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ESTIMATION OF THE POPULATION DISTRIBUTION FUNCTION USING
VARIED L RANKED SET SAMPLING

Mohamed S. Abdallah*

Abstract. A generalized ranked set sampling (RSS) plan has recently been provided in the literature
called varied L RSS (VLRSS). It is shown that VLRSS encompasses several existing RSS variations
and also it efficiently estimates the population mean. In this article, we extend the work and consider
estimating the cumulative distribution function (CDF) using VLRSS. Three new CDF estimators are
proposed and their asymptotic properties are also theoretically investigated. Taking into account the
information supported by the unmeasured sampling units, we also propose a general class of CDF esti-
mators. Using small Monte Carlo experiments, we study the behavior of the proposed CDF estimators
with respect to the conventional CDF estimator under RSS. It is found that the conventional RSS-
based CDF is outperformed by at least one of VLRSS-based CDF estimators in most of the considered
cases. Finally, an empirical example is utilized to illustrate the potential application of the proposed
estimators.
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1. Introduction

One of the most popularly used sampling methods is Ranked Set Sampling (RSS). As, it is very helpful
in the situations where ranking can be done at a cost that is not problematic relative to the cost of making
accurate quantification on the interested variable. For instance, assume it is required to estimate the average
height of trees in a forest. Hence, a small set of selected trees can be ranked visually with respect to their heights
rather than actual measurements of the height of trees. Although RSS was firstly applied in agriculture field by
McIntyre [24], it has subsequently been adopted for many other branches including environmental monitoring
[20], auditing [16] and medicine [23,34].

Due to the powerful and the applicability of RSS, many studies have examined the performance of almost
every standard statistical problem under RSS and its variations. We now shortly review some newly important
studies as follows: Mahdizadeh and Zamanzade [22] developed a kernel-based estimator of a dynamic reliability
statistic based on RSS. Zamanzade and Mahdizadeh [31,32] addressed the population proportion under RSS and
its variations. Frey and Zhang [14, 15] constructed a confidence interval for population proportion under RSS.
Göçoğlu and Demirel [17] considered the point estimation for population proportion under RSS. Mahdizadeh
and Zamanzade [23] concerned with the problem of interval estimation for the population quantiles under
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Figure 1. Demonstration of RSS procedure for one cycle.

RSS. Morabbi and Razmkhah [25] used two modified RSS schemes to propose new estimators for population
quantiles. Zamanzade et al. [35] studied the problem of estimating the mean residual life under RSS. Chen et al.
[10] introduced maximum likelihood estimator of location parameter under moving extremes RSS. Hassan et al.
[19] considered the stress-strength reliability for generalized inverted exponential distribution using RSS and its
variation methods.

To get RSS, randomly draw 𝑚 sets each of size 𝑚 units. Then rank the 𝑚 sets separately in ascending
way without numerically measuring the unit. The ranking process can be done using auxiliary variable or
subjectively. Finally, quantify exactly the 𝑖th smallest unit from 𝑖th set, where 𝑖 = 1, 2, . . . ,𝑚. These steps are
considered as a cycle. Repeat, if needed, the cycle 𝑟 times to obtain RSS of size 𝑛 = 𝑟𝑚. The RSS steps at 𝑟 = 1
are illustrated in Figure 1, where 𝑌𝑖𝑗 is 𝑖th unit from the 𝑗th sample. It may be important to emphasis that
the ranking process may be inaccurate and contains error, this situation is called imperfect ranking. Oppositely,
perfect ranking is a situation in which the ranks of the sampling units are done without errors. Symbolically,
RSS is denoted by

{︀
𝑌𝑖(𝑖:𝑚)𝑗 : 𝑖 = 1, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟

}︀
. Here, 𝑌𝑖(𝑖*:𝑚)𝑗 is the 𝑖* order statistic from the 𝑖th

sample of size 𝑚 in the 𝑗th cycle. The rounded parentheses of 𝑌𝑖(𝑖:𝑚)𝑗 implies that the perfect ranking situation
is assumed. In such cases, for a fixed 𝑗, 𝑌𝑖(𝑖:𝑚)𝑗 follows the distribution of the 𝑖th order statistic from a sample
of size 𝑚. While if the imperfect ranking situation was assumed, then the rounded parentheses will be replaced
with squared ones. On the other hand, if the number of the selected sampling items is fixed across the 𝑟
cycles. This case is known as balanced RSS. However unbalanced RSS allows the drawn sampling items to vary
from one cycle to another. Here, balanced RSS is adopted through this paper. Let 𝑌1, 𝑌2, . . . , 𝑌𝑛 be a random
sample of size 𝑛 with a continuous probability density function 𝑓(𝑦) and cumulative distribution function (CDF)
𝐹 (𝑦). Let 𝑌𝑖(1:𝑚)𝑗 , 𝑌𝑖(2:𝑚)𝑗 , . . . , 𝑌𝑖(𝑚:𝑚)𝑗 be the order statistics of the 𝑖th sample (𝑖 = 1, . . . ,𝑚) in the 𝑗th cycle
(𝑗 = 1, . . . , 𝑟). Then

{︀
𝑌𝑖(𝑖:𝑚)𝑗 : 𝑖 = 1, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟

}︀
are denoted to the RSS.

The problem of estimating CDF has been well studied in the literature. Stokes and Sager [29] suggested the
fundamental CDF estimator under RSS and then compared with the SRS counterpart. Thereafter, Al-Omari
[1, 2] estimated CDF under L RSS and Quartile RSS respectively. Eftekharian and Razmkhah [12] introduced
CDF estimator based on the kernel function under RSS. Zamanzade [30] improved a CDF estimator in the
paired RSS. Ashour and Abdallah [6] developed CDF estimators using concomitant-based RSS. Under moving
extreme RSS, Al-Saleh and Ahmad [5], Zamanzade et al. [36] and Al-Omari and Abdallah [4] proposed new
CDF estimators.

Haq et al. [18] suggested, recently, another variation of the RSS strategy, called varied LRSS (VLRSS), that
enables researchers to select more representative samples from the interested population. It is shown that VLRSS
provides more precise estimates of the population mean than RSS in the case that the sample from a symmetric
population. The VLRSS strategy with the set size 𝑚 and the cycle number 𝑟 can be explained as follows:

Step 1. Identify the value of the VLRSS coefficient 𝑘 = [𝑚𝛼] such that 0 ≤ 𝛼 < 0.5, where [𝑥] is a largest
integer value less than or equal to 𝑥, and 𝑚 is the set size.

Step 2. Select randomly 𝑘 samples each of size 𝑚1 from the interested population, where 𝑚1 ≥ 𝑚 or 𝑚1 < 𝑚
is a determined value based on cost- or budget-constraints.

Step 3. Select the 𝑣th smallest ranked unit from each 𝑘 sets obtained by Step 2, where 𝑣 is a positive integer,
i.e. 𝑣 = 1, 2, . . . , [𝑚1/2].

Step 4. Repeat Step 2 for getting another 𝑘 samples each of size 𝑚1.
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Step 5. Select this time the (𝑚1 − 𝑣 + 1)th smallest ranked unit from each of the 𝑘 sets obtained by Step 4.
Step 6. Select again 𝑚(𝑚− 2𝑘) units from the interested population and allocate them into (𝑚− 2𝑘) sets,

each having 𝑚 units.
Step 7. Select the 𝑖th smallest ranked unit from each (𝑚− 2𝑘) sets obtained by Step 6, where 𝑖 = 𝑘+1, . . . ,𝑚−

𝑘.
Step 8. This completes one cycle of VLRSS of size 𝑚. The preceding Steps 1–7 can be repeated 𝑟 times to

obtain VLRSS of size 𝑛 = 𝑟𝑚.

The VLRSS mechanism with one cycle is illustrated in Figure 2. Symbolically, {𝑌𝑖(𝑣:𝑚1)𝑗 ;
𝑌𝑠(𝑚1−𝑣+1:𝑚1)𝑗 ; 𝑌𝑡(𝑡−𝑘:𝑚)𝑗 ; 𝑘 ∈ 1, 2, . . . ,

[︀
𝑚
2

]︀
; 𝑣 ∈ 1, 2, . . . ,

[︀
𝑚1
2

]︀
; 𝑖 = 1, 2, . . . , 𝑘; 𝑠 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘; 𝑡 =

2𝑘 + 1, 2𝑘 + 2, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟} denote a VLRSS. Similar to RSS, the rounded parentheses in{︀
𝑌𝑖(𝑣:𝑚1)𝑗 ; 𝑌𝑠(𝑚1−𝑣+1:𝑚1)𝑗 ; 𝑌𝑡(𝑡−𝑘:𝑚)𝑗

}︀
emphasizes that the ranking process in VLRSS design is perfectly done.

One can easily investigate that many existing variations of RSS are special cases of the VLRSS schemes, for
more details see Haq et al. [18]. Additionally if 𝑚1 < 𝑚, the number of wasted measurement items of VLRSS,
𝑟(𝑚1 × 2𝑘 + (𝑚− 2𝑘)×𝑚)−𝑚, will be less than the corresponding one based on RSS, 𝑚2−𝑚. Hence VLRSS
can be very useful in the case that the population is not very large. In the same sequel, Al-Omari [3] studied
maximum likelihood estimators of location-scale families under VLRSS and concluded that the VLRSS-based
estimators tend to outperform their RSS analogues. Motivated by these findings, we try to develop the envisaged
CDF estimator under VLRSS.

The rest of the paper is organized as follows: In Section 2, the proposed CDF estimator using the empirical
function is presented. Section 3 provides the proposed CDF estimator using likelihood function. Section 4
explains the proposed CDF estimator based on kernel function. Section 5 introduces a general class of CDF
estimator based on missing data approach. Section 6 gives the numerical comparisons between the proposed
CDF estimators with respect to the benchmark RSS estimator. In Section 7, an application to an empirical data
is considered. Some concluding remarks and some potential directions for future studies are given in Section 8.

2. Proposed CDF estimation using empirical function

The suggested CDF estimator using empirical function based on VLRSS is defined as:

𝐹𝐸(𝑡) =
1
𝑛

𝑟∑︁
𝑗=1

(︃
𝑘∑︁

𝑖=1

𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀
+

2𝑘∑︁
𝑖=𝑘+1

𝐼
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗 ≤ 𝑡

)︀
+

𝑚∑︁
𝑖=2𝑘+1

𝐼
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗 ≤ 𝑡

)︀)︃
.

By setting 𝑘 = 0 or 𝑚1 = 𝑚 and 𝑘 = 𝑣 = 1, we will get the traditional CDF estimator proposed by Stockes
and Sager [29] denoted by 𝐹𝑆(𝑡). The following proposition shows the asymptotic properties of 𝐹𝐸(𝑡).

Proposition 2.1. Let {𝑌𝑖(𝑣:𝑚1)𝑗 ; 𝑌𝑠(𝑚1−𝑣+1:𝑚1)𝑗 ; 𝑌𝑡(𝑡−𝑘:𝑚)𝑗 ; 𝑘 ∈ 1, 2, . . . ,
[︀

𝑚
2

]︀
; 𝑣 ∈ 1, 2, . . . ,

[︀
𝑚1
2

]︀
; 𝑖 =

1, 2, . . . , 𝑘; 𝑠 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘; 𝑡 = 2𝑘 + 1, 2𝑘 + 2, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟} be a perfect VLRSS, then:

(a) 𝐹𝐸(𝑡) is a consistent estimator of 𝐹 (𝑡) as 𝑛 →∞.
(b)

(︁
𝐹𝐸(𝑡)− 𝐹 (𝑡)

)︁
/𝑉
(︁
𝐹𝐸(𝑡)

)︁
converges in distribution to the standard normal as 𝑛 →∞ for fixed 𝑘, 𝑚1 and

𝑣.

Proof. (a) By using the fact that 𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀
follows a Bernoulli distribution with success probability

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)), one can easily investigate that the bias and the variance for 𝐹𝐸(𝑡) can be derived as
follows:

𝐸
(︁
𝐹𝐸(𝑡)

)︁
=

1
𝑚

(︃
𝑘(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + 𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))) +

𝑚∑︁
𝑖=2𝑘+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

)︃
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Figure 2. Demonstration of VLRSS procedure for one cycle.
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=
1
𝑚

(︃
𝑘(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + 𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))) +

𝑚+𝑘∑︁
𝑖=𝑘+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

−
2𝑘∑︁

𝑖=𝑘+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))−
𝑚+𝑘∑︁

𝑖=𝑚+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

)︃
.

