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NEW PREFERENCE VIOLATION INDICES FOR THE CONDITION OF ORDER
PRESERVATION

JIRI MAZUREK*

Abstract. Consistency of pairwise comparisons is one particular aspect that is studied thoroughly in
the recent decades. However, since the introduction of the concept of the condition of the order preser-
vation in 2008, there is no inconsistency measure based on the aforementioned condition. Therefore, the
aim of this paper is to fill this gap and propose new preference violation indices for measuring violation
of the condition of the order preservation. Further, an axiomatic system for the proposed measures is
discussed, and it is shown that the proposed indices satisfy uniqueness, invariance under permutation,
invariance under inversion of preferences and continuity axioms.
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1. INTRODUCTION

Over last decades, pairwise comparisons became one of the most popular tools in multiple criteria decision
making. Probably the most known methods incorporating pairwise comparisons with hundreds of applications
are the analytic hierarchy (network) process (AHP/ANP), PROMETHEE, and ELECTRE, see e.g. Behzadian
et al. [7], Govindan and Jepsen [34], and Vaidya and Kumar [60].

In recent years, a number of studies focused on the problem of inconsistency of pairwise comparisons, prop-
erties of inconsistency indices and their relationships, as well as on proposition of axiomatic systems for incon-
sistency indices, see e.g. Alonso and Lamata [1], Bozdki and Rapcsédk [10], Bozdki et al. [11], Brunelli et al. [17],
Brunelli [14, 15], Brunelli and Fedrizzi [16], Csat6 [23-25], Golden and Wang [33] Holsztynski and Koczkodaj
[35], Koczkodaj [38,39], Koczkodaj and Szwarc [40], Koczkodaj et al. [42,43], Kulakowski and Talaga [45],
Mazurek and Perzina [50], Mazurek [47, 48], Peldez and Lamata [52], Ramik [56], Saaty [57,58], or Saaty [59].

The condition of the order preservation (COP) in the context of (multiplicative) pairwise comparisons was
introduced in 2008 by Bana e Costa and Vansnick [2]. The COP constitutes an alternative approach to the
examination of the (in)consistency of pairwise comparison matrices. The usual notion of (multiplicative) con-
sistency requires that if an object A is 3 times better than an object B, and B is 2 times better than an object
C, then A should be ezactly 6 times better than C, and this relationship should hold for every triple (A, B,
C) of compared objects. However, decision makers are seldom precise to such an extent, especially when the
number of compared objects is high. Moreover, even objective databases, for example from sports, suffer from
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inconsistencies, see e.g. Bozdki et al. [12], Chao et al. [19], Csaté [20], Csaté [21], Csaté and Téth [29], or
Petréczy [54].

The condition of order preservation focuses on the relationship between direct comparison of two (four)
objects, and their weights. If an object A is directly preferred over B, then also the weight of A should be
greater than the weight of the object B. This condition is called the Preservation of Order Preference condition
(POP).

Further, when comparing A with B and C with D, if A is more preferred over B than C is preferred to D,
then also the ratio of weights of A and B should be greater than the ratio of weights of C and D. The condition
is called the Preservation of Order of Intensity Preference condition (POIP). Together, the POP and POIP
conditions form the COP condition

Since its introduction in 2008, several papers on the COP appeared, see e.g. Cavallo and D’Apuzzo [18],
Kulakowski [44], or Kulakowski et al. [46]. These studies focused on finding sufficient (or neccessary) conditions
for the COP satisfaction. In study Mazurek and Ramik [51], a new method for a priority vector elicitation was
proposed in a form of non-linear programming problem.

However, what is missing in the literature on the COP so far, is a measure of inconsistency in the COP
framework. Therefore, the aim of the paper is to fill this research gap by proposing new preference violation
indices based on the condition of the order preservation. Also, an axiomatic system for the proposed measures
is discussed.

The paper is organized as follows: Section 2 provides a brief introduction to pairwise comparisons, in Section 3
the condition of order preservation is introduced, and new preference violation indices are proposed in Section 4.
A numerical example is provided in Section 5 and an axiomatic system for preference violation indices is discussed
in Section 6. Monte Carlo simulations are provided in Section 7, and Conclusions close the article.

