Malmquist-Luenberger productivity indexes for dynamic network DEA with undesirable outputs and negative data
RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 649-687

The data envelopment analysis (DEA) technique is well known for computing the Malmquist-Luenberger productivity index (MLPI) in measuring productivity change in the decision-making units (DMUs) over two consecutive periods. In this research, we detect infeasibility of the directional distance function (DDF) based DEA model of MLPI under the variable returns to scale technology when data takes on negative values. We address this problem by developing a novel DDF-based DEA model that computes an improved MLPI. We extend the DDF approach to the dynamic network structure and introduce the dynamic MLPI for analyzing the performance of DMUs over time. We also develop the dynamic sequential MLPI to detect shifts in the efficient frontiers due to random shocks or technological advancements over time. The dynamic network structure in the two indexes comprises multiple divisions in DMUs connected vertically by intermediate productivity links and horizontally over time by carryovers. The proposed models are feasible and bounded with undesirable features and negative and non-negative data values. Real data of 39 Indian commercial public and private banks from 2008 to 2019 used to illustrate the two indexes.

DOI : 10.1051/ro/2022023
Classification : 90B10, 90C05, 90C08, 90C39, 90C90, 91B06
Keywords: Data envelopment analysis, directional distance function, dynamic network structure, productivity change, dynamic Malmquist-Luenberger productivity indexes
@article{RO_2022__56_2_649_0,
     author = {Bansal, Pooja and Mehra, Aparna},
     title = {Malmquist-Luenberger productivity indexes for dynamic network {DEA} with undesirable outputs and negative data},
     journal = {RAIRO. Operations Research},
     pages = {649--687},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/ro/2022023},
     mrnumber = {4407585},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022023/}
}
TY  - JOUR
AU  - Bansal, Pooja
AU  - Mehra, Aparna
TI  - Malmquist-Luenberger productivity indexes for dynamic network DEA with undesirable outputs and negative data
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 649
EP  - 687
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022023/
DO  - 10.1051/ro/2022023
LA  - en
ID  - RO_2022__56_2_649_0
ER  - 
%0 Journal Article
%A Bansal, Pooja
%A Mehra, Aparna
%T Malmquist-Luenberger productivity indexes for dynamic network DEA with undesirable outputs and negative data
%J RAIRO. Operations Research
%D 2022
%P 649-687
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022023/
%R 10.1051/ro/2022023
%G en
%F RO_2022__56_2_649_0
Bansal, Pooja; Mehra, Aparna. Malmquist-Luenberger productivity indexes for dynamic network DEA with undesirable outputs and negative data. RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 649-687. doi: 10.1051/ro/2022023

[1] A. I. Ali and L. M. Seiford, Translation invariance in data envelopment analysis. Oper. Res. Lett. 9 (1990) 403–405. | Zbl | DOI

[2] J. Aparicio, J. T. Pastor and J. L. Zofio, On the inconsistency of the Malmquist-Luenberger index. Eur. J. Oper. Res. 229 (2013) 738–742. | MR | DOI

[3] J. Aparicio, J. T. Pastor and F. Vidal, The directional distance function and the translation invariance property. Omega 58 (2016) 1–3. | DOI

[4] J. Aparicio, J. Barbero, M. Kapelko, J. T. Pastor and J. L. Zofío, Testing the consistency and feasibility of the standard Malmquist-Luenberger index: environmental productivity in world air emissions. J. Environ. Manage. 196 (2017) 148–160. | DOI

[5] B. Arabi, S. Munisamy and A. Emrouznejad, A new slacks-based measure of Malmquist-Luenberger index in the presence of undesirable outputs. Omega 51 (2015) 29–37. | DOI

[6] N. K. Avkiran, An illustration of dynamic network DEA in commercial banking including robustness tests. Omega 55 (2015) 141–150. | DOI

[7] W. Briec and K. Kerstens, Infeasibility and directional distance functions with application to the determinateness of the luenberger productivity indicator. J. Optim. Theory App. 141 (2009) 55. | MR | Zbl | DOI

[8] W. Briec and K. Kerstens, The luenberger productivity indicator: an economic specification leading to infeasibilities. Econ. Modell. 26 (2009) 597–600. | DOI