Under the assumption of the consistency of the ranking process which implies that:

1
𝑚

𝑚∑︁
𝑖=1

𝐹(𝑖:𝑚)(𝑡) =
1
𝑚

𝑚∑︁
𝑖=1

𝐵𝑖,𝑘−𝑖+1(𝐹 (𝑡)) = 𝐹 (𝑡)

𝐸
(︁
𝐹𝐸(𝑡)

)︁
=

1
𝑚

(︃
𝑘(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + 𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))) + 𝑚𝐹 (𝑡)

−
2𝑘∑︁

𝑖=𝑘+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))−
𝑚+𝑘∑︁

𝑖=𝑚+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

)︃
.

Hence the bias of 𝐹𝐸(𝑡), 𝐵𝑖𝑎𝑠
(︁
𝐹𝐸(𝑡)

)︁
, will be formulated as:

𝐵𝑖𝑎𝑠
(︁
𝐹𝐸(𝑡)

)︁
=

1
𝑚

(︃
𝑘(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + 𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))−

2𝑘∑︁
𝑖=𝑘+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

−
𝑚+𝑘∑︁

𝑖=𝑚+1

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

)︃
.

On the other hand, the variance of 𝐹𝐸(𝑡), 𝑉
(︁
𝐹𝐸(𝑡)

)︁
, can be written as:

𝑉
(︁
𝐹𝐸(𝑡)

)︁
=

1
𝑟𝑚2

(︃
𝑘(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))) + 𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))

×(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))) +
𝑚∑︁

𝑖=2𝑘+1

(𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))))

)︃
,

where 𝐵𝑎,𝑏(𝑦) is the CDF of the Beta distribution with parameters 𝑎 and 𝑏 at the point 𝑦. Thus, the bias
of 𝐹𝐸(𝑡) tends to zero as 𝑚 → ∞. While the variance of 𝐹𝐸(𝑡) tends to zero as either 𝑚 or 𝑟 → ∞. This
advocates that the consistency of 𝐹𝐸(𝑡) which completes the proof.

(b) Let:

𝑍𝑗 =
1
𝑚

(︃
𝑘∑︁

𝑖=1

𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀
+

2𝑘∑︁
𝑖=𝑘+1

𝐼
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗 ≤ 𝑡

)︀
+

𝑚∑︁
𝑖=2𝑘+1

𝐼
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗 ≤ 𝑡

)︀)︃
; 𝑗 = 1, 2, . . . , 𝑟.

Since 𝑍𝑗 ’s are iid with finite mean and variance, then by the Central Limit Theorem
𝑍−𝐸(𝐹𝐸(𝑡))√︁

𝑉 (𝐹𝐸(𝑡))
follows the

standard normal, where 𝑍 = 1
𝑟

∑︀𝑟
𝑗=1 𝑍𝑗 which achieves to the desirable result.

�
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3. CDF Estimation using likelihood function

In this part, we consider the maximum likelihood estimation (MLE) for estimation of CDF to enhance the
precision of 𝐹𝐸(𝑡), as the latter does not efficiently incorporate the information supported by the ranking process.
Let

𝑌 𝑉
𝑖 (𝑡) =

⎧⎪⎨⎪⎩
∑︀𝑟

𝑗=1 𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀
1 ≤ 𝑖 ≤ 𝑘∑︀𝑟

𝑗=1 𝐼
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗 ≤ 𝑡

)︀
𝑘 + 1 ≤ 𝑖 ≤ 2𝑘∑︀𝑚

𝑗=1 𝐼
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗 ≤ 𝑡

)︀
2𝑘 + 1 ≤ 𝑖 ≤ 𝑚

.

To facilitate the notation, 𝑌 𝑉
𝑖 (𝑡) is written as 𝑌 𝑉 . Assuming the perfectness, the elements of 𝑌 𝑉 have a Bernoulli

distribution, then the corresponding likelihood functions can be written as:

L(𝐹 ) =
𝑘∏︁

𝑖=1

(︂
𝑟

𝑦𝑉
𝑖

)︂
(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))𝑦𝑉

𝑖 (1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))𝑟−𝑦𝑉
𝑖

×
2𝑘∏︁

𝑖=𝑘+1

(︂
𝑟

𝑦𝑉
𝑖

)︂
(𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))𝑦𝑉

𝑖 (1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))𝑟−𝑦𝑉
𝑖

×
𝑚∏︁

𝑖=2𝑘+1

(︂
𝑟

𝑦𝑉
𝑖

)︂
(𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))𝑦𝑉

𝑖 (1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))𝑟−𝑦𝑉
𝑖 .

Then, the log-likelihood function is:

L(𝐹 ) ∝
𝑘∑︁

𝑖=1

𝑦𝑉
𝑖 ln(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))) +

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
ln(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

+
2𝑘∑︁

𝑖=𝑘+1

𝑦𝑉
𝑖 ln(𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))) +

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
ln(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))

+
𝑚∑︁

𝑖=2𝑘+1

𝑦𝑉
𝑖 ln(𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))) +

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
ln(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))).

Therefore our second proposed CDF estimator, 𝐹𝑀 (𝑡), based on VLRSS is obtained by maximizing L(𝐹 ) or
equivalently maximizing L(𝐹 ) as shown below:

𝜕L(𝐹 )
𝜕𝐹

=
𝑘∑︁

𝑖=1

(︀
𝑦𝑉

𝑖 − 𝑟𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))
)︀
𝑏𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

+
2𝑘∑︁

𝑖=𝑘+1

(︀
𝑦𝑉

𝑖 − 𝑟𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))
)︀
𝑏𝑚1−𝑣+1,𝑣(𝐹 (𝑡))

𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))

+
𝑚∑︁

𝑖=2𝑘+1

(︀
𝑦𝑉

𝑖 − 𝑟𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))
)︀
𝑏𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))
,

where 𝑏𝑎,𝑏(𝑦) is the pdf of the Beta distribution with parameters 𝑎 and 𝑏 at the point 𝑦. One can easily verify
that 𝜕2L(𝐹 )

𝜕𝐹 2 < 0, 𝜕L(𝐹 )
𝜕𝐹 becomes positive as 𝐹 → 0 and negative as 𝐹 → 1. Therefore, L(𝐹 ) is strictly concave

in 𝐹 (𝑡). Although 𝐹𝑀 (𝑡) does not have a closed form, it can be simply obtained by using any iterative technique
such as optimize function in R package. The corresponding Fisher information number about 𝐹 (𝑡) under VLRSS
is given by:

𝐼𝑉 = −𝐸

(︂
d2 log 𝐿1(𝐹 )

d𝐹 2

)︂
= 𝑟(𝐼𝑉 1 + 𝐼𝑉 2 + 𝐼𝑉 3),
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where:

𝐼𝑉 1 =

(︃
𝑘(𝑏𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

)︃
,

𝐼𝑉 2 =

(︃
𝑘(𝑏𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))2

𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))

)︃
,

and 𝐼𝑉 3 =
𝑚∑︁

𝑖=2𝑘+1

(𝑏𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))2

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))
·

Hence, the variance of 𝐹𝑀 (𝑡) can be expressed as:

𝜎2
𝑀 = 𝑉

(︁
𝐹𝑀 (𝑡)

)︁
=

1
𝑟(𝐼𝑉 1 + 𝐼𝑉 2 + 𝐼𝑉 3)

·

The following proposition shows the asymptotic properties of 𝐹𝑀 (𝑡).

Proposition 3.1. Let 𝑌𝑖(𝑣:𝑚1)𝑗 ; 𝑌𝑠(𝑚1−𝑣+1:𝑚1)𝑗 ; 𝑌𝑡(𝑡−𝑘:𝑚)𝑗; 𝑘 ∈ 1, 2, . . . ,
[︀

𝑚
2

]︀
; 𝑣 ∈

{︀
1, 2, . . . ,

[︀
𝑚1
2

]︀}︀
; 𝑖 =

1, 2, . . . , 𝑘; 𝑠 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘; 𝑡 = 2𝑘 + 1, 2𝑘 + 2, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟 be a perfect VLRSS. For a fixed
𝑚, 𝑘, 𝑚1 and 𝑣, when 𝑟 → ∞, then

√
𝑟
(︁
𝐹𝑀 (𝑡)− 𝐹

)︁
converges in distribution to the normal distribution with

zero mean and variance 𝑟𝜎2
𝑀 .

Proof. Let:

𝐿(𝑠) = L

(︂
𝐹 +

𝑠√
𝑟

)︂
−L(𝐹 ).

Then:

𝐿(𝑠) =

⎡⎣ 𝑘∑︁
𝑖=1

𝑦𝑉
𝑖 ln

⎛⎝𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

⎞⎠+
(︀
𝑟 − 𝑦𝑉

𝑖

)︀
ln

⎛⎝1−𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

⎞⎠⎤⎦
+

⎡⎣ 2𝑘∑︁
𝑖=𝑘+1

𝑦𝑉
𝑖 ln

⎛⎝𝐵𝑚1−𝑣+1,𝑣

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))

⎞⎠+
(︀
𝑟 − 𝑦𝑉

𝑖

)︀
ln

⎛⎝1−𝐵𝑚1−𝑣+1,𝑣

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))

⎞⎠⎤⎦
+

⎡⎣ 𝑚∑︁
𝑖=2𝑘+1

𝑦𝑉
𝑖 ln

⎛⎝𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

⎞⎠+
(︀
𝑟 − 𝑦𝑉

𝑖

)︀
ln

⎛⎝1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

⎞⎠⎤⎦
= 𝐴(𝑠) + 𝐵(𝑠) + 𝐶(𝑠),

where the three terms between brackets will be denoted respectively by 𝐴(𝑠), 𝐵(𝑠) and 𝐶(𝑠). Using Taylor series
expansion, the logarithm function of the first term 𝐴(𝑠) can be approximated as:

𝐴(𝑠) ≈
𝑘∑︁

𝑖=1

𝑦𝑉
𝑖

⎛⎝𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

− 1
2

⎛⎝𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

⎞⎠2
⎞⎟⎠
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−
𝑘∑︁

𝑖=1

(︀
𝑟 − 𝑦𝑉

𝑖

)︀⎛⎝𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

+
1
2

⎛⎝𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

⎞⎠2
⎞⎟⎠.

Which is equivalent to:

𝐴(𝑠) ≈
𝑘∑︁

𝑖=1

(︂
𝐵𝑣,𝑚1−𝑣+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︂(︃
𝑦𝑉

𝑖

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))
−

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︃

− 1
2

𝑘∑︁
𝑖=1

(︂
𝐵𝑣,𝑚1−𝑣+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︂2

×

(︃
𝑦𝑉

𝑖

(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2
+

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2

)︃

= 𝑈(𝑠)𝐴 −
1
2
𝑉 (𝑠)𝐴,

where:

𝑈(𝑠)𝐴 =
𝑘∑︁

𝑖=1

(︂
𝐵𝑣,𝑚1−𝑣+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︂(︃
𝑦𝑉

𝑖

𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))
−

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︃
,

and

𝑉 (𝑠)𝐴 =
𝑘∑︁

𝑖=1

(︂
𝐵𝑣,𝑚1−𝑣+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︂2

×

(︃
𝑦𝑉

𝑖

(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2
+

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2

)︃
·

Noting that as 𝑟 →∞:
√

𝑟

𝑠

(︂
𝐵𝑣,𝑚1−𝑣+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︂
→ 𝜕𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

𝜕𝐹
= 𝑏𝑣,𝑚1−𝑣+1(𝐹 (𝑡)).

Recalling that: 𝑦𝑉
𝑖 , 1 ≤ 𝑖 ≤ 𝑘 has a binominal distribution with the success probability 𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)), then

as 𝑟 →∞:

𝑈(𝑠)𝐴 = 𝑠

𝑘∑︁
𝑖=1

⎛⎝ 𝐵𝑣,𝑚1−𝑣+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

𝑠√
𝑟

√︀
𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

⎞⎠
×

(︃
𝑦𝑉

𝑖 − 𝑟𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))√︀
𝑟𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

)︃
𝑑→ 𝑠𝑁(0, 𝐼𝐿𝑉 1) = 𝑠𝑈𝐴
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where
𝑑→ stands for converges in distribution, furthermore:

𝐸(𝑉 (𝑠)𝐴) =
𝑘∑︁

𝑖=1

(︂
𝐵𝑣,𝑚1−𝑣+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))

)︂2

×

(︃
𝐸
(︀
𝑦𝑉

𝑖

)︀
(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2

+

(︀
𝑟 − 𝐸

(︀
𝑦𝑉

𝑖

)︀)︀
(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2

)︃
·

As 𝑟 →∞, we can get:

𝐸(𝑉 (𝑠)𝐴) = 𝑠2
𝑘∑︁

𝑖=1

(𝑏𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))2
(︂

1
(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

+
1

(1−𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)))

)︂
= 𝑠2𝑉𝐴,

where: 𝑈𝐴 = 𝑁(0, 𝐼𝑉 1) and 𝑉𝐴 = 𝐼𝑉 1. Therefore, we can write:

𝐴(𝑠)
𝑑→ 𝑠𝑈𝐴 −

1
2
𝑠2𝑉𝐴.