2. PRELIMINARIES

2.1. Pairwise comparisons method

The input data for the PC method is a PC matrix A = [a;;], where a;; € Ry and 7,5 € {1,...,n}. The values
of a;; and aj; indicate the relative importance (or preference) of objects i and j.

Definition 2.1. A matrix A is said to be (multiplicatively) reciprocal if:
Vi,je{l,...,n}:a;; =1/a;; (2.1)
and A is said to be (multiplicatively) consistent if:
Vi,j,ke{l,...,n} 1 a;j - ajk - ap; = 1. (2.2)

Since human judgment is subjective, a pairwise comparison matrix may be (and often is) inconsistent. There-
fore, many inconsistency indices were proposed in the literature, and their properties had been discussed, see e.g.
Alonso and Lamata [1], Brunelli et al. [17], Brunelli [14,15], Brunelli and Fedrizzi [16], Csaté [24,25], Koczkodaj
[38], Koczkodaj and Szwarc [40], Mazurek [47], or Peldez and Lamata [52].

The result of the pairwise comparisons method is a priority vector (vector of weights) w = (w1,...,w,)
that assigns positive values (weights) w; to each of the n compared objects. According to the EVM (eigenvalue
method) proposed by Saaty, see Saaty [58,59], vector w is determined as the rescaled principal eigenvector of
A. Thus, assuming that Aw = Apaxw the priority vector w is

w=A[wy,... w,)"

where 7 is a scaling factor. Usually it is assumed that v = [> 7 w;] 7%
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In the geometric mean method (GMM) the weight of ith alternative is given by the geometric mean of the
ith row of A. Thus, the priority vector is given as:

1 17T
n n n n
w =" (H alr> e, (H am«> (2.3)
r=1 r=1
where v is a scaling factor again.

There are numerous inconsistency indices that measure inconsistency of pairwise comparison matrices, such
as Saaty’s consistency index CI and consistency ratio CR, Koczkodaj’s inconsistency index KI, and many others,
see e.g. Alonso and Lamata [1], Barzilai [4,15], Brunelli and Fedrizzi [16], Golden and Wang [33], Koczkodaj
[38], or Peldez and Lamata [52].

3. THE CONDITION OF ORDER PRESERVATION

The condition of order preservation (COP) provides an alternative approach to the evaluation of (multiplica-
tive) inconsistency of pairwise comparisons. The standard notion of inconsistency is provided by relation (2.2).
However, this relation is not relevant to the COP. In the COP theoretical framework, relation (2.2) is replaced
by the following two relations.

Definition 3.1. Let A = [a;;] be a pairwise comparison matrix, and let w = (w1, ..., w,) be a priority vector
associated to A. A PC matrix A is said to satisfy the Preservation of Order Preference condition (POP) with
respect to the priority vector w if

Qaij > 1= w; > Wi for all 1,7. (31)

Definition 3.2. Let A = [a;;] be a pairwise comparison matrix, and let w = (w1, ..., wy,) be a priority vector
associated to A. A PC matrix A is said to satisfy the Preservation of Order of Intensity Preference condition
(POIP) with respect to the priority vector w if
w; W
ai; > 1,a1 > 1, and a;; > ap = s Tk for all 4, j, k, I. (3.2)
w wq
We say that a matrix A = [a,;] is the POP consistent, if it satisfies Definition 3.1, and the POIP consistent,
if it satisfies Definition 3.2, respectively. We say that a matrix A = [a;;] is the COP consistent if it is both POP
and POIP consistent.

Remark 3.3. Let A = [a;;] be a pairwise comparison matrix considered consistent according to relation (2.2),
and let w = (w1, ..., w,) be a priority vector associated to A via the eigenvalue method or the geometric mean
method. Then it is obvious that POP and POIP conditions are satisfied, but the reverse statement is not true in
general. Further on, POP and POIP conditions are satisfied for a consistent matrix according to relation (2.2)
if a method used for a priority vector derivation satisfies the axiom called correctness, see e.g. Barzilai et al. [6],
Barzilai [3], Csaté [26], or Fichtner [31].

