Estimation of the population distribution function using varied L ranked set sampling
RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 955-957

A generalized ranked set sampling (RSS) plan has recently been provided in the literature called varied L RSS (VLRSS). It is shown that VLRSS encompasses several existing RSS variations and also it efficiently estimates the population mean. In this article, we extend the work and consider estimating the cumulative distribution function (CDF) using VLRSS. Three new CDF estimators are proposed and their asymptotic properties are also theoretically investigated. Taking into account the information supported by the unmeasured sampling units, we also propose a general class of CDF estimators. Using small Monte Carlo experiments, we study the behavior of the proposed CDF estimators with respect to the conventional CDF estimator under RSS. It is found that the conventional RSS-based CDF is outperformed by at least one of VLRSS-based CDF estimators in most of the considered cases. Finally, an empirical example is utilized to illustrate the potential application of the proposed estimators.

DOI : 10.1051/ro/2022014
Classification : 62D05, 62F03
Keywords: Ranked Set Sampling, varied L Ranked Set Sampling, distribution function, relative precision, missing data approach
@article{RO_2022__56_2_955_0,
     author = {Abdallah, Mohamed S.},
     title = {Estimation of the population distribution function using varied {L} ranked set sampling},
     journal = {RAIRO. Operations Research},
     pages = {955--957},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {2},
     doi = {10.1051/ro/2022014},
     mrnumber = {4407583},
     zbl = {1493.62043},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022014/}
}
TY  - JOUR
AU  - Abdallah, Mohamed S.
TI  - Estimation of the population distribution function using varied L ranked set sampling
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 955
EP  - 957
VL  - 56
IS  - 2
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022014/
DO  - 10.1051/ro/2022014
LA  - en
ID  - RO_2022__56_2_955_0
ER  - 
%0 Journal Article
%A Abdallah, Mohamed S.
%T Estimation of the population distribution function using varied L ranked set sampling
%J RAIRO. Operations Research
%D 2022
%P 955-957
%V 56
%N 2
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022014/
%R 10.1051/ro/2022014
%G en
%F RO_2022__56_2_955_0
Abdallah, Mohamed S. Estimation of the population distribution function using varied L ranked set sampling. RAIRO. Operations Research, Tome 56 (2022) no. 2, pp. 955-957. doi: 10.1051/ro/2022014

[1] A. I. Al-Omari, The efficiency of L ranked set sampling in estimating the distribution function. Afrika Matematika 26 (2015) 1457–1466. | MR | Zbl | DOI

[2] A. I. Al-Omari, Quartile ranked set sampling for estimating the distribution function. J. Egypt. Math. Soc. 24 (2016) 303–308. | MR | Zbl | DOI

[3] A. I. Al-Omari, Maximum likelihood estimation in location-scale families using varied L ranked set sampling. RAIRO-Oper. Res. 55 (2021) S2759–S2771. | MR | Zbl | Numdam | DOI

[4] A. I. Al-Omari and M. S. Abdallah, Estimation of the distribution function using moving extreme and MiniMax ranked set sampling. To appear in: Commun. Stat. Simul. Comput. (2021) 1–21. DOI: | DOI | MR | Zbl

[5] M. F. Al-Saleh and D. M. Ahmad, Estimation of the distribution function using moving extreme ranked set sampling (MERSS). In: Ranked Set Sampling: 65 years Improving the Accuracy in Data Gathering. Academic Press (2019), 43–58. | MR | Zbl | DOI

[6] S. Ashour and M. Abdallah, New distribution function estimators and tests of perfect ranking in concomitant-based ranked set sampling. To appear in: Commun. Stat. Simul. Comput. (2019) 1–26. DOI: . | DOI | MR | Zbl

[7] S. Ashour and M. Abdallah, Parametric estimation based on ranked set sampling: missing data approach. J. Sci. Gazi Univ. 32 (2019) 1356–1368. | DOI

[8] S. Ashour and M. Abdallah, Estimation of distribution function based on ranked set sampling: missing data approach. Thailand Stat. 18 (2020) 27–42. | Zbl

[9] Z. Chen, Z. Bai and B. K. Sinha, Ranked Set Sampling: Theory and Applications. Springer, New York (2004). | MR | Zbl | DOI

[10] W. Chen, C. Long, R. Yang and D. Yao, Maximum likelihood estimator of the location parameter under moving extremes ranked set sampling design. Acta Math. App. Sin. Ser. 37 (2021) 101–108. | MR | Zbl | DOI

[11] T. R. Dell and J. L. Clutter, Ranked set sampling theory with order statistics background. Biometrics 28 (1972) 545–555. | Zbl | DOI

[12] A. Eftekharian and M. Razmkhah, On estimating the distribution function and odds using ranked set sampling. Stat. Probab. Lett. 122 (2017) 1–10. | MR | Zbl | DOI