By using similar arguments in above, one can simply show that:

𝐵(𝑠) ≈ 𝑈(𝑠)𝐵 −
1
2
𝑉 (𝑠)𝐵 and also 𝐶(𝑠) ≈ 𝑈(𝑠)𝐶 −

1
2
𝑉 (𝑠)𝐶 ,

where:

𝑈(𝑠)𝐵 =
2𝑘∑︁

𝑖=𝑘+1

⎛⎝𝐵𝑚1−𝑣+1,𝑣

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))√︀

𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))

⎞⎠
×

(︃
𝑦𝑉

𝑖 − 𝑟𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))√︀
𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))

)︃
,

𝑉 (𝑠)𝐵 =
2𝑘∑︁

𝑖=𝑘+1

(︂
𝐵𝑚1−𝑣+1,𝑣

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡))

)︂2

×

(︃
𝑦𝑉

𝑖

(𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))2
+

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
(1−𝐵𝑚1−𝑣+1,𝑣(𝐹 (𝑡)))2

)︃
,

𝑈(𝑠)𝐶 =
𝑚∑︁

𝑖=2𝑘+1

⎛⎝𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1

(︁
𝐹 (𝑡) + 𝑠√

𝑟

)︁
−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))√︀

𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))

⎞⎠
×

(︃
𝑦𝑉

𝑖 − 𝑟𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))√︀
𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))

)︃
,

and

𝑉 (𝑠)𝐶 =
𝑚∑︁

𝑖=2𝑘+1

(︂
𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1

(︂
𝐹 (𝑡) +

𝑠√
𝑟

)︂
−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡))

)︂2

×

(︃
𝑦𝑉

𝑖

(𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))2
+

(︀
𝑟 − 𝑦𝑉

𝑖

)︀
(1−𝐵𝑖−𝑘,𝑚−𝑖+𝑘+1(𝐹 (𝑡)))2

)︃
·
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Furthermore, we have as 𝑟 →∞:

𝑈(𝑠)𝐵

𝑑→ 𝑠𝑈𝐵 , 𝑈(𝑠)𝐶

𝑑→ 𝑠𝑈𝐶 , 𝑉 (𝑠)𝐵

𝑝→ 𝑠2𝑉𝐵 and 𝑉 (𝑠)𝐶

𝑝→ 𝑠2𝑉𝐶 ,

where
𝑝→ stands for convergence in probability, 𝑈𝐵 = 𝑁(0, 𝐼𝑉 2), 𝑈𝐶 = 𝑁(0, 𝐼𝑉 3), 𝑉𝐵 = 𝐼𝑉 2 and 𝑉𝐶 = 𝐼𝑉 3.

Hence we can conclude that as 𝑟 →∞:

𝐿(𝑠) = L

(︂
𝐹 +

𝑠√
𝑟

)︂
−L(𝐹 )

𝑝→−1
2
𝑠2(𝑉𝐴 + 𝑉𝐵 + 𝑉𝐶) + 𝑠(𝑈𝐴 + 𝑈𝐵 + 𝑈𝐶).

Maximizing 𝐿(𝑠) with respect to 𝑠 can be done as:

𝑠 = argmax
𝑠

𝐿(𝑠) =
(𝑈𝐴 + 𝑈𝐵 + 𝑈𝐶)
(𝑉𝐴 + 𝑉𝐵 + 𝑉𝐶)

·

It is clear that 𝑠
𝑝→𝑁

(︁
0, 1

𝐼𝑉 1+𝐼𝑉 2+𝐼𝑉 3

)︁
. Since L(𝐹 ) is also maximized at 𝐹𝑀 (𝑡), then: 𝐹 + 𝑠√

𝑟
= 𝐹𝑀 (𝑡) ⇒ 𝑠 =

√
𝑟
(︁
𝐹𝑀 (𝑡)− 𝐹

)︁
, for which the proof is completed. �

4. CDF estimation using kernel function

The CDF estimators based on empirical function are step function in opposite to the population CDF which
is a smooth function. This motivates us to use the kernel approach to produce a smooth estimator for the
population CDF. The suggested CDF estimator using kernel function based on VLRSS is defined as:

𝐹𝐾(𝑡) =
1
𝑛

𝑟∑︁
𝑗=1

(︃
𝑘∑︁

𝑖=1

𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

h

)︂
+

2𝑘∑︁
𝑖=𝑘+1

𝐾

(︂
𝑡− 𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗

h

)︂
+

𝑚∑︁
𝑖=2𝑘+1

𝐾

(︂
𝑡− 𝑌𝑖(𝑖−𝑘:𝑚)𝑗

h

)︂)︃
,

where h is the smoothing parameter to be specified, 𝐾(𝑡) =
∫︀ 𝑡

−∞ 𝑘(𝑦) d𝑦, 𝑘(·) is the kernel function satisfies
certain conditions: (1) 𝑘(·) is a bounded symmetric function about zero over the interval [−𝑎, 𝑎], (2)

∫︀
𝑘(𝑦) d𝑦 =

1, (3)
∫︀

𝑦2𝑘(𝑦) d𝑦 ̸= 0. Hereafter, Epanechnikov function is adopted as a kernel function. Further, the iterative
algorithm produced by Polansky and Baker [28] coded as R-package, Kerdies, is used for estimating h. The
following proposition shows the asymptotic properties of 𝐹𝐾(𝑡).

Proposition 4.1. Let {𝑌𝑖(𝑣:𝑚1)𝑗 ; 𝑌𝑠(𝑚1−𝑣+1:𝑚1)𝑗 ; 𝑌𝑡(𝑡−𝑘:𝑚)𝑗 ; 𝑘 ∈ 1, 2, . . . ,
[︀

𝑚
2

]︀
; 𝑣 ∈ 1, 2, . . . ,

[︀
𝑚1
2

]︀
; 𝑖 =

1, 2, . . . , 𝑘; 𝑠 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘; 𝑡 = 2𝑘 + 1, 2𝑘 + 2, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟} be a perfect VLRSS and ℎ → 0
as 𝑛 →∞, then:

(a) 𝐹𝐾(𝑡) is a consistent estimator of 𝐹 (𝑡).
(b)

(︁
𝐹𝐾(𝑡)− 𝐹 (𝑡)

)︁
/𝑉
(︁
𝐹𝐾(𝑡)

)︁
converges in distribution to the standard normal.

Proof. (a)

𝐸
(︁
𝐹𝐾(𝑡)

)︁
=

𝑘

𝑚

(︂[︂∫︁ ∞

−∞
𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1

]︂
+
[︂∫︁ ∞

−∞
𝐾

(︂
𝑡− 𝑦2

ℎ

)︂
𝑓(𝑚1−𝑣+1:𝑚1)(𝑦2) d𝑦2

]︂)︂
+

1
𝑚

[︃∫︁ ∞

−∞

𝑚∑︁
𝑖=2𝑘+1

𝐾

(︂
𝑡− 𝑦3

ℎ

)︂
𝑓(𝑖−𝑘:𝑚)(𝑦3) d𝑦3

]︃
(4.1)

=
𝑘

𝑚
(𝐸1 + 𝐸2) +

1
𝑚

𝐸3, (4.2)
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where the three terms between the brackets shown in (4.1) will be denoted respectively by 𝐸1, 𝐸2 and 𝐸3.
Since:

𝐸1 =
∫︁ 𝑡−𝑎ℎ

−∞
𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1 +

∫︁ 𝑡+𝑎ℎ

𝑡−𝑎ℎ

𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1

+
∫︁ ∞

𝑡+𝑎ℎ

𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1.

Recalling the fact that:

𝐾(𝑦) =
{︂

0 𝑦 ≤ −𝑎
1 𝑦 ≥ 𝑎

.

Then:

𝐸1 =
∫︁ 𝑡−𝑎ℎ

−∞
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1 +

∫︁ 𝑡+𝑎ℎ

𝑡−𝑎ℎ

𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1.

= 𝐹(𝑣:𝑚1)(𝑡− 𝑎ℎ) +
∫︁ 𝑡+𝑎ℎ

𝑡−𝑎ℎ

𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1.

= 𝐹(𝑣:𝑚1)(𝑡− 𝑎ℎ) + ℎ

∫︁ 𝑎

−𝑎

𝐾(𝑧)𝑓(𝑣:𝑚1)(𝑡− ℎ𝑧) d𝑧. (4.3)

Under the assumption ℎ → 0 as 𝑛 →∞; we will obtain:

𝐸1 ≈ 𝐹(𝑣:𝑚1)(𝑡). (4.4)

Similarly, one can easy show that under the assumption ℎ → 0 as 𝑛 →∞:

𝐸2 ≈ 𝐹(𝑚1−𝑣+1:𝑚1)(𝑡) and 𝐸3 ≈
𝑚∑︁

𝑖=2𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡). (4.5)

By substituting (4.4) and (4.5) in (4.2), we will get:

𝐸
(︁
𝐹𝐾(𝑡)

)︁
=

1
𝑚

(︃
𝑘𝐹(𝑣:𝑚1)(𝑡) + 𝑘𝐹(𝑚1−𝑣+1:𝑚1)(𝑡) +

𝑚∑︁
𝑖=2𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡)

)︃
.

=
1
𝑚

(︃
𝑘𝐹(𝑣:𝑚1)(𝑡) + 𝑘𝐹(𝑚1−𝑣+1:𝑚1)(𝑡) +

𝑚+𝑘∑︁
𝑖=𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡)

−
2𝑘∑︁

𝑖=𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡)−
𝑚+𝑘∑︁

𝑖=𝑚+1

𝐹(𝑖−𝑘:𝑚)(𝑡)

)︃
.

Under the assumption of the consistency of the ranking process, we will obtain:

𝐵𝑖𝑎𝑠
(︁
𝐹𝐾(𝑡)

)︁
≈ 1

𝑚

(︃
𝑘𝐹(𝑣:𝑚1)(𝑡) + 𝑘𝐹(𝑚1−𝑣+1:𝑚1)(𝑡)−

2𝑘∑︁
𝑖=𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡)−
𝑚+𝑘∑︁

𝑖=𝑚+1

𝐹(𝑖−𝑘:𝑚)(𝑡)

)︃
. (4.6)

On the other hand, the asymptotic variance:

𝑉
(︁
𝐹𝐾(𝑡)

)︁
=

1
𝑚2𝑟

(︂
𝑘

(︂[︂
𝑉

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂]︂
+
[︂
𝑉

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗

ℎ

)︂)︂]︂)︂
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+
𝑚∑︁

𝑖=2𝑘+1

[︂
𝑉

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑖−𝑘:𝑚)𝑗

ℎ

)︂)︂]︂)︃
.

=
1

𝑚2𝑟
(𝑘(𝑉1 + 𝑉2)) + 𝑉3 (4.7)

where the three terms between the brackets shown in (4.7) will be denoted respectively by 𝑉1, 𝑉2 and 𝑉3.
Since:

𝑉1 = 𝑉

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂
= 𝐸

(︂
𝐾2

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂
−
(︂

𝐸

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂)︂2

.

Similar to (4.3), we get:

𝐸

(︂
𝐾2

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂
=
∫︁ 𝑡−𝑎ℎ

−∞
𝐾2

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1 +

∫︁ 𝑡+𝑎ℎ

𝑡−𝑎ℎ

𝐾2

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1

+
∫︁ ∞

𝑡+𝑎ℎ

𝐾2

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1

= 𝐹(𝑣:𝑚1)(𝑡− 𝑎ℎ) + ℎ

∫︁ 𝑎

−𝑎

𝐾2(𝑧)𝑓(𝑣:𝑚1)(𝑡− ℎ𝑧) d𝑧.

On the other hand,(︂
𝐸

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂)︂2

=

(︃∫︁ 𝑡−𝑎ℎ

−∞
𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1 +

∫︁ 𝑡+𝑎ℎ

𝑡−𝑎ℎ

𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1

+
∫︁ ∞

𝑡+𝑎ℎ

𝐾

(︂
𝑡− 𝑦1

ℎ

)︂
𝑓(𝑣:𝑚1)(𝑦1) d𝑦1

)︂2

.

After simple algebra, we can get:(︂
𝐸

(︂
𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

ℎ

)︂)︂)︂2

=
(︂

𝐹(𝑣:𝑚1)(𝑡− 𝑎ℎ) + ℎ

∫︁ 𝑎

−𝑎

𝐾(𝑧)𝑓(𝑣:𝑚1)(𝑡− ℎ𝑧) d𝑧

)︂2

.