To discriminate between the two concepts of inconsistency, the approach based on relation (2.2) can be
considered “numerical consistency”, while the approach based on relations ((3.1) and (3.2)) can be regarded as a
“preferential consistency”. In addition, we reserve the term “inconsistency index” to the numerical consistency,
and we use the term “preference violation index” for an inconsistency measure in preferential consistency
framework to avoid confusion.

4. MEASURING VIOLATION OF THE COP

Almost all inconsistency indices introduced in the literature in the context of numerical consistency, with the
exception of Saaty’s indices CI and CR, are based on relation (2.2). Since relation (2.2) is not relevant to the
preferential consistency, a preference violation index for the preferential consistency has to be based on relations
(3.1) and (3.2), and is introduced in the following subsections.
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4.1. Violation frequency index

One possible way of evaluating satisfaction (or violation, respectively) of the condition of order preser-
vation is to evaluate how many individual POP and POIP conditions are satisfied or violated. For a pair-
wise comparison matrix of the order n one must check (n? —n) individual POP conditions (relations (3.1))
and [(n2 —n) (n2 —n—Z)] individual POIP conditions (relations (3.2)). However, since a;; > 1 implies
aj; < 1, there are at most maxpop) = %(n2 — n) individual POP conditions and at most maxporp) =
%[(nQ — n) (n2 —n— 2)] individual POIP conditions that can be failed. We say that a pairwise comparison
matrix satisfies the POP condition if all individual POP conditions hold. The same applies to the POIP condi-

tion. This line of reasoning leads to the following two-dimensional violation frequency index (VFI):

Definition 4.1. Let A = [a;;] be a PC matrix, and let w = (wy,...,w,) be the vector of weights associated

with the matrix A = [aij] via the geometric mean method. Further, let n; and no denote the number of failed

POP and POIP individual conditions respectively. Then the violation frequency index (VFI) is given as follows:
ni N2

VFI,(A) = |a = 0= (4.1)
maxpop) maxporp)

where o € [0,1] expresses the ratio of failed individual POP conditions and § € [0, 1] expresses the ratio of
failed individual POIP conditions.

4.2. Preference violation indices

First, let relax the strict inequalities in definitions of the POP and the POIP conditions (relations (3.1) and
(3.2)) in the following way, which is more convenient for the evaluation of inconsistency:

;5 > 1= w; > W (42)
w; _ W

ai; > 1,ai, > 1, and ay; > ap = —= > . (4.3)
w; wy

The following definitions introduce two preference violation indices for the POP (index Alpha) and POIP
(index Beta) conditions, respectively.

Definition 4.2. Let A = [a;;] be a PC matrix, and let w = (wy,...,w,) be the vector of weights associated
with the matrix A via the geometric mean method. Then the preference violation index Alpha(A,w) for the
POP condition is given as follows:

Alpha(A, w) = > (w; — w;). (4.4)
I(1)

By analogy, the preference violation index Beta(A, w) for the POIP condition is given as:

Beta(A,w) = Y | (w’“ - wi) (4.5)

w, w5
IR J

where I(1) denotes the index set of all pairs (¢, j) for which the POP condition (4.2) is violated, and I(2) denotes
the index set of all quadruples (4, j, k,1) for which the POIP condition (4.3) is violated.

By definition, if the set I(1) = &, then Alpha(A,w) = 0. By analogy, if I(2) = &, then Beta(4,w) = 0.

Rationale for relaxing the inequalities in (4.2) and (4.3) is this: consider a PC matrix that satisfies all but one
condition in (3.1). The one condition that is violated has the form: ay; > 1, but w, = w;. According to relation
(3.1), such a matrix is not POP consistent. If substituted into the Alpha index (4.4), then the Alpha would be
0, which is undesirable, since zero preferential inconsistency should mean consistency. If we transform the strict
equality in (3.1) into the non-strict inequality (4.2), then the Alpha index is still equal to 0, but the PC matrix
is considered consistent, and the discrepancy vanishes. The same logic applies to relations (3.2) and (4.3).
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Remark 4.3. The differences in parentheses on the right hand side of relations (4.4) and (4.5) are always
positive. Thus, the higher is the value of Alpha(A,w) and Beta(A,w), the more preferentially inconsistent is a
given matrix. Clearly, Alpha(A,w) > 0 and Beta(A4,w) > 0, and Alpha(A,w) =0, Beta(A,w) = 0 if and only
if a PC matrix A is (preferentially) consistent. Both indices are not bounded from above.