[9] D. W. Caves, L. R. Christensen and W. E. Diewert, The economic theory of index numbers and the measurement of input, output, and productivity. Econ. J. Econ. Soc. 50 (1982) 1393–1414. | Zbl

[10] Y.-T. Chang, H. K. Park, B. Zou and N. Kafle, Passenger facility charge vs. airport improvement program funds: a dynamic network DEA analysis for US airport financing. Transp. Res. Part E: Logistics Transp. Rev. 88 (2016) 76–93. | DOI

[11] A. Charnes, W. W. Cooper, B. Golany, R. Halek, G. Klopp, E. Schmitz and D. Thomas, Two phase data envelopment analysis approaches to policy evaluation and management of army recruiting activities: tradeoffs between joint services and army advertising. In: Center for Cybernetic Studies. University of Texas-Austin Austin, Texas, USA (1986).

[12] Y. Chen, A non-radial Malmquist productivity index with an illustrative application to Chinese major industries. Int. J. Prod. Econ. 83 (2003) 27–35. | DOI

[13] K. Chen and J. Zhu, Scale efficiency in two-stage network DEA. J. Oper. Res. Soc. 70 (2019) 101–110. | DOI

[14] Y. H. Chung, R. Färe and S. Grosskopf, Productivity and undesirable outputs: a directional distance function approach. J. Environm. Manage. 51 (1997) 229–240. | DOI

[15] T. J. Coelli, D. S. P. Rao, C. J. O’Donnell and G. E. Battese, An Introduction to Efficiency and Productivity Analysis. Springer Science & Business Media (2005).

[16] W. D. Cook, L. Liang and J. Zhu, Measuring performance of two-stage network structures by DEA: a review and future perspective. Omega 38 (2010) 423–430. | DOI

[17] C. A. Denizer, M. Dinc and M. Tarimcilar, Financial liberalization and banking efficiency: evidence from Turkey. J. Prod. Anal. 27 (2007) 177–195. | DOI

[18] J. Du, Y. Chen and Y. Huang, A modified Malmquist-Luenberger productivity index: assessing environmental productivity performance in China. Eur. J. Oper. Res. 269 (2018) 171–187. | MR | DOI

[19] J. Du, Y. Duan and J. Xu, The infeasible problem of Malmquist-Luenberger index and its application on China’s environmental total factor productivity. Ann. Oper. Res. 278 (2019) 235–253. | MR | DOI

[20] A. Emrouznejad and E. Thanassoulis, A mathematical model for dynamic efficiency using data envelopment analysis. Appl. Math. Comput. 160 (2005) 363–378. | Zbl

[21] A. Emrouznejad and E. Thanassoulis, Measurement of productivity index with dynamic DEA. Int. J. Oper. Res. 8 (2010) 247. | Zbl | DOI

[22] A. Emrouznejad and G.-L. Yang, A framework for measuring global Malmquist-Luenberger productivity index with CO2 emissions on Chinese manufacturing industries. Energy 115 (2016) 840–856. | DOI

[23] A. Emrouznejad, A. L. Anouze and E. Thanassoulis, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data using DEA. Eur. J. Oper. Res. 200 (2010) 297–304. | Zbl | DOI

[24] G. Falavigna, R. Ippoliti and G. B. Ramello, DEA-based Malmquist productivity indexes for understanding courts reform. Soc.-Econ. Planning Sci. 62 (2018) 31–43. | DOI

[25] R. Färe and S. Grosskopf, Intertemporal production frontiers with dynamic DEA. In: Kluwer Academic, collaboration with R. Briinnlund et al. Boston (1996). | DOI

[26] R. Färe, S. Grosskopf and C. A. K. Lovell, Production Frontiers. Cambridge University Press (1994).

[27] R. Färe, S. Grosskopf, M. Norris and Z. Zhang, Productivity growth, technical progress, and efficiency change in industrialized countries. Am. Econ. Rev. 84 (1994) 66–83.

