New preference violation indices for the condition of order preservation
RAIRO. Operations Research, Tome 56 (2022) no. 1, pp. 367-380

Consistency of pairwise comparisons is one particular aspect that is studied thoroughly in the recent decades. However, since the introduction of the concept of the condition of the order preservation in 2008, there is no inconsistency measure based on the aforementioned condition. Therefore, the aim of this paper is to fill this gap and propose new preference violation indices for measuring violation of the condition of the order preservation. Further, an axiomatic system for the proposed measures is discussed, and it is shown that the proposed indices satisfy uniqueness, invariance under permutation, invariance under inversion of preferences and continuity axioms.

DOI : 10.1051/ro/2022007
Classification : 03F25, 90B50
Keywords: Pairwise comparisons, condition of order preservation, inconsistency, preference violation index
@article{RO_2022__56_1_367_0,
     author = {Mazurek, Ji\v{r}{\'\i}},
     title = {New preference violation indices for the condition of order preservation},
     journal = {RAIRO. Operations Research},
     pages = {367--380},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/ro/2022007},
     mrnumber = {4376279},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022007/}
}
TY  - JOUR
AU  - Mazurek, Jiří
TI  - New preference violation indices for the condition of order preservation
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 367
EP  - 380
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022007/
DO  - 10.1051/ro/2022007
LA  - en
ID  - RO_2022__56_1_367_0
ER  - 
%0 Journal Article
%A Mazurek, Jiří
%T New preference violation indices for the condition of order preservation
%J RAIRO. Operations Research
%D 2022
%P 367-380
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022007/
%R 10.1051/ro/2022007
%G en
%F RO_2022__56_1_367_0
Mazurek, Jiří. New preference violation indices for the condition of order preservation. RAIRO. Operations Research, Tome 56 (2022) no. 1, pp. 367-380. doi: 10.1051/ro/2022007

[1] J. A. Alonso and M. T. Lamata, Consistency in the analytic hierarchy process: a new approach. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 14 (2006) 445–459. | Zbl | DOI

[2] C. A. Bana E Costa and J. Vansnick, A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur. J. Oper. Res. 187 (2008) 1422–1428. | MR | Zbl | DOI

[3] J. Barzilai, Deriving weights from pairwise comparison matrices. J. Oper. Res. Soc. 48 (1997) 1226–1232. | Zbl | DOI

[4] J. Barzilai, Consistency measures for pairwise comparison matrices. J. Multi-Criteria Decis. Anal. 7 (1998) 123–132. | Zbl | DOI

[5] J. Barzilai, On the decomposition of value functions. Oper. Res. Lett. 22 (1998) 159–170. | MR | Zbl | DOI

[6] J. Barzilai, W. D. Cook and B. Golany, Consistent weights for judgements matrices of the relative importance of alternatives. Oper. Res. Lett. 6 (1987) 131–134. | MR | Zbl | DOI

[7] M. Behzadian, R. B. Kazemzadeh, A. Albadvi and M. Aghdasi, PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200 (2010) 198–215. | Zbl | DOI

[8] R. Blanquero, E. Carrizosa and E. Conde, Inferring efficient weights from pairwise comparison matrices. Math. Methods Oper. Res. 64 (2006) 271–284. | MR | Zbl | DOI

[9] S. Bozóki, Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency. Optimization 63 (2014) 1893–1901. | MR | Zbl | DOI

[10] S. Bozóki and T. Rapcsák, On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J. Global Optim. 42 (2008) 157–175. | MR | Zbl | DOI

[11] S. Bozóki, L. Dezsö, A. Poesz and J. Temesi, Analysis of pairwise comparison matrices: an empirical research. Ann. Oper. Res. 211 (2013) 511–528. | MR | Zbl | DOI

[12] S. Bozóki, L. Csató and J. Temesi, An application of incomplete pairwise comparison matrices for ranking top tennis players. Eur. J. Oper. Res. 248 (2016) 211–218. | MR | DOI

[13] M. Brunelli, Recent advances on inconsistency indices for pairwise comparisons – a commentary. Fundam. Inf. 144 (2016) 321–332. | MR