Remark 4.4. The values of indices Alpha and Beta depend on w, a priority vector (vector of weights). There
are several methods for the derivation of a priority vector from a PC matrix, the two most common methods are
the geometric mean method (GMM) and the eigenvalue method (EVM). These two methods provide identical
priority vectors for consistent matrices and slightly different priority vectors in the case of inconsistent matrices
of the order n > 3. In theory, the EVM could be used in Definitions 4.1-4.5 instead of the GMM as well,
however, as shown in Csaté and Petréczy [27], the EVM does not satisfy an important condition called rank
monotonicity, but the GMM does. Further on, the study Mazurek and Kulakowski [49] found that the GMM
slightly outperforms the EVM with respect to the satisfaction of the POP and POIP conditions. It should
be noted that the eigenvalue method (as a fundamental part of the analytic hierarchy process) was criticised
by several prominent researchers in the field, see e.g. Bana e Costa and Vansnick [2], Barzilai [5], or Dyer
[30] and suffers several theoretical shortcomings, namely right-left asymmetry [10,36], Pareto inefficiency [8,9],
or non-monotonicity [27]. Furthermore, the alternative with the highest priority for all decision-makers is not
necessarily the best on the basis of their aggregated preferences [22, 53], and the ranking obtained from the
principal right eigenvector depends on the choice of the parameter for numerically coded ordinal preferences
[28,32,55].

If a decision maker is not interested in the evaluation of the preferential inconsistency of the whole pairwise
comparison matrix, but wants to find the worst case of preferential inconsistency instead (recall Koczkodaj’s
inconsistency index in the numerical consistency framework), indices (4.4) and (4.5) can be appropriately mod-
ified:

Definition 4.5. Let A = [a,;] be a PC matrix, and let w = (w1,...,w,) be the vector of weights associated
with the matrix A via the geometric mean method. Then the preference violation index Alpha, . (A, w) for the
POP condition is given as follows:
Alpha, .. (A, w) = max{w; — w;}, Y(i,7) € I(1). (4.6)
Analogously, the preference violation index Betay.x(A, w) for the POIP condition is given as:
Betamax (A4, w) = max{wk - w} (i, j k1) € I(2). (4.7)
wy wy

By definition, if the set I(1) = &, then Alpha_,. (A4, w) = 0. Similarly, if I(2) = @, then Betapax (A4, w) = 0.
5. NUMERICAL EXAMPLES
In this section a numerical example is provided to demonstrate the use of the proposed indices.

Example 5.1. Consider the following pairwise comparison matrix A of the order n = 4 associated with four
alternatives:

W = o ©
= W= o= O

9
1
6
2

D= 00l Ol

The vector of weights derived by the GM method: w = (0.693,0.047,0.108,0.152).
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Check of the POP condition

a12 =9 > 1, so wy = 0.693 should be greater than or equal to wy = 0.047, which is satisfied.
a13 =8 > 1, so wy = 0.693 should be greater than or equal to w3z = 0.108, which is satisfied.
a14 =6 > 1, so wy = 0.693 should be greater than or equal to wy = 0.152, which is satisfied.
ag1 = 1/9 < 1, therefore we skip to the next matrix element, and so forth.

Because all 12 individual POP conditions (the POP conditions for each matrix non-diagonal element) are
satisfied, the matrix A is POP consistent, which means that the matrix preserves the order of preferences for
all compared objects. The set I(1) is empty, hence Alpha(A,w) = 0.

Check of the POIP condition

a2 =9 > 1, a13 = 8 > 1, and a12 > a3 holds, hence, according to (4.3), wy/we = 14.74 should be greater
than or equal to wy /w3 = 6.42, which is satisfied.

a2 =9 > 1, a14 = 6 > 1, and a12 > a4 holds, hence, according to (4.3), wy/we = 14.74 should be greater
than or equal to wy /w4 = 4.56, which is satisfied.