Under the assumption ℎ → 0 as 𝑛 →∞; we will obtain:

𝑉1 ≈ 𝐹(𝑣:𝑚1)(𝑡)−
(︀
𝐹(𝑣:𝑚1)(𝑡)

)︀2 = 𝐹(𝑣:𝑚1)(𝑡)
(︀
1− 𝐹(𝑣:𝑚1)(𝑡)

)︀
. (4.8)

Likewise, one can easily investigate that:

𝑉2 ≈ 𝐹(𝑚1−𝑣+1:𝑚1)(𝑡)
(︀
1− 𝐹(𝑚1−𝑣+1:𝑚1)(𝑡)

)︀
and 𝑉3 ≈

𝑚∑︁
𝑖=2𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡)
(︀
1− 𝐹(𝑖−𝑘:𝑚)(𝑡)

)︀
. (4.9)

By substituting (4.8) and (4.9) in (4.7), we will get:

𝑉
(︁
𝐹𝐾(𝑡)

)︁
≈ 1

𝑚2𝑟

(︃
𝑘
(︀
𝐹(𝑣:𝑚1)(𝑡)

(︀
1− 𝐹(𝑣:𝑚1)(𝑡)

)︀
+ 𝐹(𝑚1−𝑣+1:𝑚1)(𝑡)

(︀
1− 𝐹(𝑚1−𝑣+1:𝑚1)(𝑡)

)︀)︀
+

𝑚∑︁
𝑖=2𝑘+1

𝐹(𝑖−𝑘:𝑚)(𝑡)
(︀
1− 𝐹(𝑖−𝑘:𝑚)(𝑡)

)︀)︃
. (4.10)

In the light of (4.6) and (4.10), one can conclude that for a fixed 𝑘,𝑚1, 𝑣, the bias of 𝐹𝐾(𝑡) tends to zero as
𝑚 →∞ and the variance of 𝐹𝐾(𝑡) tends to zero as either 𝑚 or 𝑟 →∞ coming up MSE

(︁
𝐹𝐾(𝑡)

)︁
→ 0 which

completes the proof, where MSE refers to the mean square error.
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(b) Let:

𝑊𝑗 =
1
𝑚

(︃
𝑘∑︁

𝑖=1

𝐾

(︂
𝑡− 𝑌𝑖(𝑣:𝑚1)𝑗

h

)︂
+

2𝑘∑︁
𝑖=𝑘+1

𝐾

(︂
𝑡− 𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗

h

)︂

+
𝑚∑︁

𝑖=2𝑘+1

𝐾

(︂
𝑡− 𝑌𝑖(𝑖−𝑘:𝑚)𝑗

h

)︂)︃
𝑗 = 1, 2, . . . , 𝑟.

Following the same procedure explained in the proof of Proposition 2.1 (b), the desirable result will be
obtained.

�

5. CDF estimation using unmeasured units

In this part, we shall incorporate all the potential information provided by the unmeasured items to construct
a general class of CDF estimators. Taking motivation from the aforesaid CDF estimators, our proposed class of
CDF estimators are based on 2𝑘𝑟𝑚1 + 𝑟𝑚(𝑚− 2𝑘) units rather than 𝑚 units. It was shown by many studies
that combining the information supported by the measured items together with the unmeasured items may
be improve the precision of the estimators. For instance, Kvam and Samaniego [21], Ozturk [26] and Ashour
and Abdallah [8] used missing data mechanism for estimating CDF under RSS. Frey and Wang [13] adopted
an iterative algorithm for estimation the mean of the exponential distribution. Ozturk [27] and Ashour and
Abdallah [7] also used an iterative algorithm for parametric estimation of location and scale parameters under
RSS.

Assume that we have an observation 𝑦(𝑖) is less (greater) than a given 𝑡, this implies that all the observations
𝑦(𝑗)𝑗 < 𝑖(𝑗 > 𝑖) are also less (greater) than 𝑡. Whereas, one can use the lower (upper) truncated CDF of 𝑦(𝑖) to
find out the probability that the observations 𝑦(𝑗)𝑗 > 𝑖(𝑗 < 𝑖) is less than 𝑡. For more details on this mechanism,
an interested reader can pursue Ashour and Abdallah [8]. The suggested CDF estimator taken into account the
measured as well as the unmeasured items based on VLRSS given by:

𝐹 *(𝑡) =
1

2𝑘𝑟𝑚1 + 𝑟𝑚(𝑚− 2𝑘)

⎛⎝⎡⎣ 𝑟∑︁
𝑗=1

𝑘∑︁
𝑖=1

(︃(︃
𝑣 + (𝑚1 − 𝑣)

𝐹 (𝑡)− 𝐹
(︀
𝑌𝑖(𝑣:𝑚1)𝑗

)︀
1− 𝐹

(︀
𝑌𝑖(𝑣:𝑚1)𝑗

)︀ )︃
𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀

+

(︃
(𝑣 − 1)

𝐹 (𝑡)
𝐹
(︀
𝑌𝑖(𝑣:𝑚1)𝑗

)︀)︃𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 > 𝑡

)︀⎞⎠⎤⎦
+

⎡⎣ 𝑟∑︁
𝑗=1

2𝑘∑︁
𝑖=𝑘+1

(︃(︃
(𝑚1 − 𝑣 + 1) + (𝑣 − 1)

𝐹 (𝑡)− 𝐹
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗

)︀
1− 𝐹

(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗

)︀ )︃
𝐼
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗 ≤ 𝑡

)︀

+

(︃
(𝑚1 − 𝑣)

𝐹 (𝑡)
𝐹
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗

)︀)︃𝐼
(︀
𝑌𝑖(𝑚1−𝑣+1:𝑚1)𝑗 > 𝑡

)︀⎞⎠⎤⎦
+

⎡⎣ 𝑟∑︁
𝑗=1

𝑚∑︁
𝑖=2𝑘+1

(︃(︃
(𝑖− 𝑘) + (𝑚− 𝑖 + 𝑘)

𝐹 (𝑡)− 𝐹
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗

)︀
1− 𝐹

(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗

)︀ )︃
𝐼
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗 ≤ 𝑡

)︀

+

(︃
(𝑖− 𝑘 − 1)

𝐹 (𝑡)
𝐹
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗

)︀)︃𝐼
(︀
𝑌𝑖(𝑖−𝑘:𝑚)𝑗 > 𝑡

)︀⎞⎠⎤⎦⎞⎠ (5.1)



968 M.S. ABDALLAH

Figure 3. The population CDF and the CDF estimators based on kernel function based on
tree dataset.

where 𝐹 (𝑥) is a consistent CDF estimator needed to be determined. It is notable that replacing 𝐹 (𝑡) in (5.1)
with a suitable CDF estimator produces a new CDF estimator. Therefore, it is expectedly that the performance
of 𝐹 *(𝑡) will depend strongly on the quality of the selected CDF estimator. Another important point to be
mentioned that 𝐹 *(𝑡) is derived under the perfectness assumption, thus violating diametrically this condition
may suffers of lack of efficiency. The following proposition shows the consistency of 𝐹 *(𝑡).

Proposition 5.1. Let 𝑌𝑖(𝑣:𝑚1)𝑗 ; 𝑌𝑠(𝑚1−𝑣+1:𝑚1)𝑗 ; 𝑌𝑡(𝑡−𝑘:𝑚)𝑗; 𝑘 ∈
{︀

1, 2, . . . ,
[︀

𝑚
2

]︀}︀
; 𝑘 ∈

{︀
1, 2, . . . ,

[︀
𝑚1
2

]︀}︀
; 𝑖 =

1, 2, . . . , 𝑘; 𝑠 = 𝑘 + 1, 𝑘 + 2, . . . , 2𝑘; 𝑡 = 2𝑘 + 1, 2𝑘 + 2, . . . ,𝑚; 𝑗 = 1, . . . , 𝑟 be a perfect VLRSS and 𝐹 (𝑥)
𝑝→𝐹 (𝑥).

For a fixed 𝑚, 𝑘, 𝑚1 and 𝑣, when 𝑟 →∞, then 𝐹 *(𝑡)
𝑝→𝐹 (𝑡).

Proof. Let 𝐹 *(𝑡) be written as:

𝐹 *(𝑡) =
1

2𝑘𝑟𝑚1 + 𝑟𝑚(𝑚− 2𝑘)
(𝐴 + 𝐵 + 𝐶), (5.2)

where the three terms between brackets in (5.1) will be denoted respectively by 𝐴, 𝐵 and 𝐶.
Under the assumption of the consistency of 𝐹 (𝑥), 𝐴 can be expressed as:

𝐴 ∼=
𝑟∑︁

𝑗=1

𝑘∑︁
𝑖=1

(︃(︃
𝑣 + (𝑚1 − 𝑣)

𝐹 (𝑡)− 𝐹
(︀
𝑌𝑖(𝑣:𝑚1)𝑗

)︀
1− 𝐹

(︀
𝑌𝑖(𝑣:𝑚1)𝑗

)︀ )︃
𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀
+

(︃
(𝑣 − 1)

𝐹 (𝑡)
𝐹
(︀
𝑌𝑖(𝑣:𝑚1)𝑗

)︀)︃𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 > 𝑡

)︀)︃
.

Since
∑︀𝑟

𝑗=1 𝐼
(︀
𝑌𝑖(𝑣:𝑚1)𝑗 ≤ 𝑡

)︀ 𝑝→ 𝑟𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)), as 𝑟 →∞. Hence we get:

𝐴 ∼= 𝑟

𝑘∑︁
𝑖=1

(︂
𝑣𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + (𝑚1 − 𝑣)

∫︁ 𝑡

−∞

(︂
𝐹 (𝑡)− 𝐹 (𝑢)

1− 𝐹 (𝑢)

)︂
𝑓𝑣:𝑚1(𝑢) d𝑢 + (𝑣 − 1)

∫︁ ∞

𝑡

(︂
𝐹 (𝑡)
𝐹 (𝑢)

)︂
𝑓𝑣:𝑚1(𝑢) d𝑢

)︂
which is equivalent to:

𝐴 ∼= 𝑟𝑘

(︂
𝑣𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + (𝑚1 − 𝑣)

∫︁ 𝑡

−∞

(︂
𝐹 (𝑡)− 𝐹 (𝑢)

1− 𝐹 (u)

)︂
𝑓𝑣:𝑚1(𝑢) d𝑢 + (𝑣 − 1)

∫︁ ∞

𝑡

(︂
𝐹 (𝑡)
𝐹 (u)

)︂
𝑓𝑣:𝑚1(𝑢) d𝑢

)︂
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= 𝑟𝑘

(︂
𝑣𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + (𝑚1 − 𝑣)

∫︁ 𝑡

−∞
(𝐹 (𝑡)− 𝐹 (𝑢))

(𝑚1)!
(𝑣 − 1)!(𝑚1 − 𝑣)!

(𝐹 (𝑢))𝑣−1(1− 𝐹 (𝑢))𝑚1−𝑣
𝑓(𝑢) d𝑢

+ (𝑣 − 1)
∫︁ ∞

𝑡

(𝐹 (𝑡))
(𝑚1)!

(𝑣 − 1)!(𝑚1 − 𝑣)!
(𝐹 (𝑢))𝑣−2(1− 𝐹 (𝑢))𝑚1−𝑣

𝑓(𝑢) d𝑢

)︂
= 𝑟𝑘

(︂
𝑣𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + 𝑚1𝐹 (𝑡)

∫︁ 𝑡

−∞

(𝑚1 − 1)!
(𝑣 − 1)!(𝑚1 − 𝑣 − 1)!

(𝐹 (𝑢))𝑣−1(1− 𝐹 (𝑢))𝑚1−𝑣−1
𝑓(𝑢) d𝑢

− 𝑣

∫︁ 𝑡

−∞

(𝑚1)!
(𝑣)!(𝑚1 − 𝑣 − 1)!

(𝐹 (𝑢))𝑣(1− 𝐹 (𝑢))𝑚1−𝑣−1
𝑓(𝑢) d𝑢

+ 𝑚1𝐹 (𝑡)
∫︁ ∞

𝑡

(𝑚1 − 1)!
(𝑣 − 2)!(𝑚1 − 𝑣)!

(𝐹 (𝑢))𝑣−2(1− 𝐹 (𝑢))𝑚1−𝑣𝑓(𝑢) d𝑢

)︂
= 𝑟𝑘(𝑣𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡)) + 𝑚1(𝐹 (𝑡))𝐵𝑣,𝑚1−𝑣(𝐹 (𝑡))− 𝑣𝐵𝑣+1,𝑚1−𝑣(𝐹 (𝑡)) + 𝑚1𝐹 (𝑡)(1−𝐵𝑣−1,𝑚1−𝑣+1(𝐹 (𝑡)))).