[14] M. Brunelli, Studying a set of properties of inconsistency indices for pairwise comparisons. Ann. Oper. Res. 248 (2017) 143–161. | MR | DOI

[15] M. Brunelli, A survey of inconsistency indices for pairwise comparisons. Int. J. General Syst. 47 (2018) 751–771. | MR | DOI

[16] M. Brunelli and M. Fedrizzi, Axiomatic properties of inconsistency indices for pairwise comparisons. J. Oper. Res. Soc. 66 (2015) 1–15. | DOI

[17] M. Brunelli, L. Canal and M. Fedrizzi, Inconsistency indices for pairwise comparison matrices: a numerical study. Ann. Oper. Res. 211 (2013) 493–509. | MR | Zbl | DOI

[18] B. Cavallo and L. D’Apuzzo, Preservation of preferences intensity of an inconsistent Pairwise Comparison Matrix. Int. J. Approximate Reasoning 116 (2020) 33–42. | MR | DOI

[19] X. Chao, G. Kou, T. Li and Y. Peng, Jie Ke versus AlphaGo: a ranking approach using decision making method for large-scale data with incomplete information. Eur. J. Oper. Res. 265 (2018) 239–247. | MR | DOI

[20] L. Csató, Ranking by pairwise comparisons for Swiss-system tournaments. Cent. Eur. J. Oper. Res. 21 (2013) 783–803. | MR | DOI

[21] L. Csató, On the ranking of a Swiss system chess team tournament. Ann. Oper. Res. 254 (2017) 17–36. | MR | DOI

[22] L. Csató, Eigenvector method and rank reversal in group decision making revisited. Fundam. Inf. 156 (2017) 169–178. | MR

[23] L. Csató, Characterization of the row geometric mean ranking with a group consensus axiom. Group Decis. Negotiation 27 (2018) 1011–1027. | DOI

[24] L. Csató, Characterization of an inconsistency measure for pairwise comparison matrices. Ann. Oper. Res. 261 (2018) 155–165. | MR | DOI

[25] L. Csató, Axiomatizations of inconsistency indices for triads. Ann. Oper. Res. 280 (2019) 99–110. | MR | DOI

[26] L. Csató, A characterization of the Logarithmic Least Squares Method. Eur. J. Oper. Res. 276 (2019) 212–216. | MR | DOI

[27] L. Csató and D. G. Petróczy, On the monotonicity of the eigenvector method. Eur. J. Oper. Res. 292 (2021) 230–237. | MR | DOI

[28] L. Csató and L. Rónyai, Incomplete pairwise comparison matrices and weighting methods. Fundam. Inf. 144 (2016) 309–320. | MR

[29] L. Csató and C. Tóth, University rankings from the revealed preferences of the applicants. Eur. J. Oper. Res. 286 (2020) 309–320. | MR | DOI

[30] J. S. Dyer, Remarks on the analytic hierarchy process. Manage. Sci. 36 (1990) 249–258. | MR | DOI

[31] J. Fichtner, On deriving priority vectors from matrices of pairwise comparisons. Soc.-Econ. Planning Sci. 20 (1986) 341–345. | DOI

[32] C. Genest, F. Lapointe and S. W. Drury, On a proposal of Jensen for the analysis of ordinal pairwise preferences using Saaty’s eigenvector scaling method. J. Math. Psychol. 37 (1993) 575–610. | MR | Zbl | DOI

[33] B. Golden and Q. Wang, An alternate measure of consistency. In: The Analytic Hierarchy Process, Applications and Studies, edited by B. Golden, E. Wasil and P. T. Harker, Springer-Verlag, Berlin-Heidelberg (1989) 68–81. | DOI

[34] K. Govindan and M. B. Jepsen, ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250 (2015) 1–29. | MR | DOI

[35] W. Holsztynski and W. W. Koczkodaj, Convergence of inconsistency algorithms for the pairwise comparisons. Inf. Process. Lett. 59 (1996) 197–202. | MR | Zbl | DOI

[36] C. R. Johnson, W. B. Beine and T. J. Wang, Right-left asymmetry in an eigenvector ranking procedure. J. Math. Psychol. 19 (1979) 61–64. | MR | DOI