After checking all 118 remaining cases, four individual violations of the POIP condition can be found, therefore
the matrix A is not POIP consistent, which means that the matrix does not preserve intensity of preferences.
The set 1(2) = {(4,3,4,2),(3,2,4,2),(2,4,3,4),(2,4,2,3)}.

One can easily check, for instance, that for the quadruple (4, 3,4, 2) the POIP condition is violated:

ag3 =3 > 1, a0 = 2 > 1, and a4z > ago hold, but wy/ws = 1.407 is less than wy/wy = 3.234, which
contradicts condition (4.3).

The POIP condition for the matrix A is violated in 4 individual cases. Since maxpopy = 6 and maxporp) =
30, n; = 0 and ny = 4, VFI attains the following value:

VFIn(A,w):[a: M =2 ]:[0,2/15].
maxpop) max(poip)

Alpha(A,w) = 0, since I(1) = @.
Alpha . (A,w) =0, since I(1) = @.

Beta(A, w) = Yy (2 — 2 ) = (22 - 22 ) 4 (-2 4 () (- m) 3079,
Betamax (A, w) = wg/we — wy/ws = 1.83.

Example 5.2. Consider the pairwise comparison matrix A of the order n = 4 from Example 5.1, and let the
element ag4 increase from 1/3 to 175, while evaluating the Koczkodaj’s inconsistency index (KI), see Koczkodaj
[38], and the Alpha index in the process. The results are shown in Figure 1. As can be seen, both indices
increase monotonically as az4 grows, which means the index Alpha satisfies Axiom 4 (see the next section) in
this particular case.

6. AXIOMS FOR PREFERENCE VIOLATION INDICES

The examination of properties of inconsistency indices attracted many recent studies, see e.g. Alonso and
Lamata [1], Brunelli [14, 15], Brunelli and Fedrizzi [16], Csaté [23,25], Koczkodaj and Urban [41], Mazurek
[47], Peldez and Lamata [52]. Their authors call the desirable properties, which inconsistency indices should
satisfy, “axioms”, and propose their own axiomatic systems. However, all axiomatic systems proposed in the
literature are based (directly or indirectly) on standard relation of consistency (2.2). In this section, the axioms
from Brunelli and Fedrizzi [16] will be discussed with respect to preference violation indices Alpha and Beta
introduced in previous section.
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FIGURE 1. The left scale and blue dots: Alpha; the right scale and red dots: KI.

Axioms proposed in Brunelli and Fedrizzi [16] (adapted):
Let A be a pairwise comparison matrix, let A* denote the set of consistent pairwise comparison matrices,

and let I be an inconsistency index.

— Axiom 1 (Existence of a unique element representing consistency).

Formally: an inconsistency index I satisfies Axiom 1 if A € A* & I(A) = 0,VA.

Axiom 2 (Invariance under permutation of alternatives).

Formally: an inconsistency index I satisfies Axiom 2 if I(A4) = I(PAPT), VA, where P is a permutation
matrix, and P7 its transpose.

Axiom 3 (Monotonicity under reciprocity-preserving mapping).

Formally: let A(b) = ai—’j. An inconsistency index I satisfies Axiom 3 if I(A(b)) > I(A4), Vb > 1,VA.

Axiom 4 (Monotonicity on single comparisons).

Formally: let a,, € A # 1. An inconsistency index I satisfies Axiom 4 if I(a,,(0)) is a non-decreasing function
of 4,8 > 1, and I(ape(9)) is a decreasing function of §, § < 1,VA.

Axiom 5 (Continuity).

Formally: an inconsistency index I satisfies Axiom 5 if T(A) is a continuous function of all a;; € A,VA.
Study Brunelli [14] introduced an additional axiom:

Axiom 6 (Invariance under inversion of preferences).

Formally: an inconsistency index I satisfies the Axiom if I(A) = I(AT), where AT denotes a transposed
matrix to A.

Since the evaluation of the preferential consistency can be considered a parallel approach to the numeri-

cal consistency — inconsistency investigation of pairwise comparison matrices (or judgments in general) with
inconsistency indices mentioned in previous sections, also preference violation indices, such as Alpha and Beta
proposed in this study, should satisfy some general (desirable) conditions. The question remains, which afore-

mentioned axioms can be adapted for the preferential consistency.