By using the integration by parts, one can easily investigate that: 𝑣(𝐵𝑣,𝑚1−𝑣+1(𝐹 (𝑡))−𝐵𝑣+1,𝑚1−𝑣(𝐹 (𝑡))) =
𝑚1(𝐹 (𝑡))(𝐵𝑣−1,𝑚1−𝑣+1(𝐹 (𝑡))−𝐵𝑣,𝑚1−𝑣(𝐹 (𝑡))) coming up with:

𝐴 ∼= 𝑟𝑘𝑚1(𝐹 (𝑡)). (5.3)

Table 1. The RE values of the CDF estimators using simulated normal distribution when
𝑚 = 3, 𝑘 = 1.

𝜌 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1

𝑣 = 1 0.10 0.84 1.55 0.98 1.70 1.33 1.37 0.87 1.87 1.22 2.30 1.09 1.22
0.25 1.08 1.54 1.10 1.44 1.60 1.55 1.43 2.56 1.10 1.21 1.99 2.26
0.50 1.30 1.01 1.04 0.97 1.95 1.66 2.01 1.32 0.95 0.89 4.21 3.78
0.75 1.05 0.87 1.05 0.87 1.77 1.53 1.16 1.01 1.19 0.80 1.66 1.78
0.90 0.87 0.65 0.88 0.69 1.34 1.36 0.80 0.66 1.46 0.92 1.07 1.31

𝑣 = 2 0.10 0.87 2.01 1.56 1.89 2.60 2.76 0.99 1.18 1.16 2.02 1.98 2.15
0.25 0.78 0.87 0.82 0.97 0.99 0.98 1.03 1.70 1.06 1.54 1.86 1.92
0.50 0.87 0.87 0.97 0.76 0.97 0.94 1.28 1.36 1.40 1.24 2.96 3.01
0.75 0.87 0.75 0.84 1.14 1.17 1.13 1.19 0.99 1.20 0.89 2.07 2.14
0.90 1.78 1.37 1.55 2.29 2.45 2.19 1.11 0.99 1.31 0.92 2.23 2.36

𝑣 = 3 0.10 – – – – – – 1.87 2.29 1.73 2.24 3.13 3.19
0.25 – – – – – – 0.98 1.21 0.99 1.27 1.57 1.68
0.50 – – – – – – 1.32 1.27 1.86 1.43 1.88 2.25
0.75 – – – – – – 0.99 0.87 1.06 0.98 1.68 1.75
0.90 – – – – – – 1.76 1.27 1.87 1.54 2.88 2.80

𝜌 = 0.9
𝑣 = 1 0.10 0.98 1.78 1.12 1.91 1.55 1.57 0.87 1.76 1.15 2.04 1.10 1.19

0.25 1.03 1.43 1.01 1.32 1.51 1.40 1.06 1.71 0.88 0.96 1.63 1.71
0.50 1.23 1.06 1.03 0.99 1.71 1.54 1.19 1.09 0.87 0.78 3.22 2.68
0.75 1.01 0.87 0.99 0.87 1.53 1.37 1.18 0.78 0.97 0.87 1.76 1.82
0.90 0.78 0.65 0.88 0.65 1.25 1.23 0.76 0.66 1.09 0.87 0.98 1.17

𝑣 = 2 0.10 1.54 1.77 1.27 1.65 2.21 1.85 1.06 1.19 1.25 2.01 1.92 1.98
0.25 0.98 1.12 0.98 1.13 1.27 1.23 1.13 1.70 1.12 1.58 1.76 1.77
0.50 0.78 0.87 0.93 1.05 0.99 1.07 1.45 1.17 1.16 1.05 2.10 2.08
0.75 0.98 0.71 0.93 1.06 1.22 1.18 1.05 0.99 1.09 1.01 1.61 1.65
0.90 1.65 1.12 1.36 1.47 2.4 2.01 1.01 0.98 1.26 0.81 1.85 1.90

𝑣 = 3 0.10 – – – – – – 1.34 1.85 1.18 1.76 2.15 2.27
0.25 – – – – – – 1.01 1.32 1.01 1.42 1.49 1.54
0.50 – – – – – – 1.13 1.05 1.33 1.29 1.54 1.62
0.75 – – – – – – 1.03 0.98 1.05 0.87 1.49 1.50
0.90 – – – – – – 1.51 0.99 1.43 1.03 2.55 2.29

𝜌 = 0.5
𝑣 = 1 0.10 1.06 1.65 1.14 1.68 1.58 1.48 0.89 1.67 1.28 1.88 1.30 1.37

0.25 0.98 1.23 0.97 1.20 1.27 1.21 1.02 1.38 0.87 1.01 1.36 1.29
0.50 1.15 1.09 1.05 1.12 1.46 1.44 1.28 1.01 0.89 0.91 1.63 1.45
0.75 1.05 0.78 1.01 0.89 1.35 1.28 1.04 0.78 0.88 0.72 1.45 1.34
0.90 0.89 0.76 0.84 0.76 1.13 1.05 0.88 0.76 1.43 1.01 1.29 1.28

𝑣 = 2 0.10 1.08 1.32 0.89 1.20 1.54 1.23 1.03 1.61 1.16 1.72 1.41 1.34
0.25 1.02 1.21 1.01 1.28 1.36 1.31 0.97 1.23 0.93 1.23 1.25 1.20
0.50 0.98 0.97 1.04 1.21 1.13 1.23 1.06 1.01 0.97 1.02 1.29 1.30
0.75 0.89 0.76 0.90 0.97 1.13 1.12 1.04 0.65 1.02 0.89 1.34 1.31
0.90 0.98 0.79 0.84 0.72 1.38 1.14 1.01 0.99 1.22 0.87 1.45 1.32

𝑣 = 3 0.10 – – – – – – 1.04 1.38 0.93 1.38 1.49 1.34
0.25 – – – – – – 1.01 1.25 0.99 1.31 1.28 1.27
0.50 – – – – – – 1.05 1.10 1.11 1.27 1.30 1.37
0.75 – – – – – – 1.09 0.79 1.07 0.97 1.46 1.41
0.90 – – – – – – 0.97 0.89 0.85 0.87 1.39 1.13
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Following the same procedure, we will get:

𝐵 ∼= 𝑟𝑘𝑚1(𝐹 (𝑡)) and 𝐶 ∼= 𝑟𝑚(𝑚− 2𝑘)(𝐹 (𝑡)). (5.4)

By substituting (5.3) and (5.4) in (5.2), this advocates the consistency of 𝐹 *(𝑡) which completes the proof. �

It is pertinent to mention that in the virtue of the preceding proved propositions, one can easy investigate
that 𝐹 *(𝑡) is asymptotically normally distributed. Further, by replacing 𝐹 (𝑡) in (5.1) with our proposed CDF
estimator early mentioned,

{︁
𝐹𝐸(𝑡), 𝐹𝑀 (𝑡), 𝐹𝐾(𝑡)

}︁
, yields respectively to

{︁
𝐹𝐸1(𝑡), 𝐹𝑀1(𝑡), 𝐹𝐾1(𝑡)

}︁
.

6. Simulation study

To assess the performance of the proposed procedures, a simulation study is conducted for various values of
𝐹 (𝑡), 𝑚, 𝑘,𝑚1 and 𝑣 when the underlying distribution for the data are the standard normal (symmetric distri-
bution) as well as the standard log normal (asymmetric distribution). Aiming better analyzing the simulated
results, the effect of the quality of ranking process is also taken into account by adopting Dell and Clutter [11]’s
imperfect ranking model with correlation coefficient 𝜌. Three different configurations of 𝜌 are considered: 𝜌 = 1
for perfect ranking, 𝜌 = 0.9 for imperfect ranking with reasonable good accuracy, and 𝜌 = 0.5 for imperfect

Table 2. The RE values of the CDF estimators using simulated normal distribution when
𝑚 = 5, 𝑘 = 1.

𝜌 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1

𝑣 = 1 0.10 1.04 1.39 1.02 1.35 1.58 1.56 0.87 1.67 1.29 1.99 1.42 1.54
0.25 1.03 1.01 0.89 1.01 1.45 1.37 1.18 1.43 1.04 1.15 1.91 1.99
0.50 1.15 0.86 0.98 0.82 1.32 1.29 1.01 0.98 0.87 0.71 1.56 1.42
0.75 0.89 0.76 0.88 0.87 1.43 1.38 1.18 0.98 1.04 0.93 2.13 2.10
0.90 1.01 0.76 1.01 0.79 1.53 1.50 0.87 0.81 1.43 0.92 1.21 1.43

𝑣 = 2 0.10 1.30 1.33 1.04 1.19 1.78 1.65 1.07 1.39 1.00 1.35 2.00 1.96
0.25 0.65 0.76 0.68 0.75 0.99 0.98 1.01 1.23 1.06 1.32 1.82 1.89
0.50 0.65 0.79 1.06 1.01 0.88 0.98 1.22 1.09 1.25 1.09 1.76 1.85
0.75 0.68 0.61 0.74 0.79 0.97 0.99 1.04 0.87 1.13 0.97 1.87 1.93
0.90 1.18 0.97 1.05 1.01 1.57 1.45 1.05 0.87 1.13 0.97 1.91 1.99

𝑣 = 3 0.10 – – – – – – 1.26 1.32 1.06 1.22 1.87 1.80
0.25 – – – – – – 0.76 0.83 0.97 0.95 1.26 1.32
0.50 – – – – – – 0.87 0.98 1.32 1.23 1.14 1.32
0.75 – – – – – – 0.97 0.88 0.99 0.91 1.24 1.31
0.90 – – – – – – 1.12 1.02 1.15 1.48 1.98 1.85

𝜌 = 0.9
𝑣 = 1 0.10 0.97 1.25 1.10 1.26 1.47 1.49 0.89 1.45 1.33 1.87 1.57 1.88

0.25 1.03 1.11 0.94 1.13 1.44 1.39 1.15 1.35 1.02 1.10 1.91 1.88
0.50 1.11 0.98 1.03 1.05 1.21 1.26 1.17 1.01 0.89 0.88 1.56 1.45
0.75 0.97 0.78 0.94 0.86 1.45 1.37 1.16 0.87 1.05 0.89 1.78 1.76
0.90 0.98 0.65 1.05 0.75 1.55 1.41 0.96 0.72 1.15 0.87 1.26 1.37

𝑣 = 2 0.10 1.25 1.28 1.08 1.04 1.71 1.45 1.05 1.35 1.01 1.34 1.75 1.69
0.25 0.76 0.87 0.73 0.88 1.04 1.03 0.89 1.01 0.88 1.03 1.37 1.40
0.50 0.78 0.96 1.22 1.25 0.90 1.01 0.92 0.95 0.93 0.98 1.21 1.29
0.75 0.86 0.76 0.88 0.89 1.14 1.16 0.97 0.77 1.05 0.87 1.48 1.50
0.90 1.22 0.86 1.02 0.94 1.74 1.46 1.12 0.89 1.18 0.97 1.81 1.73

𝑣 = 3 0.10 – – – – – – 1.27 1.40 0.99 1.23 1.99 1.76
0.25 – – – – – – 0.87 0.99 0.84 0.98 1.27 1.33
0.50 – – – – – – 0.88 0.98 1.23 1.21 1.23 1.32
0.75 – – – – – – 0.83 0.80 0.86 0.78 1.26 1.29
0.90 – – – – – – 0.96 0.84 0.88 0.79 1.25 1.29

𝜌 = 0.9
𝑣 = 1 0.10 0.98 1.09 0.86 0.98 1.41 1.12 0.97 1.25 1.05 1.32 1.37 1.25

0.25 1.02 1.22 1.02 1.20 1.36 1.33 1.14 1.36 1.01 1.19 1.45 1.49
0.50 1.03 1.15 1.18 1.30 1.23 1.43 1.17 0.97 0.76 0.83 1.21 1.24
0.75 1.01 0.88 1.01 0.95 1.33 1.29 1.02 0.78 0.97 0.88 1.43 1.40
0.90 0.98 0.65 0.83 0.76 1.46 1.16 0.93 0.75 1.28 0.98 1.38 1.30

𝑣 = 2 0.10 1.12 1.11 0.76 0.86 1.65 1.16 1.13 1.25 0.95 1.14 1.65 1.55
0.25 0.95 1.13 0.94 1.15 1.29 1.28 0.96 1.15 0.98 1.14 1.32 1.28
0.50 0.99 1.22 1.57 1.65 1.13 1.44 0.94 1.09 1.01 1.14 1.13 1.31
0.75 0.92 0.78 0.90 0.89 1.25 1.22 1.02 0.87 1.04 0.93 1.39 1.35
0.90 1.10 0.65 0.70 0.60 1.58 1.13 0.89 0.87 0.83 0.78 1.24 1.10

𝑣 = 3 0.10 – – – – – – 1.04 1.07 0.87 0.98 1.46 1.07
0.25 – – – – – – 0.95 1.15 0.98 1.19 1.34 1.32
0.50 – – – – – – 0.99 1.14 1.34 1.45 1.17 1.27
0.75 – – – – – – 0.97 0.86 0.96 0.89 1.26 1.23
0.90 – – – – – – 1.03 0.87 0.78 0.76 1.45 1.11
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ranking. The number of simulation runs is 10 000. The comparisons between these estimators are made in terms
of relative efficiency (RE) defined as:

RE(𝑡) =
𝑉
(︁
𝐹𝑆(𝑡)

)︁
MSE

(︁
𝐹𝐿(𝑡)

)︁ , 𝐿 ∈ {𝐸,𝐸1, 𝑀, 𝑀1, 𝐾 and 𝐾1},

where 𝐹𝐸(𝑡) (𝐹𝐸1(𝑡)), 𝐹𝑀 (𝑡) (𝐹𝑀1(𝑡)) and 𝐹𝐾(𝑡) (𝐹𝐾1(𝑡)) are the CDF estimators under VLRSS using empirical
function, MLE and kernel function based on measured (unmeasured) units, respectively. In addition, 𝐹𝑆(𝑡) are
the traditional CDF estimator proposed by Stokes and Sager [29] under RSS. With the above definition, an
RE(𝑡) larger than one implies that 𝐹𝐿(𝑡) asymptotically outperforms 𝐹𝑆(𝑡) at the point 𝑡 and vice versa. Due
to space considerations, we set 𝑟 = 1 as we observed that RE is slightly affected by the number of cycles. Based
on Tables 1–6, the following remarks can be highlighted.