[37] P. T. Kazibudzki, An examination of performance relations among selected consistency measures for simulated pairwise judgments. Ann. Oper. Res. 244 (2016) 525–544. | MR | DOI

[38] W. W. Koczkodaj, A new definition of consistency of pairwise comparisons. Math. Comput. Modell. 18 (1993) 79–84. | Zbl | DOI

[39] W. W. Koczkodaj, Statistically accurate evidence of improved error rate by pairwise comparisons. Perceptual Motor Skills 82 (1996) 43–48. | DOI

[40] W. Koczkodaj and R. Szwarc, On axiomatization of inconsistency indicators for pairwise comparisons. Fundam. Inf. 132 (2014) 485–500. | MR | Zbl

[41] W. W. Koczkodaj and R. Urban, Axiomatization of inconsistency indicators for pairwise comparisons. Int. J. Approximate Reasoning 94 (2018) 18–29. | MR | DOI

[42] W. W. Koczkodaj, L. Mikhailov, G. Redlarski, M. Soltys, J. Szybowski, G. Tamazian, E. Wajch and K. K. F. Yuen, Important facts and observations about pairwise comparisons (the special issue edition). Fundam. Inf. 144 (2016) 291–307. | MR

[43] W. W. Koczkodaj, J.-P. Magnot, J. Mazurek, J. F. Peters, H. Rakhshani, M. Soltys, D. Strzałka, J. Szybowski and A. Tozzi, On normalization of inconsistency indicators in pairwise comparisons. Int. J. Approximate Reasoning 86 (2017) 73–79. | DOI

[44] K. Kułakowski, Notes on order preservation and consistency in AHP. Eur. J. Oper. Res. 245 (2015) 333–337. | MR | DOI

[45] K. Kułakowski and D. Talaga, Inconsistency indices for incomplete pairwise comparisons matrices. Int. J. General Syst. 49 (2020) 174–200. | MR | DOI

[46] K. Kułakowski, J. Mazurek, J. Ramík and M. Soltys, When is the condition of order preservation met? Eur. J. Oper. Res. 277 (2019) 248–254. | MR | DOI

[47] J. Mazurek, Some notes on the properties of inconsistency indices in pairwise comparisons, Oper. Res. Decis. 28 (2018) 27–42.

[48] J. Mazurek, On the problem of different pairwise comparison scales in the multiplicative AHP framework. Sci. Papers Univ. Pardubice 46 (2019) 124–133.

[49] J. Mazurek and K. Kulakowski, Satisfaction of the condition of order preservation: a simulation study. Operations Research and Decisions 2 (2020) 77–89.

[50] J. Mazurek and R. Perzina, On the inconsistency of pairwise comparisons: an experimental study. Sci. Papers Univ. Pardubice 24 (2017) 102–109.

[51] J. Mazurek and J. Ramík, Some new properties of inconsistent pairwise comparison matrices. Int. J. Approximate Reasoning 113 (2019) 119–132. | MR | Zbl | DOI

[52] J. I. Peláez and M. T. Lamata, A new measure of inconsistency for positive reciprocal matrices. Comput. Math. App. 46 (2003) 1839–1845. | MR | Zbl

[53] J. Pérez and E. Mokotoff, Eigenvector priority function causes strong rank reversal in group decision making. Fundam. Inf. 144 (2016) 255–261. | MR | Zbl

[54] D. G. Petróczy, An alternative quality of life ranking on the basis of remittances. Soc.-Econ. Planning Sci. 78 (2021) 101042. | DOI

[55] D. G. Petróczy and L. Csató, Revenue allocation in Formula One: a pairwise comparison approach. Int. J. General Syst. 50 (2021) 243–261. | MR | DOI

[56] J. Ramík, Pairwise comparison matrix with fuzzy elements on alo-groups. Inf. Sci. 297 (2015) 236–253. | MR | Zbl | DOI

[57] T. L. Saaty, A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15 (1977) 234–281. | MR | Zbl | DOI

[58] T. L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, New York (1980). | MR | Zbl

[59] T. L. Saaty, Decision making – the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 13 (2004) 1–35. | DOI

[60] O. S. Vaidya and S. Kumar, Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169 (2006) 1–29. | MR | Zbl | DOI

Cité par Sources :