It is shown in Brunelli and Fedrizzi [16] that out of seven examined inconsistency indices, four indices did
not satisfy at least one of the aforementioned axioms. This indicates that the set of axioms listed above may be
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too restrictive. Nevertheless, all seven indices satisfied the first two axioms that can be undoubtly considered
most crucial to be complied.

Therefore, an axiomatic system in the framework of the preferential consistency should certainly include
Axioms 1 and 2 as its core. These two axioms can be adopted without any changes. Also, Axiom 5 can be
included, since abrupt changes and “jumps” of the index’s values are rather undesirable.

Axioms 3 and 4 were found to be most frequently violated in the Brunelli and Fedrizzi [16] study, moreover,
the authors were not able to prove its satisfaction or violation in case of two indices due to non-trivial formulation
of the axioms, which indicates that these axioms may not be suitable for theoretical considerations. Whether
these two axioms (after appropriate reformulation) should be included into the set of axioms for preferential
inconsistency therefore remains an open question and a topic for a discussion.

When constructing an axiomatic system for the preferential consistency, it is important to notice differences
between the preferential consistency and the numerical consistency. The latter is based (directly or indirectly)
on equation (2.2). The former is based on the set of two inequalities ((4.2) and (4.3)). Where the numerical
consistency deals with points as solutions to (2.2), the preferential consistency deals with intersections of intervals
in general. That is why the case of the preferential consistency is more complex, which must be taken into account
in formulation of an appropriate axiomatic system.

Below, it is shown that both preference violation indices Alpha(A4,w) and Beta(A, w) satisfy Axioms 1, 2, 5
and 6.

Proposition 6.1. Let Ala;;] be a pairwise comparison matriz, let w denote a priority vector associated with
A(aq;), and let indices Alpha(A,w) and Beta(A, w) be defined by relations (4.4) and (4.5), respectively. Then
Alpha(A,w) and Beta(A,w) satisfy Axiom 1.

Proof. Let A be the POP consistent: Afa;;] € A*. Then the index set I(1) = @, hence Alpha(A, w) = 0. The
reverse implication: let Alpha(A,w) = 0. Then either: (a) the index set I(1) is empty, hence A is the POP
consistent; or (b) the index set I(1) is non-empty, and the sum in (4.4) is zero. However, if for a pair (i,j) is
(wj —w;) = 0, then the matrix element a;; with corresponding weights w;, w; satisfies relation (4.2), therefore
the pair (7, j) does not belong into I(1), which contradicts the initial assumption. Therefore, if Alpha(A,w) = 0,
then necessarily the index set I(1) is empty, and, consequently, the matrix A is the POP consistent.

The proof for the index Beta(A,w) is analogous. O

Proposition 6.2. Let Afa;;] be a pairwise comparison matriz, and let indices Alpha(A,w) and Beta(A4, w) be
defined by relations (4.4) and (4.5), respectively. Then Alpha(A,w) and Beta(A,w) satisfy Aziom 2.

Proof. Tt is obvious since both indices Alpha(A,w) and Beta(A,w) are invariant under a change of the order
(renaming) of compared objects. O

Proposition 6.3. Let Ala;;] be a pairwise comparison matriz, and let indices Alpha(A, w) and Beta(A,w) be
defined by relations (4.4) and (4.5), respectively. Then Alpha(A,w) and Beta(A, w) satisfy Axiom 5.

Proof. Since w; # 0,Vi, all fractions in Alpha(A,w) and Beta(A,w) are well defined and continuous, and a
finite sum of continuous functions is also continuous. O

Proposition 6.4. Let Afa;;] be a pairwise comparison matriz, and let indices Alpha(A,w) and Beta(A4, w) be
defined by relations (4.4) and (4.5), respectively. Then Alpha(A,w) and Beta(A,w) satisfy Aziom 6.