– Firstly, one can clearly observe that 𝐹𝐾(𝑡) and 𝐹𝐾1(𝑡) are somewhat better than the other CDF estimators
and usually have REs greater than 1 in most considered cases.

– It seems that the information supported by the unmeasured units are useful when 𝑡 lies at the lower tail of
the population distribution even when the quality of ranking is weak.

Table 3. The RE values of the CDF estimators using simulated normal distribution when
𝑚 = 5, 𝑘 = 2.

𝜌 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1
𝑣 = 1 0.10 0.67 1.01 0.88 1.21 0.98 1.11 0.76 0.98 1.11 1.21 0.98 0.87

0.25 0.89 1.30 0.96 1.18 1.55 1.57 0.86 2.01 1.02 1.14 1.12 1.43
0.50 1.27 0.97 0.80 0.76 1.85 1.53 2.45 1.56 0.66 0.77 7.34 5.32
0.75 0.90 0.76 0.92 0.87 1.48 1.44 0.76 0.65 0.73 0.55 1.10 1.23
0.90 0.67 0.45 0.82 0.65 0.90 1.09 0.64 0.45 1.12 0.76 0.98 0.91

𝑣 = 2 0.10 1.25 1.23 0.99 1.11 1.61 1.47 0.87 1.19 1.07 1.45 1.53 1.80
0.25 0.67 0.60 0.65 0.62 0.76 0.78 0.95 1.43 0.94 1.32 1.94 2.05
0.50 0.54 0.64 0.87 0.90 0.64 0.80 1.94 1.24 0.97 0.86 3.55 3.43
0.75 0.65 0.57 0.60 0.80 0.83 0.87 0.98 0.87 1.04 0.76 1.96 2.12
0.90 1.19 0.98 0.93 1.09 1.65 1.48 0.87 0.76 1.32 1.04 1.74 2.06

𝑣 = 3 0.10 – – – – – – 1.17 1.26 1.04 1.19 2.05 1.95
0.25 – – – – – – 0.87 0.98 0.88 1.04 1.65 1.68
0.50 – – – – – – 1.41 1.36 1.86 1.54 1.97 2.24
0.75 – – – – – – 0.86 0.76 0.96 0.76 1.66 1.72
0.90 – – – – – – 1.12 0.99 1.18 1.48 2.21 2.29

𝜌 = 0.9
𝑣 = 1 0.10 0.78 1.16 0.99 1.37 1.08 1.22 0.76 0.87 0.94 1.34 0.97 0.87

0.25 0.98 1.23 0.90 1.09 1.41 1.37 0.87 1.65 0.87 0.88 1.27 1.51
0.50 1.28 1.07 0.89 0.86 1.79 1.58 2.24 1.32 0.87 0.65 4.23 3.05
0.75 0.92 0.65 0.88 0.67 1.42 1.45 0.87 0.97 0.76 0.57 1.34 1.58
0.90 0.77 0.54 0.97 0.65 1.05 1.19 0.76 0.87 0.94 0.64 0.76 0.88

𝑣 = 2 0.10 1.45 1.40 0.96 1.14 1.95 1.66 0.98 1.29 1.18 1.59 1.43 1.61
0.25 0.76 0.84 0.77 0.87 1.01 1.02 0.98 1.37 1.04 1.24 1.75 1.79
0.50 0.69 0.87 1.15 1.19 0.88 1.05 1.69 1.39 0.99 0.96 2.38 2.20
0.75 0.76 0.68 0.77 0.89 1.04 1.06 1.01 0.87 1.05 0.89 1.87 1.94
0.90 1.25 0.89 0.91 1.13 1.70 1.45 0.90 0.87 1.45 1.04 1.56 1.76

𝑣 = 3 0.10 – – – – – – 1.21 1.37 1.01 1.25 1.88 1.75
0.25 – – – – – – 0.87 1.03 0.98 1.08 1.37 1.43
0.50 – – – – – – 0.90 0.97 1.12 1.06 1.19 1.36
0.75 – – – – – – 0.89 0.80 0.99 0.91 1.40 1.45
0.90 – – – – – – 1.31 0.98 1.13 1.08 2.05 1.85

𝜌 = 0.5
𝑣 = 1 0.10 0.81 1.05 0.91 1.09 1.18 1.06 0.89 1.32 1.17 1.48 1.11 1.22

0.25 1.07 1.27 0.99 1.13 1.49 1.42 1.02 1.33 0.86 0.79 1.41 1.38
0.50 1.14 1.20 0.99 1.09 1.38 1.48 1.25 1.15 0.78 0.70 1.65 1.53
0.75 0.98 0.78 0.93 0.87 1.33 1.26 1.20 0.98 0.84 0.81 1.75 1.70
0.90 0.98 0.76 1.08 0.77 1.32 1.19 0.87 0.78 1.68 1.14 1.25 1.37

𝑣 = 2 0.10 1.01 1.01 0.63 0.78 1.40 1.01 0.97 1.20 1.10 1.31 1.35 1.17
0.25 0.91 1.09 0.92 1.10 1.21 1.20 1.01 1.25 0.98 1.10 1.38 1.43
0.50 0.90 1.16 1.54 1.61 1.06 1.37 0.98 1.05 0.79 0.89 1.21 1.37
0.75 0.96 0.83 0.96 0.93 1.27 1.25 1.01 0.78 0.98 0.88 1.40 1.35
0.90 1.25 0.71 0.71 0.65 1.70 1.20 0.87 0.76 1.10 0.99 1.27 1.12

𝑣 = 3 0.10 – – – – – – 1.04 1.16 0.87 0.97 1.46 1.53
0.25 – – – – – – 0.98 1.21 0.94 1.25 1.34 1.37
0.50 – – – – – – 0.98 1.14 1.29 1.35 1.18 1.50
0.75 – – – – – – 1.05 0.87 1.01 0.98 1.39 1.36
0.90 – – – – – – 1.14 0.87 0.75 0.71 1.65 1.25
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– Changing the underlying distribution does not substantially affect on the patterns of the studied estimators
regardless a few cases. In several cases, the REs are higher when the parent distribution is log normal
distribution rather than normal distribution.

– All the REs are affected strongly by the location of the value 𝑡. Generally speaking, 𝐹𝐸(𝑡) outperforms its
counterpart in RSS when 𝑡 closes to the center of the population distribution and 𝑣 = 1. Yet if 𝑣 > 1, 𝐹𝐸(𝑡)
performs well when 𝑡 tends to at least one of the boundaries. On the other hand, 𝐹𝑀 (𝑡) is becoming more
efficient than 𝐹𝑆(𝑡) if 𝑡 is near to at least one of the boundaries with some exceptions. Interestingly, these
results are generally valid regardless the quality ranking.

– The quality ranking has a positive effect on the performance of the studied estimators particularly for large
𝑚 and 𝑚1. As expectedly, this effect becomes stronger on the performance of the estimators based on missing
data approach and weaker for the others.

– With keeping all the factors are fixed, increasing either 𝑚1 and 𝑣 or 𝑚1 and 𝑘 can provide improvement for
the behavior of the almost studied estimators in some cases.

– It is also observed that increasing 𝑚 with keeping the other factors are fixed may not improve the REs even
if the ranking process is perfectly done. Further, in several cases, the REs of almost studied estimators is
higher when 𝑚1 ≥ 𝑚 than 𝑚1 < 𝑚.

Table 4. The RE values of the CDF estimators using simulated log-normal distribution when
𝑚 = 3, 𝑘 = 1.

𝜌 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1

𝑣 = 1 0.10 0.97 1.76 1.08 1.94 1.78 2.57 0.76 1.76 1.19 2.54 1.55 2.55
0.25 1.07 1.54 1.08 1.45 3.11 2.56 1.15 1.97 0.87 0.98 4.34 6.44
0.50 1.29 1.02 1.05 0.96 1.88 1.65 1.76 1.01 0.76 0.66 3.01 2.22
0.75 1.12 0.87 1.16 0.78 1.17 1.20 1.18 0.77 0.91 0.86 0.98 0.99
0.90 0.87 0.76 0.88 0.73 0.86 0.89 0.76 0.65 1.13 0.87 0.78 0.88

𝑣 = 2 0.10 1.76 2.04 1.54 1.99 3.45 2.99 0.98 1.65 1.12 1.96 1.99 3.45
0.25 0.87 0.98 0.87 0.99 1.49 1.39 1.05 1.76 1.05 1.65 3.76 4.17
0.50 0.87 0.68 0.87 0.95 0.94 0.87 1.55 1.22 1.22 1.05 2.34 2.38
0.75 0.87 0.75 0.86 1.03 1.01 1.01 1.24 0.76 1.25 0.87 1.45 1.48
0.90 1.65 1.35 1.56 2.15 2.10 1.97 1.02 0.87 1.28 0.87 1.35 1.39

𝑣 = 3 0.10 – – – – – – 1.65 2.22 1.65 2.17 3.75 4.22
0.25 – – – – – – 1.05 1.44 1.04 1.47 2.97 3.02
0.50 – – – – – – 1.26 1.15 1.74 1.37 1.65 1.97
0.75 – – – – – – 1.09 0.78 1.11 0.87 1.46 1.43
0.90 – – – – – – 1.76 1.26 1.79 1.87 2.25 2.15

𝜌 = 0.9
𝑣 = 1 0.10 0.98 1.78 1.10 1.89 1.80 2.16 0.76 1.76 1.13 1.98 1.17 2.65

0.25 1.14 1.63 1.14 1.55 3.01 2.45 1.13 1.78 0.87 0.99 4.32 4.70
0.50 1.25 1.08 1.06 1.05 1.61 1.48 1.92 1.20 0.75 0.87 2.94 2.29
0.75 1.02 0.65 1.01 0.76 1.06 1.04 1.21 0.67 0.98 0.89 1.13 1.10
0.90 0.97 0.65 1.11 0.65 1.03 1.13 0.65 0.54 1.09 0.65 0.87 0.93

𝑣 = 2 0.10 1.54 1.76 1.29 1.64 2.98 2.45 1.07 2.01 1.29 2.23 2.17 3.25
0.25 0.98 1.09 0.96 1.10 1.66 1.55 1.06 1.54 1.05 1.44 2.88 2.80
0.50 0.78 0.76 0.88 0.98 0.91 0.98 1.56 1.26 1.23 1.13 2.19 2.10
0.75 1.01 0.89 0.97 0.96 1.12 1.11 1.16 0.87 1.19 0.87 1.32 1.35
0.90 1.54 1.07 1.27 1.41 1.88 1.65 1.08 0.87 1.43 0.87 1.34 1.35

𝑣 = 3 0.10 – – – – – – 1.40 2.02 1.31 1.97 2.96 3.07
0.25 – – – – – – 0.97 1.19 0.95 1.24 2.08 2.04
0.50 – – – – – – 1.04 0.99 1.19 1.08 1.28 1.33
0.75 – – – – – – 1.07 0.78 1.09 0.88 1.29 1.34
0.90 – – – – – – 1.38 0.87 1.33 1.01 1.76 1.65

