that F' is convex, i.e., for
all 1,22 € X and 6 € [0, 1] one has

or equivalently, gr(F) is a convex set.
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The following result is a direct consequence of Theorem 2.12 from [5].

Lemma 7.5. Let v > 0. Assume that F is y-strongly conver set-valued mapping with a constant ¢ > 0 and
(Z,9) € gr(F). Then for allz € X, y € F(z) and b € By one has

(x =7,y =y —clle = Z("b) € R(gr(F), (7, 9))-

Now, we provide sufficient conditions for sharp minima for (SPs) under strong convexity assumption on the
set-valued objective mapping.

Theorem 7.6. Let v > 0. Assume that F is y-strongly convex set-valued mapping with a constant ¢ > 0, G
is converx, (Z,y) € gr(F), z € G(Z) N (—Kz) and C is a convex set. Assume further that there exist y* €
(—Ky)°\{0} and z* € (—Kz)° such that

(0, —y", =2") € N(gr(F), (2,9)) x {0z} + N(C,7) x {(Oy~,02+)} + Ao [N(gr(G), (%, 2))]; (7.6)

where A is defined in Theorem 7.1. Then (Z,7) is a sharp minimizer of order « in the weak sense for the problem
(SP2).

Proof. By applying Lemma 7.5, we obtain that
(v — 2,y — 7y —c|lz — z||"b) € R(gr(F), (z,7)), forall (z,y)€gr(F)N(C xY)and b€ By.

Since gr(F') is a convex set then
N(gr(F),(z,9)) = [R(gr(F), (z,9))]°-
From (7.6), there exist (u},v*) € N(gr(F), (Z,7)), «* € N(C,z) and (ul,w*) € N(gr(G), (z,z)) such that

(0, —y*, —2z%) = (u7,v",0) + (*,0,0) + (u3,0,w"). (7.7)
Based on these observations, one has
{(uf,v*), (x,y — c|lz — z||"b) — (Z,9)) <0, forall (x,9) € gr(F)N(C xY) and b € By,

or equivalently,
(u1,v") € [R(M(gr(p),5) N (C X Y), (2,9))]°.

By (7.7) together with the convexity of gr(G) and C, we get that

(0, ", —=") € [R(M(ge(ry.0) 1 (C X V), (&, 9))]° X {05-} + [R(C,#)]° x {(Oy+,02+)} + Ao [Rgr(G), (7, 7))

Theorem 7.1 completes the proof. O
The following theorem is a direct consequence of Theorem 7.6.

Theorem 7.7. Let v > 0. Suppose that F is y-strongly convex set-valued mapping with a constant ¢ > 0,
(Z,7) € gr(F) and C is a convex set. Assume that there exists y* € (—Ky)°\{0} such that

(0,—y") € N(gr(F), (z,9)) + N(C,z) x {0y~ }.
Then (Z,7y) is a sharp minimizer of order ~y in the weak sense for the problem (SP1).

Proof. Tt suffices to apply Theorem 7.6 for gr(G) = X x Z. O
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8. CONCLUSIONS

This paper studies three notions of weak sharp minima in set-valued optimization problems and provides some
links between them. A natural extension is chosen to establish necessary optimality conditions for constrained
set-valued optimization problems in terms of Lagrange multiplier rules, mainly in terms of Clarke differentiation
objects (subdifferentials and normal cones). Under suitable assumptions, necessary optimality conditions become
sufficient optimality conditions. Besides, some sufficient optimality conditions are derived without any convexity
assumption on the set-valued objective mapping.
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