Proof. 1t is obvious. O

Proposition 6.5. Let Ala;;] be a pairwise comparison matriz, and let indices Alpha_ . (A, w) and
Betamax(A,w) be defined by relations (4.6) and (4.7), respectively. Then Alpha,, .. (A, w) and Betamax(A4, w)
satisfy Axzioms 1, 2, 5 and 6.
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Proof. 1t is obvious. O

The following proposition states that when a pairwise comparison matrix A is the COP consistent and all
preferences are abided, but intensified by a factor b > 1, then the matrix A remains the COP consistent (the
feature also satisfied by numerically consistent matrices), if the priority deriving method is the geometric mean
method, which is due to the scale invariance of the GMM, see Csaté [21,23].

Proposition 6.6. Let Ala;;] be a n x n pairwise comparison matriz, let w denote the priority vector associated
with Alai;] by the GM method, and let indices Alpha(A,w) and Beta(A, w) be defined by relations (4.6) and
(4.7), respectively. Further, let Ala;;| be the COP consistent, hence Alpha(A,w) = 0 and Beta(A,w) = 0. Let
A®a;;] be the matriz derived from Ala;;] by raising each element a;; of A to the bth power, where b > 1. Then,
AW®a;;] is also the COP consistent.

Proof. The matrix Ala;;] is the COP consistent, hence if a;; > 1, then w; > w;, Vi, j € {1,...,n}, and according

k=n 1/n k=n 1/n k=n k=n ..
to (2.3), w; = ( b1 aik> > wj = ( b1 ajk> , therefore [[;~7 air > [[,_] ajr. After raising each a;;
o 1/n o 1/n _ b/n
to the bth power (b > 1), we obtain: w!” = ( v ai?k) > wj(.b) = ( v a?k> , since (Hﬁ;? aik) >

%

_ b/n _ _
( ’,z;f ajk) , and after extracting the root we get: HZ;T; Qi > H’,z;;l ajk, which is true according to the

initial assumption. [

Studies Koczkodaj et al. [43] and Mazurek [48] argue that an inconsistency index should be normalized to an
[0, 1] interval, or, at least, to be bounded from above. The next proposition states that both preference violation
indices Alpha(A,w) and Beta(A,w) are bounded from above.

Proposition 6.7. Let Ala;;] be a pairwise comparison matriz of order n, and let indices Alpha(A,w) and
Beta(A,w) be defined by relations (4.6) and (4.7), respectively. Then both Alpha(A,w) and Beta(A,w) are
bounded from above.

Proof. Both Alpha(A,w) and Beta(A, w) are continuous functions and the set w;, such that 0 < w; < 1,Vi,
constitutes their domain. Since the domain set of both (continuous) functions is bounded, also their range is
bounded. O

The following proposition provides an upper bound estimate for the index Alpha(A,w) with respect to the
matrix size n, which can be used for a normalized version of the index.

Proposition 6.8. Let Ala;;] be a pairwise comparison matriz of order n, and let Alpha(A,w) be defined by
relation (4.6). Then Alpha(A,w) < (n? —n)/2 .

Proof. Index Alpha(A,w) is defined as the sum of terms (w; — w;) such that w; > w;, where 4,5 € I(2).
This sum contains up to (n? — n)/2 terms corresponding to the maximum number of POP violations. Since
(wj —wi) <1,Vi,j € 1(2), we get: Alpha(A, w) =3 ;) (w; —w;) < (n?—=n)/2-1=(n?—-n)/2. O

Due to fractions in the definition of the index Beta, the index is bounded from above only when a pairwise
comparison scale is bounded from above.

Proposition 6.9. Let Ala;;] be a pairwise comparison matric of the order n, and let Beta(A, w) be defined by
relation (4.5). Let a;; < K,Vi,j. Then Beta(A, w) is bounded from above.

Proof. 1t is sufficient to show that fractions in the definitions of Beta(A,w) are bounded. Without loss of
generality assume that a1; = K,Vj,1 < j < n and ap; = 1/K,Vl < j < n,j # 2, so that the fraction
w1 /we is maximal possible. We show that it is bounded from above. From the GM method it follows that

wy = K"+ and wy = K . Therefore, wy/wy = K"n /K'+" = K2"=2_ As a consequence, Beta(A4,w) <
1
Z( 2-n)(n®—n—-2)K™2 O
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TABLE 1. Percentile values for Alpha and Beta, n = 4.