𝜌 = 0.5
𝑣 = 1 0.10 1.05 1.54 1.10 1.60 1.95 1.87 1.13 1.39 1.09 1.36 1.98 1.33

0.25 0.99 1.25 0.98 1.22 1.95 1.64 1.01 1.35 0.78 0.99 2.15 1.89
0.50 1.05 1.01 0.99 1.05 1.33 1.30 1.20 1.01 0.78 0.72 1.45 1.35
0.75 0.99 0.76 0.97 0.79 1.06 1.04 1.08 0.65 0.88 0.78 1.12 1.08
0.90 1.08 0.79 1.11 0.77 1.15 1.14 0.98 0.76 1.35 0.76 0.90 0.95

𝑣 = 2 0.10 1.26 1.44 1.01 1.33 2.23 1.65 1.07 1.32 1.03 1.34 1.91 1.21
0.25 1.01 1.19 1.01 1.25 1.68 1.56 0.97 1.19 0.87 1.19 1.59 1.50
0.50 0.97 1.01 1.08 1.25 1.13 1.25 1.01 0.97 0.88 0.98 1.24 1.27
0.75 0.96 0.79 0.97 0.99 1.10 1.05 0.98 0.67 0.98 0.83 1.03 1.06
0.90 1.06 0.76 0.89 0.88 1.20 1.09 1.05 0.87 1.25 0.65 1.14 1.11

𝑣 = 3 0.10 – – – – – – 0.97 1.20 0.87 1.18 1.75 1.11
0.25 – – – – – – 1.09 1.40 1.04 1.45 1.97 1.81
0.50 – – – – – – 0.99 0.98 1.06 1.17 1.22 1.32
0.75 – – – – – – 1.05 0.85 1.03 0.90 1.14 1.10
0.90 – – – – – – 1.35 0.86 1.20 0.76 1.45 1.32
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As overall, we can say that the conventional RSS-based CDF is outperformed by at least one of VLRSS-based
CDF estimators in almost the considered cases, particularly when 𝑡 lies at least one of the boundaries of the
parent distribution (either symmetric or asymmetric). In addition, it is clearly observed from the superiority of
𝐹𝐾(𝑡) and 𝐹𝐾1(𝑡) over 𝐹𝑆(𝑡) in most cases and they are mostly alternating in the first and second places among
all the considered estimators.

7. An empirical study

In what follows, we will illustrate the applicability of the proposed CDF by using real data set known as tree
dataset found in Chen et al. [9]. This data set of size 396 observations and includes seven variables. Here, we
will restrict our attention on two variables: “the entire height in feet” denoted by the response variable and the
“diameter in centimeters at breast height” denoted by the concomitant variable. The linear correlation between
“the entire height in feet” and “diameter in centimeters at breast height” equals 0.91 indicating that the quality
ranking is nearly perfect.

We will consider the tree dataset as the hypothetical population. For the same values of 𝐹 (𝑡), 𝑚, 𝑘,𝑚1 and
𝑣 shown by Tables 1–6, 10 000 samples with replacement are drawn using RSS and VLRSS schemes. Again
for each the selected sample, the 𝐹𝐿(𝑡) and 𝐹𝑠(𝑡) are computed, then the ARE for all the considered CDF
estimators are estimated and listed in Table 7.

Table 5. The RE values of the CDF estimators using simulated log-normal distribution when
𝑚 = 5, 𝑘 = 1.

𝜌 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1

𝑣 = 1 0.10 1.12 1.48 1.12 1.50 2.18 2.55 0.98 1.93 1.43 2.35 1.67 2.90
0.25 0.88 0.99 0.86 0.98 2.22 1.92 1.44 1.60 1.24 1.26 3.95 3.62
0.50 1.08 0.83 0.90 0.85 1.07 1.05 1.20 0.86 0.75 0.70 1.36 1.23
0.75 0.97 0.78 0.97 0.83 1.17 1.14 1.23 0.80 1.09 0.87 1.43 1.40
0.90 0.95 0.65 1.14 0.78 1.11 1.13 0.92 0.76 1.54 0.98 1.05 1.23

𝑣 = 2 0.10 1.16 1.19 0.93 1.04 2.37 2.15 1.12 1.45 1.05 1.43 2.26 2.93
0.25 0.77 0.67 0.87 0.82 1.23 1.26 1.05 1.21 1.09 1.28 2.87 2.76
0.50 0.65 0.78 0.94 0.98 0.89 0.88 1.23 1.16 1.28 1.16 1.45 1.54
0.75 0.78 0.66 0.67 0.85 0.86 0.89 0.87 0.67 0.94 0.75 1.25 1.24
0.90 1.25 0.98 1.13 1.38 1.36 1.27 1.13 0.87 1.23 1.04 1.43 1.39

𝑣 = 3 0.10 – – – – – – 1.23 1.30 0.98 1.17 2.97 2.99
0.25 – – – – – – 0.78 0.84 0.98 0.87 1.70 1.75
0.50 – – – – – – 0.87 0.93 1.27 1.15 1.05 1.28
0.75 – – – – – – 0.87 0.72 0.96 0.87 1.14 1.19
0.90 – – – – – – 1.17 0.91 1.08 0.93 1.39 1.32

𝜌 = 0.9
𝑣 = 1 0.10 1.12 1.45 1.07 1.43 2.22 2.25 0.87 1.45 1.16 1.65 1.43 2.23

0.25 0.90 1.06 0.90 1.05 2.69 1.86 1.20 1.43 1.07 1.18 2.99 2.76
0.50 1.07 0.93 0.98 0.99 1.08 1.15 1.11 0.98 0.83 0.80 1.28 1.21
0.75 1.03 0.88 1.02 0.87 1.20 1.22 1.08 0.87 1.01 0.89 1.23 1.25
0.90 1.09 0.83 1.04 0,87 1.23 1.20 0.91 0.58 1.48 0.97 1.09 1.19

𝑣 = 2 0.10 1.23 1.26 0.89 1.06 2.52 2.53 1.12 1.46 1.06 1.44 2.17 2.46
0.25 0.76 0.84 0.75 0.88 1.31 1.33 0.92 1.10 0.97 1.14 2.11 2.06
0.50 0.76 0.89 1.10 1.12 0.86 1.06 0.97 0.98 0.99 0.95 1.13 1.21
0.75 0.79 0.70 0.78 0.85 0.95 0.97 1.01 0.79 1.09 0.91 1.20 1.23
0.90 1.30 0.88 0.90 0.97 1.48 1.27 1.04 0.78 1.11 0.87 1.23 1.17

𝑣 = 3 0.10 – – – – – – 1.01 1.32 0.98 1.25 2.16 2.40
0.25 – – – – – – 0.99 1.16 1.02 1.20 2.27 2.20
0.50 – – – – – – 0.99 1.01 1.01 1.01 1.20 1.27
0.75 – – – – – – 1.01 0.75 1.08 0.88 1.23 1.22
0.90 – – – – – – 1.16 0.78 1.22 0.99 1.44 1.37

𝜌 = 0.5
𝑣 = 1 0.10 0.94 1.05 0.78 0.95 1.71 1.81 1.16 1.54 1.33 1.64 2.03 2.01

0.25 0.97 1.15 0.98 1.10 1.78 1.64 1.04 1.17 0.96 1.12 2.03 1.89
0.50 0.98 1.08 1.13 1.20 1.08 1.30 1.04 1.28 0.87 0.92 1.18 1.23
0.75 1.01 0.81 1.02 0.99 1.08 1.13 1.05 0.78 0.99 0.88 1.11 1.10
0.90 1.08 0.78 1.13 0.74 1.20 1.10 0.97 0.57 1.30 0.80 1.06 0.99

𝑣 = 2 0.10 1.09 1.08 0.67 0.86 1.97 1.24 0.90 1.02 1.16 0.96 1.75 1.26
0.25 1.01 1.21 1.01 1.22 1.80 1.74 0.94 1.12 0.91 1.10 1.66 1.55
0.50 0.98 1.14 1.15 1.25 1.06 1.40 0.98 1.09 1.03 1.16 1.12 1.32
0.75 0.95 0.77 0.91 0.87 1.01 1.02 1.04 0.87 1.05 0.97 1.15 1.18
0.90 1.12 0.76 1.06 0.87 1.24 1.04 0.98 0.78 1.11 0.67 1.15 0.99

𝑣 = 3 0.10 – – – – – – 1.09 1.15 0.76 0.98 2.08 1.38
0.25 – – – – – – 0.97 1.14 0.99 1.16 1.70 1.60
0.50 – – – – – – 0.98 1.11 1.29 1.37 1.10 1.34
0.75 – – – – – – 0.93 0.89 0.98 0.88 1.04 1.03
0.90 – – – – – – 1.12 0.65 0.77 0.76 1.23 0.99
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Table 6. The RE values of the CDF estimators using simulated log-normal distribution when
𝑚 = 5, 𝑘 = 2.

𝜌 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1

𝑣 = 1 0.10 0.76 1.07 0.88 1.24 1.13 1.71 0.53 0.86 0.97 1.64 1.19 1.46
0.25 0.98 1.33 0.97 1.17 3.24 2.65 1.35 1.58 1.19 1.26 3.88 3.68
0.50 1.31 1.01 0.88 0.77 1.54 1.33 1.05 0.89 0.77 0.73 1.30 1.19
0.75 0.86 0.65 0.87 0.60 0.88 0.92 1.21 0.84 1.07 0.88 1.45 1.40
0.90 0.77 0.54 1.09 0.65 0.77 0.86 0.87 0.67 1.56 0.98 1.04 1.23

𝑣 = 2 0.10 1.25 1.34 0.99 1.10 2.92 1.97 0.78 1.22 1.08 1.45 1.32 2.44
0.25 0.76 0.78 0.65 0.69 1.12 1.16 1.05 1.25 1.10 1.32 3.13 2.98
0.50 0.55 0.74 0.97 1.01 0.65 0.88 1.13 1.06 1.17 1.07 1.35 1.44
0.75 0.87 0.60 0.65 0.79 0.76 0.78 0.98 0.77 1.05 0.87 1.31 1.33
0.90 1.29 1.01 1.18 1.43 1.40 1.27 1.12 0.78 1.20 0.98 1.37 1.33

𝑣 = 3 0.10 – – – – – – 1.22 1.29 1.06 1.21 2.81 3.09
0.25 – – – – – – 0.78 0.86 0.88 0.92 1.71 1.85
0.50 – – – – – – 1.08 1.13 1.65 1.38 1.26 1.54
0.75 – – – – – – 0.83 0.69 0.88 0.79 1.05 1.09
0.90 – – – – – – 1.11 0.89 1.01 1.23 1.25 1.20

𝜌 = 0.9
𝑣 = 1 0.10 0.87 1.32 1.13 1.54 1.43 2.04 0.77 0.93 1.01 1.59 1.79 1.65

0.25 0.98 1.18 0.87 1.05 2.55 2.06 1.07 1.31 0.98 1.09 2.75 2.65
0.50 1.34 1.15 0.95 0.92 1.45 1.44 1.07 0.89 0.98 0.76 1.31 1.20
0.75 0.94 0.76 0.89 0.69 0.99 1.01 1.18 0.87 1.07 0.89 1.35 1.32
0.90 0.88 0.65 1.19 0.87 0.97 1.01 0.92 0.77 1.54 0.94 1.04 1.14

𝑣 = 2 0.10 1.25 1.26 0.88 1.04 2.56 1.96 0.94 1.43 1.32 1.76 1.68 2.48
0.25 0.78 0.80 0.71 0.83 1.25 1.29 1.03 1.24 1.06 1.27 2.49 2.41
0.50 0.62 0.77 1.01 1.04 0.76 0.91 1.95 0.99 0.93 0.97 1.09 1.17
0.75 0.78 0.70 0.76 0.89 0.99 0.95 1.04 0.83 1.14 0.95 1.22 1.27
0.90 1.26 0.87 1.08 1.11 1.40 1.21 1.10 0.76 1.18 0.97 1.25 1.21

𝑣 = 3 0.10 – – – – – – 1.21 1.37 1.01 1.23 2.41 2.34
0.25 – – – – – – 0.85 0.97 0.88 0.99 1.75 1.78
0.50 – – – – – – 0.80 0.90 1.12 1.14 0.96 1.13
0.75 – – – – – – 0.83 0.70 0.87 0.79 1.03 1.06
0.90 – – – – – – 1.23 0.87 1.03 1.01 1.44 1.31

𝜌 = 0.5
𝑣 = 1 0.10 1.01 1.27 1.12 1.32 1.88 1.63 0.76 1.24 1.30 1.71 1.45 1.81

0.25 0.97 1.25 0.90 1.09 1.85 1.66 0.98 1.18 0.87 1.02 1.87 1.76
0.50 1.02 1.08 0.89 1.01 1.17 1.26 1.07 1.08 0.87 0.96 1.18 1.25
0.75 1.08 0.77 0.89 0.87 1.04 1.06 1.06 0.80 1.01 0.90 1.13 1.12
0.90 0.98 0.66 1.01 0.78 1.07 1.05 1.10 0.76 1.56 0.96 1.20 1.11