[28] D. Fernández, C. Pozo, R. Folgado, L. Jiménez and G. Guillén-Gosálbez, Productivity and energy efficiency assessment of existing industrial gases facilities via data envelopment analysis and the Malmquist index. Appl. Energy 212 (2018) 1563–1577. | DOI

[29] H. Fukuyama and W. L. Weber, Measuring Japanese bank performance: a dynamic network DEA approach. J. Prod. Anal. 44 (2015) 249–264. | DOI

[30] H. Fukuyama and W. L. Weber, Japanese bank productivity, 2007–2012: a dynamic network approach. Pac. Econ. Rev. 22 (2017) 649–676. | DOI

[31] H. Fukuyama, R. Matousek and N. G. Tzeremes, A Nerlovian cost inefficiency two-stage DEA model for modeling banks’ production process: evidence from the Turkish banking system. Omega 95 (2020) 102198 | DOI

[32] S. Ghobadi, A generalized DEA model for inputs (outputs) estimation under inter-temporal dependence. RAIRO-Oper. Res. 53 (2019) 1791–1805. | MR | Zbl | Numdam | DOI

[33] E. Grifell-Tatjé and C. A. K. Lovell, A note on the Malmquist productivity index. Econ. Lett. 47 (1995) 169–175. | Zbl | DOI

[34] I. C. Henriques, V. A. Sobreiro, H. Kimura and E. B. Mariano, Two-stage DEA in banks: terminological controversies and future directions. Expert Syst. App. 161 (2020) 113–632.

[35] O. Herrera-Restrepo, K. Triantis, J. Trainor, P. Murray-Tuite and P. Edara, A multi-perspective dynamic network performance efficiency measurement of an evacuation: a dynamic network-DEA approach. Omega 60 (2016) 45–59. | DOI

[36] D. Holod and H. F. Lewis, Resolving the deposit dilemma: a new DEA bank efficiency model. J. Banking Finance 35 (2011) 2801–2810. | DOI

[37] J. Jablonsky, Ranking of countries in sporting events using two-stage data envelopment analysis models: a case of Summer Olympic Games 2016. Central Eur. J. Oper. Res. 26 (2018) 951–966. | MR | DOI

[38] G. R. Jahanshahloo and M. Piri, Data Envelopment Analysis (DEA) with integer and negative inputs and outputs. J. Data Envelopment Anal. Decis. Sci. 2013 (2013) 1–15. | DOI

[39] A. R. Jayaraman and P. Bhuyan, Impact of NPA and loan write-offs on the profit efficiency of Indian banks. Decision 47 (2020) 35–48. | DOI

[40] C. Kao, Dynamic data envelopment analysis: a relational analysis. Eur. J. Oper. Res. 227 (2013) 325–330. | MR | DOI

[41] C. Kao, Network data envelopment analysis: a review. Eur. J. Oper. Res. 239 (2014) 1–16. | MR | DOI

[42] C. Kao, Network Data Envelopment Analysis: Foundations and Extensions. Springer (2017). | MR | DOI

[43] S. Kourtzidis, R. Matousek and N. G. Tzeremes, Modelling a multi-period production process: evidence from the Japanese regional banks. Eur. J. Oper. Res. 294 (2021) 327–339. | MR | DOI

[44] S. Kumar, Environmentally sensitive productivity growth: a global analysis using Malmquist-Luenberger index. Ecol. Econ. 56 (2006) 280–293. | DOI

[45] R. Lin and Z. Chen, Super-efficiency measurement under variable return to scale: an approach based on a new directional distance function. J. Oper. Res. Soc. 66 (2015) 1506–1510. | DOI

[46] R. Lin and Z. Chen, A directional distance based super-efficiency DEA model handling negative data. J. Oper. Res. Soc. 68 (2017) 1312–1322. | DOI

[47] R. Lin and Y. Liu, Super-efficiency based on the directional distance function in the presence of negative data. Omega 85 (2019) 26–34. | DOI

[48] C. A. K. Lovell, The decomposition of malmquist productivity indexes. J. Prod. Anal. 20 (2003) 437–458. | DOI

[49] C. A. K. Lovell, J. T. Pastor and J. A. Turner, Measuring macroeconomic performance in the OECD: a comparison of European and non-European countries. Eur. J. Oper. Res. 87 (1995) 507–518. | Zbl | DOI

[50] S. Lozano and N. Soltani, Efficiency assessment using a multidirectional DDF approach. Int. Trans. Oper. Res. 27 (2020) 2064–2080. | MR | Zbl | DOI

[51] S. Malmquist, Index numbers and indifference surfaces. Trabajos de Estadistica y de Investigacion Operativa 4 (1953) 209–242. | MR | Zbl | DOI