Percentile Alpha Beta  Percentile Alpha Beta

0 0 0 55 0.074  16.62
5 0 3.95 60 0.106  17.89
10 0 6.86 65 0.144  19.35
15 0 8.48 70 0.179  21.07
20 0 9.76 75 0.208  23.03
25 0 10.76 80 0.233  25.18
30 0 11.71 85 0.257  28.47
35 0 12.69 90 0.282  33.27
40 0 13.57 95 0.316  41.32
45 0.024 14.44 100 0.415  107.36
50 0.046  15.48

Whether the preference violation indices Alpha(A, w) and Beta(A, w), or Alpha, . (A, w) and Betamax (A4, w),
respectively, satisfy or violate Axioms 3 and 4 remains unknown (see Example 5.2 where Axiom 4 is satisfied
by Alpha), but a numerical study that is going to follow the presented research will hopefully find the answers.
However, it should be noted that Axioms 1, 2, 5 and 6 are general — they do not depend on a type of inconsistency.
On the other hand, Axioms 3 and 4 assume the notion of (in)consistency given by relation (2.2), and state what
should happen when a single matrix element deviates from (2.2). It is clear that such axioms are not particularly
suitable for Alpha and Beta indices, since, for instance, the value of Beta depends on an interplay of two matrix
elements and four weights in each parenthesis within the sum in relation (4.5). Hence, Axioms 3 and 4 might
need a modification.

Finally, although the preference violation indices were introduced in the theoretical framework of multiplica-
tive pairwise comparisons, the indices can be easily reformulated for other pairwise comparison systems, e.g.
fuzzy or additive, since all these systems form one Abelian linearly ordered group, and can be mapped one to
another by appropriate isomorphisms, see e.g. Cavallo and D’Apuzzo [18], or Kulakowski et al. [46].

7. MONTE CARLO SIMULATIONS FOR n = 4

In this section values of Alpha and Beta indices were examined for 5000 randomly generated multiplicative
pairwise comparisons matrices of order n = 4, where matrix elements were drawn from Saaty’s fundamental scale
{1/9,1/8,...,1,...,8,9}, to provide the first insight into behavior of both inconsistency indices. The priority
vector of each matrix was calculated via the geometric mean method. The random generation of matrix entries
above the main diagonal was performed in R with the use of the uniform distribution, and entries below the
main diagonal were calculated as their reciprocals.

Out of 1000 generated matrices, 41.2% of matrices had Alpha = 0, hence they were POP consistent, and
0.9 % had Beta = 0, hence they were POIP consistent. The frequency distribution of Alpha and Beta values
is shown in Figures 2 and 3. Pearson’s correlation coefficient between Koczkodaj’s inconsistency index KI and
Alpha was 0.497 and between KI and Beta 0.135. Table 1 provides percentiles for Alpha and Beta values. Median
values for both indices were found as follows: Zyeq(Alpha) = 0.046 and 04 (Beta) = 15.48.

In the future, Monte Carlo simulations for n > 4 are going to be performed, but it must be noted that
the number of POIP conditions that have to be checked grows rapidly with increasing n, making simulations
particularly difficult and time consuming (in the case of n = 7, for example, 1680 individual POIP conditions
must be checked just for one generated matrix!).
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8. CONCLUSIONS

The aim of this paper was to introduce preference violation indices for the condition of the order preservation
(COP) in multiplicative pairwise comparisons. While index VFI provides a frequency of violations of the COP
condition, other two indices, Alpha and Beta, aim at measuring the deviation of pairwise comparisons (with
an associated priority vector) from the “preferential consistency” formulated by Bana e Costa and Vansnick
[2]. Also, an axiomatic system for the proposed preference violation indices was discussed, and it was shown
that both indices Alpha and Beta satisfy uniqueness, invariance under permutation, invariance under inversion
of preferences and continuity axioms. Further study may focus on the relationship between newly introduced
indices Alpha and Beta, and standard inconsistency indices such as CI, CR, or KI, or generalization of the
proposed indices into fuzzy or alo-groups frameworks. The evaluation of the COP condition for incomplete
matrices can be considered as well.
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