𝑣 = 2 0.10 1.03 1.01 0.64 0.77 1.80 1.20 1.04 1.29 1.18 1.38 1.86 1.54
0.25 1.02 1.22 1.02 1.25 1.82 1.70 1.09 1.33 1.07 1.31 2.04 1.92
0.50 1.01 1.15 1.53 1.60 1.31 1.34 0.94 0.99 0.96 1.05 1.02 1.19
0.75 0.98 0.87 0.96 0.99 1.07 1.11 0.94 0.76 0.90 0.80 1.03 1.02
0.90 1.12 0.67 0.66 0.59 1.19 0.99 1.02 0.77 0.98 0.70 1.16 1.01

𝑣 = 3 0.10 – – – – – – 1.17 1.26 0.87 1.04 2.23 1.48
0.25 – – – – – – 0.99 1.19 0.99 1.22 1.84 1.80
0.50 – – – – – – 0.97 1.16 1.33 1.42 1.10 1.37
0.75 – – – – – – 0.99 0.77 0.98 0.85 1.03 1.07
0.90 – – – – – – 1.13 0.65 0.78 0.59 1.25 0.99

It is clear that the results presented in Table 7 are consistent with those shown in Tables 1–6. As 𝐹𝑆(𝑡) is
outperformed by at least one of VLRSS-based CDF estimators particularly when 𝐹 (𝑡) → 0. Moreover, 𝐹𝐸(𝑡)
performs consistently well relative to its analog in RSS when 𝑣 = 1 and the values of 𝑡 around the center of
the parent distribution. Also incorporating the information generated by the unmeasured items increases the
efficiencies of the suggested CDF estimators provided that 𝑡 closes to the lower tail of the population distribution.
Further, increasing both 𝑚1 and 𝑣 provides sometimes sizeable benefits for the efficiencies 𝐹𝐾(𝑡) and 𝐹𝐾1(𝑡).
For additional detailed results concerned to one special case is given by Figure 3, which presents the population
CDF, 𝐹𝐾(𝑡) and 𝐹𝐾1(𝑡) based on tree dataset with 𝑚 = 5, 𝑘 = 1, 𝑚1 = 10, 𝑣 = 3 and 𝑟 = 10. It is apparent
that the lines of the 𝐹𝐾(𝑡) and 𝐹𝐾1(𝑡) are closer to the line of the true CDF when 𝑡 becomes closer to the
boundaries. Further at small (large) values of 𝑡, the performance of 𝐹𝐾(𝑡) (𝐹𝐾1(𝑡)) becomes better. Finally,
one may be have to mention that all the numerical results displayed below are coded using R package and it is
available upon request from the author.

8. Conclusion

This study is concerned with CDF estimation under VLRSS. Three novel estimators for CDF using VLRSS
are suggested. It is theoretically shown that these estimators are consistent to the population CDF 𝐹 (𝑡). By
incorporating the information generated from the unmeasured sampling items, a general class of CDF estimators
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Table 7. The RE values of the CDF estimators using Tree dataset.

𝑚 = 3, 𝑘 = 1
𝑚1 = 4 𝑚1 = 10

𝐹 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1 𝐹𝐸 𝐹𝐸1 𝐹𝑀 𝐹𝑀1 𝐹𝐾 𝐹𝐾1

𝑣 = 1 0.10 0.94 1.56 1.16 2.27 1.54 1.68 0.97 2.01 1.16 2.45 1.46 3.54
0.25 1.03 1.34 1.05 1.23 2.65 1.64 1.21 2.30 0.98 1.11 4.54 5.87
0.50 1.54 1.14 1.04 1.03 3.01 2.56 1.96 1.09 0.78 0.65 2.96 2.30
0.75 1.19 0.94 1.18 0.87 1.86 1.80 1.20 0.87 0.98 0.76 1.43 1.44
0.90 0.87 0.74 1.03 0.88 1.05 1.05 0.76 0.88 1.23 0.87 0.88 0.95

𝑣 = 2 0.10 1.01 2.01 1.46 1.91 2.28 2.49 0.97 2.01 1.17 2.13 2.27 3.97
0.25 1.06 1.15 0.99 1.16 1.35 1.33 1.05 1.87 1.04 1.69 3.21 3.37
0.50 0.87 0.90 0.98 0.96 1.21 1.27 1.65 1.16 1.27 1.07 2.15 2.08
0.75 0.92 0.87 0.89 0.88 1.34 1.33 1.07 0.87 1.08 0.87 1.34 1.39
0.90 1.34 1.15 1.54 1.43 2.34 2.13 0.87 0.56 1.18 0.66 0.98 1.01

𝑣 = 3 0.10 – – – – – – 0.98 1.02 0.99 1.13 1.05 0.99
0.25 – – – – – – 0.98 1.02 0.99 1.16 1.06 0.99
0.50 – – – – – – 1.06 0.98 1.36 1.22 1.23 1.38
0.75 – – – – – – 0.78 0.67 0.81 0.70 0.94 0.96
0.90 – – – – – – 1.02 0.67 1.01 0.86 1.24 1.21

𝑚 = 5, 𝑘 = 1
𝑣 = 1 0.10 0.98 1.85 1.14 2.11 1.43 1.53 0.87 1.82 1.26 2.12 1.66 2.95

0.25 1.08 1.56 1.06 1.43 1.66 1.65 1.16 1.38 1.01 1.09 2.96 2.78
0.50 1.43 1.10 1.02 0.99 2.15 1.85 1.04 0.89 0.77 0.76 1.18 1.08
0.75 1.08 0.87 1.03 0.97 1.65 1.55 1.17 0.78 0.88 0.67 1.46 1.43
0.90 0.98 0.87 1.23 0.76 1.43 1.54 0.87 0.76 0.99 0.76 0.81 0.91

𝑣 = 2 0.10 1.46 1.87 1.27 1.76 2.07 2.01 1.24 1.35 1.13 1.21 1.26 1.37
0.25 0.97 1.25 0.99 1.28 1.36 1.39 0.98 1.13 0.97 1.18 2.28 2.16
0.50 0.78 0.82 0.87 0.99 1.02 1.06 0.97 0.87 0.91 0.88 1.02 1.05
0.75 0.99 0.78 0.94 0.96 1.34 1.22 0.92 0.54 0.97 0.76 1.18 1.21
0.90 1.55 1.22 1.33 1.16 2.30 2.14 0.78 0.77 0.79 1.18 1.14 0.99

𝑣 = 3 0.10 – – – – – – 1.17 1.44 1.14 1.47 1.18 1.14
0.25 – – – – – – 1.22 1.55 1.18 1.58 1.23 1.33
0.50 – – – – – – 1.31 1.44 1.26 1.65 1.41 1.47
0.75 – – – – – – 0.76 0.67 0.87 0.67 0.92 0.99
0.90 – – – – – – 1.23 0.98 1.32 1.05 1.54 1.55

𝑚 = 5, 𝑘 = 2
𝑣 = 1 0.10 0.84 1.32 0.91 1.37 1.21 1.16 0.65 1.23 0.94 1.54 2.54 3.22

0.25 0.98 1.25 0.99 1.17 1.29 1.21 0.98 1.65 0.87 0.98 4.34 7.84
0.50 1.12 1.02 0.99 1.01 1.32 1.28 2.76 1.44 0.98 0.87 2.21 1.65
0.75 1.13 0.87 1.06 0.89 1.43 1.40 0.98 0.89 0.86 0.76 0.93 1.02
0.90 0.88 0.78 0.98 0.76 1.21 1.16 0.54 0.44 1.12 0.77 0.65 0.77

𝑣 = 2 0.10 1.14 1.45 0.98 1.39 1.16 1.44 0.87 1.43 1.24 1.87 1.44 2.65
0.25 0.98 1.21 0.99 1.25 1.29 1.26 0.98 1.68 1.06 1.53 5.05 5.07
0.50 1.02 1.06 1.15 1.33 1.23 1.32 1.98 1.35 1.07 0.98 1.76 1.67
0.75 0.97 0.92 0.96 0.99 1.31 1.27 0.78 0.65 0.87 0.98 1.12 1.16
0.90 1.10 0.72 0.95 0.73 1.65 1.22 0.87 0.68 1.23 0.95 1.19 1.07

𝑣 = 3 0.10 – – – – – – 1.12 1.30 1.01 1.15 1.78 1.55
0.25 – – – – – – 0.96 1.14 0.95 1.24 2.25 2.32
0.50 – – – – – – 0.90 0.97 1.17 1.04 1.29 1.33
0.75 – – – – – – 0.89 0.80 0.99 0.91 1.40 1.45
0.90 – – – – – – 0.97 0.87 1.19 0.89 0.87 0.94

is also constructed which enables us to develop our proposed estimators. Additionally, the consistency of this
class of CDF estimators is also analytically derived. Based on a small numerical experiments, we observe that
the traditional RSS-based CDF is outperformed by at least one of VLRSS-based CDF estimators particularly
when 𝑡 lies at least one of the boundaries of the parent distribution even if the quality ranking is poor. It is
also evident that kernel-based estimators are the best in almost considered cases. A considerable efficiency gain
is obtained by incorporating the information generated from the unmeasured sampling items provided that 𝑡 is
near to the lower tail of the parent distribution. Thus we recommend to use 𝐹𝐾1(𝑡) when 𝐹 (𝑡) → 0 and the
ranking quality is good enough. Otherwise, 𝐹𝐾(𝑡) is the best choice. In a subsequent work, it may be of interest
to compare our proposed estimators with the CDF estimator recently published by Eftekharian and Razmkhah
[12], as they also used kernel approach under RSS. Additionally, constructing confidence interval for population
CDF under VLRSS design is a much important future topic. The author plans to take these points in the near
future.
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976 M.S. ABDALLAH

References

[1] A.I. Al-Omari, The efficiency of L ranked set sampling in estimating the distribution function. Afrika Matematika 26 (2015)
1457–1466.

[2] A.I. Al-Omari, Quartile ranked set sampling for estimating the distribution function. J. Egypt. Math. Soc. 24 (2016) 303–308.

[3] A.I. Al-Omari, Maximum likelihood estimation in location-scale families using varied L ranked set sampling. RAIRO-Oper.
Res. 55 (2021) S2759–S2771.

[4] A.I. Al-Omari and M.S. Abdallah, Estimation of the distribution function using moving extreme and MiniMax ranked set
sampling. To appear in: Commun. Stat. Simul. Comput. (2021) 1–21. DOI: 10.1080/03610918.2021.1891433.

[5] M.F. Al-Saleh and D.M. Ahmad, Estimation of the distribution function using moving extreme ranked set sampling (MERSS).
In: Ranked Set Sampling: 65 years Improving the Accuracy in Data Gathering. Academic Press (2019) 43–58.

[6] S. Ashour and M. Abdallah, New distribution function estimators and tests of perfect ranking in concomitant-based ranked
set sampling. To appear in: Commun. Stat. Simul. Comput. (2019) 1–26. DOI: 10.1080/03610918.2019.1659360.

[7] S. Ashour and M. Abdallah, Parametric estimation based on ranked set sampling: missing data approach. J. Sci. Gazi Univ.
32 (2019) 1356–1368.

[8] S. Ashour and M. Abdallah, Estimation of distribution function based on ranked set sampling: missing data approach. Thai-
land Stat. 18 (2020) 27–42.

[9] Z. Chen, Z. Bai and B.K. Sinha, Ranked Set Sampling: Theory and Applications. Springer, New York (2004).

[10] W. Chen, C. Long, R. Yang and D. Yao, Maximum likelihood estimator of the location parameter under moving extremes
ranked set sampling design. Acta Math. App. Sin. Ser. 37 (2021) 101–108.

[11] T.R. Dell and J.L. Clutter, Ranked set sampling theory with order statistics background. Biometrics 28 (1972) 545–555.

[12] A. Eftekharian and M. Razmkhah, On estimating the distribution function and odds using ranked set sampling. Stat. Probab.
Lett. 122 (2017) 1–10.

[13] J. Frey and L. Wang, EDF-based goodness-of-fit tests for ranked set sampling. Can. J. Stat. 42 (2014) 451–469.

[14] J. Frey and Y. Zhang, Improved exact confidence intervals for a proportion using ranked-set sampling. J. Korean Stat. Soc.
48 (2019) 493–501.

[15] J. Frey and Y. Zhang, Robust confidence intervals for a proportion using rankedset sampling. J. Korean Stat. Soc. 50 (2021)
1009–1028.

[16] N. Gemayel, E. Stasny, J. Tackett and D. Wolfe, Ranked set sampling: an auditing application. Rev. Quant. Finance Acc. 39
(2012) 413–422.
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