Incidence dimension and 2-packing number in graphs
RAIRO. Operations Research, Tome 56 (2022) no. 1, pp. 199-211

Let G = (V, E) be a graph. A set of vertices A is an incidence generator for G if for any two distinct edges e, fE(G) there exists a vertex from A which is an endpoint of either e or f. The smallest cardinality of an incidence generator for G is called the incidence dimension and is denoted by dim$$(G). A set of vertices PV(G) is a 2-packing of G if the distance in G between any pair of distinct vertices from P is larger than two. The largest cardinality of a 2-packing of G is the packing number of G and is denoted by ρ(G). In this article, the incidence dimension is introduced and studied. The given results show a close relationship between dim$$(G) and ρ(G). We first note that the complement of any 2-packing in graph G is an incidence generator for G, and further show that either dim$$(G) = |V(G)-|ρ(G) or dim$$(G) = |V(G)-|ρ(G) - 1 for any graph G. In addition, we present some bounds for dim$$(G) and prove that the problem of determining the incidence dimension of a graph is NP-hard.

DOI : 10.1051/ro/2022001
Classification : 05C69, 05C12
Keywords: incidence dimension, incidence generator, 2-packing
@article{RO_2022__56_1_199_0,
     author = {Bo\v{z}ovi\'c, Dragana and Kelenc, Aleksander and Peterin, Iztok and Yero, Ismael G.},
     title = {Incidence dimension and 2-packing number in graphs},
     journal = {RAIRO. Operations Research},
     pages = {199--211},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/ro/2022001},
     mrnumber = {4376277},
     zbl = {1483.05113},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2022001/}
}
TY  - JOUR
AU  - Božović, Dragana
AU  - Kelenc, Aleksander
AU  - Peterin, Iztok
AU  - Yero, Ismael G.
TI  - Incidence dimension and 2-packing number in graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 199
EP  - 211
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2022001/
DO  - 10.1051/ro/2022001
LA  - en
ID  - RO_2022__56_1_199_0
ER  - 
%0 Journal Article
%A Božović, Dragana
%A Kelenc, Aleksander
%A Peterin, Iztok
%A Yero, Ismael G.
%T Incidence dimension and 2-packing number in graphs
%J RAIRO. Operations Research
%D 2022
%P 199-211
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2022001/
%R 10.1051/ro/2022001
%G en
%F RO_2022__56_1_199_0
Božović, Dragana; Kelenc, Aleksander; Peterin, Iztok; Yero, Ismael G. Incidence dimension and 2-packing number in graphs. RAIRO. Operations Research, Tome 56 (2022) no. 1, pp. 199-211. doi: 10.1051/ro/2022001

[1] N. Biggs, Perfect codes in graphs. J. Combin. Theory Ser. B 15 (1973) 289–296. | MR | Zbl | DOI

[2] D. Božović and I. Peterin, Graphs with unique maximum packing of closed neighborhoods. Discuss. Math. Graph Theory, in press. (2021). DOI: . | DOI | Zbl | MR

[3] M. P. Dobson, E. Hinrichsen and V. Leoni, Generalized limited packings of some graphs with a limited number of P 4 partners. Theor. Comput. Sci. 579 (2015) 1–8. | MR | Zbl | DOI

[4] R. D. Dutton, Global domination and packing numbers. Ars Combin. 101 (2011) 489–501. | MR | Zbl

[5] A. Estrada-Moreno, Y. Ramírez-Cruz and J. A. Rodríguez-Velázquez, On the adjacency dimension of graphs. Appl. Anal. Discrete Math. 10 (2016) 102–127. | MR | Zbl | DOI

[6] H. Fernau and J. A. Rodríguez-Velázquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math. 236 (2018) 183–202. | MR | Zbl | DOI

[7] A. Gagarin and V. Zverovich, The probabilistic approach to limited packings in graphs. Discrete Appl. Math. 184 (2015) 146–153. | MR | Zbl | DOI

[8] R. Gallant, G. Gunther, B. Hartnell and D. F. Rall, Limited packings in graphs. Discrete Appl. Math. 158 (2010) 1357–1364. | MR | Zbl | DOI

[9] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, USA (1979). | Zbl

[10] J. Geneson, Metric dimension and pattern avoidance in graphs. Discrete Appl. Math. 284 (2020) 1–7. | MR | Zbl | DOI

[11] F. Harary and R. A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191–195. | MR | Zbl

[12] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs. Marcel Dekker Inc, New York, NY (1998). | Zbl | MR

[13] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker Inc, New York, NY (1998). | MR | Zbl

[14] M. A. Henning, C. Löwenstein and D. Rautenbach, Dominating sets, packings, and the maximum degree. Discrete Math. 311 (2011) 2031–2036. | MR | Zbl | DOI

[15] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs. Discrete Math. 312 (2012) 3349–3356. | MR | Zbl | DOI

[16] K. Junosza-Szaniawski and P. Rzążewski, On the number of 2-packings in a connected graph. Discrete Math. 312 (2012) 3444–3450. | MR | Zbl | DOI

[17] A. Kelenc, D. Kuziak, A. Taranenko and I. G. Yero, On the mixed metric dimension of graphs. Appl. Math. Comput. 314 (2017) 429–438. | MR | Zbl

[18] A. Kelenc, N. Tratnik and I. G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl. Math. 251 (2018) 204–220. | MR | Zbl | DOI

[19] S. Klavžar, I. Peterin and I. G. Yero, Graphs that are simultaneously efficient open domination and efficient closed domination graphs. Discrete Appl. Math. 217 (2017) 613–621. | MR | Zbl | DOI

[20] M. Knor, S. Majstorović, A. T. Masa Toshi, R. Škrekovski and I. G. Yero, Graphs with the edge metric dimension smaller than the metric dimension. Appl. Math. Comput. 401 (2021) 126076. | MR | Zbl

[21] M. Knor, R. Škrekovski and I. G. Yero, A note on the metric and edge metric dimensions of 2-connected graphs. Discrete Appl. Math., in press. DOI: (2021). | DOI | MR | Zbl

[22] J. Kratica, V. Filipovic and A. Kartelj, Edge metric dimension of some generalized Petersen graphs. Results Math. 74 (2019) 182. | MR | Zbl | DOI

[23] D. Kuziak and I. G. Yero, Metric dimension related parameters in graphs: A survey on combinatorial, computational and applied results. Preprint (2021). | arXiv

[24] A. Meir and J. W. Moon, Relations between packing and covering numbers of a tree. Pacific J. Math. 61 (1975) 225–233. | MR | Zbl | DOI

[25] D. A. Mojdeh, B. Samadi, A. Khodkar and H. R. Golmohammadi, On the packing numbers in graphs. Australas. J. Combin. 71 (2018) 468–475. | MR | Zbl

[26] I. Peterin and I. G. Yero, Edge metric dimension of some graph operations. Bull. Malays. Math. Sci. Soc. 43 (2020) 2465–2477. | MR | Zbl | DOI

[27] I. Sahul Hamid and S. Saravanakumar, Packing parameters in graphs. Discuss. Math. Graph Theory 35 (2015) 5–6. | MR | Zbl | DOI

[28] P. J. Slater, Leaves of trees. Congressus Numerantium 14 (1975) 549–559. | MR | Zbl

[29] R. C. Tillquist, R. M. Frongillo and M. E. Lladser, Getting the lay of the land in discrete space: A survey of metric dimension and its applications. Preprint (2021). | arXiv | MR | Zbl

[30] N. Zubrilina, On the edge dimension of a graph. Discrete Math. 341 (2018) 2083–2088. | MR | Zbl | DOI

Cité par Sources :