[52] F. B. Mariz, M. R. Almeida and D. Aloise, A review of dynamic data envelopment analysis: state of the art and applications. Int. Trans. Oper. Res. 25 (2018) 469–505. | MR | Zbl | DOI

[53] R. K. Matin, G. R. Amin and A. Emrouznejad, A modified semi-oriented radial measure for target setting with negative data. Measurement 54 (2014) 152–158. | DOI

[54] P. Moreno and S. Lozano, Super SBI Dynamic Network DEA approach to measuring efficiency in the provision of public services. Int. Trans. Oper. Res. 25 (2018) 715–735. | MR | DOI

[55] E. Njuki, B. E. Bravo-Ureta and C. J. O’Donnell, Decomposing agricultural productivity growth using a random-parameters stochastic production frontier. Empirical Econ. 57 (2019) 839–860. | DOI

[56] D.-H. Oh and A. Heshmati, A sequential Malmquist-Luenberger productivity index: environmentally sensitive productivity growth considering the progressive nature of technology. Energy Econ. 32 (2010) 1345–1355. | DOI

[57] K. S. Park and K. Park, Measurement of multiperiod aggregative efficiency. Eur. J. Oper. Res. 193 (2009) 567–580. | MR | Zbl | DOI

[58] M. C. A. S. Portela and E. Thanassoulis, Malmquist-type indices in the presence of negative data: an application to bank branches. J. Banking Finance 34 (2010) 1472–1483. | DOI

[59] M. C. A. S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: a directional distance approach applied to bank branches. J. Oper. Res. Soc. 55 (2004) 1111–1121. | Zbl | DOI

[60] S. C. Ray and E. Desli, Productivity growth, technical progress, and efficiency change in industrialized countries: comment. Am. Econ. Rev. 87 (1997) 1033–1039.

[61] R. R. Russell and W. Schworm, Technological inefficiency indexes: a binary taxonomy and a generic theorem. J. Prod. Anal. 49 (2018) 17–23. | DOI

[62] H. Scheel, Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 132 (2001) 400–410. | Zbl | DOI

[63] L. M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 142 (2002) 16–20. | Zbl | DOI

[64] J. A. Sharp, W. Meng and W. Liu, A modified slacks-based measure model for data envelopment analysis with ‘natural’ negative outputs and inputs. J. Oper. Res. Soc. 58 (2007) 1672–1677. | DOI

[65] V. Shestalova, Sequential Malmquist indices of productivity growth: an application to OECD industrial activities. J. Prod. Anal. 19 (2003) 211–226. | DOI

[66] R. M. Solow, Technical change and the aggregate production function. Rev. Econ. Stat. 39 (1957) 312–320. | DOI

[67] M. Tavana, M. Izadikhah, D. Di Caprio and R. F. Saen, A new dynamic range directional measure for two-stage data envelopment analysis models with negative data. Comput. Ind. Eng. 115 (2018) 427–448. | DOI

[68] K. Tone and M. Tsutsui, Dynamic DEA: a slacks-based measure approach. Omega 38 (2010) 145–156. | DOI

[69] K. Tone and M. Tsutsui, Dynamic DEA with network structure: a slacks-based measure approach. Omega 42 (2014) 124–131. | DOI

[70] H. Tulkens and P. Vanden Eeckaut, Non-parametric efficiency, progress and regress measures for panel data: methodological aspects. Eur. J. Oper. Res. 80 (1995) 474–499. | Zbl | DOI

[71] B. Walheer, Malmquist productivity index for multi-output producers: an application to electricity generation plants. Soc.-Econ. Plan. Sci. 65 (2019) 76–88. | DOI

[72] D. C. Wheelock and P. W. Wilson, Technical progress, inefficiency, and productivity change in us banking, 1984–1993. J. Money Credit Bank. 31 (1999) 212–234. | DOI

[73] A. Zanella, A. S. Camanho and T. G. Dias, Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis. Eur. J. Oper. Res. 245 (2015) 517–530. | MR | Zbl | DOI

[74] Y. Zha, N. Liang, M. Wu and Y. Bian, Efficiency evaluation of banks in China: a dynamic two-stage slacks-based measure approach. Omega 60 (2016) 60–72. | DOI

[75] J. L. Zofio, Malmquist productivity index decompositions: a unifying framework. Appl. Econ. 39 (2007) 2371–2387. | DOI

Cité par Sources :