[13] J. Frey and L. Wang, EDF-based goodness-of-fit tests for ranked set sampling. Can. J. Stat. 42 (2014) 451–469. | MR | Zbl | DOI

[14] J. Frey and Y. Zhang, Improved exact confidence intervals for a proportion using ranked-set sampling. J. Korean Stat. Soc. 48 (2019) 493–501. | MR | Zbl | DOI

[15] J. Frey and Y. Zhang, Robust confidence intervals for a proportion using ranked-set sampling. J. Korean Stat. Soc. 50 (2021) 1009–1028. | MR | Zbl | DOI

[16] N. Gemayel, E. Stasny, J. Tackett and D. Wolfe, Ranked set sampling: an auditing application. Rev. Quant. Finance Acc. 39 (2012) 413–422. | DOI

[17] A. Göçoğlu and N. Demirel, Estimating the population proportion in modified ranked set sampling methods. J. Stat. Comput. Simul. 89 (2019) 2694–2710. | MR | Zbl | DOI

[18] A. Haq, J. Brown, E. Moltchanova and A. I. Al-Omari, Varied L ranked set sampling scheme. J. Stat. Theory Pract. 9 (2015) 741–767. | MR | Zbl | DOI

[19] A. Hassan, A. Al-Omar and H. Nagy, Stress-strength reliability for the generalized inverted exponential distribution using MRSS. Iran J. Sci. Technol. Trans. Sci. 45 (2021) 641–659. | MR | DOI

[20] P. H. Kvam, Ranked set sampling based on binary water quality data with covariates. J. Agric. Biol. Environ. Stat. 8 (2003) 271–279. | DOI

[21] P. Kvam and F. Samaniego, Nonparametric maximum likelihood estimation based on ranked set samples. J. Am. Stat. Assoc. 89 (1994) 526–537. | MR | Zbl | DOI

[22] M. Mahdizadeh and E. Zamanzade, Kernel-based estimation of P(x > y) in ranked set sampling. SORT 40 (2016) 243–266. | MR | Zbl

[23] M. Mahdizadeh and E. Zamanzade, Efficient body fat estimation using multistage pair ranked set sampling. Stat. Methods Med. Res. 28 (2019) 223–234. | MR | DOI

[24] G. A. Mcintyre, A method for unbiased selective sampling using ranked set sampling. Aust. J. Agric. Res. 3 (1952) 385–390. | DOI

[25] H. Morabbi and M. Razmkhah, Quantile estimation based on modified ranked set sampling schemes using Pitman closeness. To appear: Commun. Stat. Simul. Comput. (2020) DOI: . | DOI | MR | Zbl

[26] O. Ozturk, Nonparametric maximum-likelihood estimation of within-set ranking errors in ranked set sampling. J. Nonparametric Stat. 22 (2010) 823–840. | MR | Zbl | DOI

[27] O. Ozturk, Parametric estimation of location and scale parameters in ranked set sampling. J. Stat. Planning Inference 141 (2011) 1616–1622. | MR | Zbl | DOI

[28] A. M. Polansky and E. R. Baker, Multistage plugin bandwidth selection for kernel distribution function estimates. J. Stat. Comput. Simul. 65 (2000) 63–80. | MR | Zbl | DOI

[29] S. L. Stokes and T. W. Sager, Characterization of a ranked-set sample with application to estimating distribution functions. J. Am. Stat. Assoc. 83 (1988) 374–381. | MR | Zbl | DOI

[30] E. Zamanzade, EDF-based tests of exponentiality in pair ranked set sampling. Stat. Papers 60 (2019) 2141–2159. | MR | Zbl | DOI

[31] E. Zamanzade and M. Mahdizadeh, A more efficient proportion estimator in ranked set sampling. Stat. Probab. Lett. 129 (2017) 28–33. | MR | Zbl | DOI

[32] E. Zamanzade and M. Mahdizadeh, Estimating the population proportion in pair ranked set sampling with application to air quality monitoring. J. Appl. Stat. 45 (2018) 426–437. | MR | Zbl | DOI

[33] E. Zamanzade and M. Mahdizadeh, Using ranked set sampling with extreme ranks in estimating the population proportion. Stat. Methods Med. Res. 29 (2020) 165–177. | MR | DOI

[34] E. Zamanzade and X. Wang, Estimation of population proportion for judgment post-stratification. Comput. Stat. Data Anal. 112 (2017) 257–269. | MR | Zbl | DOI

[35] E. Zamanzade, A. Parvardeh and M. Asadi, Estimation of mean residual life based on ranked set sampling. Comput. Stat. Data Anal. 135 (2019) 35–55. | MR | Zbl | DOI

[36] E. Zamanzade, M. Mahdizadeh and H. Samawi, Efficient estimation of cumulative distribution function using moving extreme ranked set sampling with application to reliability. AStA Adv. Stat. Anal. 104 (2020) 485–502. | MR | Zbl | DOI

Cité par Sources :