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INCIDENCE DIMENSION AND 2-PACKING NUMBER IN GRAPHS

DRAGANA Bozovi¢!?, ALEKSANDER KELENC!?, IZTOK PETERIN'Z*
AND ISMAEL G. YERO?

Abstract. Let G = (V, E) be a graph. A set of vertices A is an incidence generator for G if for
any two distinct edges e, f € E(G) there exists a vertex from A which is an endpoint of either e or
f. The smallest cardinality of an incidence generator for G is called the incidence dimension and is
denoted by dim;(G). A set of vertices P C V(G) is a 2-packing of G if the distance in G between any
pair of distinct vertices from P is larger than two. The largest cardinality of a 2-packing of G is the
packing number of G and is denoted by p(G). In this article, the incidence dimension is introduced
and studied. The given results show a close relationship between dim;(G) and p(G). We first note that
the complement of any 2-packing in graph G is an incidence generator for GG, and further show that
either dim;(G) = |V(G) — |p(G) or dim;(G) = |V(G) — |p(G) — 1 for any graph G. In addition, we
present some bounds for dim;(G) and prove that the problem of determining the incidence dimension
of a graph is NP-hard.
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1. INTRODUCTION
The famous Gallai’s theorem states that
a(G) + B(G) = n,

where G is a graph on n vertices, 5(G) is the vertex covering number of G and «(G) is the independence number
of G. Tts beauty does not only lie in the numbers. Any vertex cover set S of cardinality (G) determines an
independent set I of cardinality «(G), which is the complement of S. With such elegance, the hunt for analog
results is always open.

One possibility arises from observing an independent set from a different (but equivalent) perspective. It
comes from the notion of k-packings in graphs. A set P C V(G) is a k-packing set (or k-packing for short) of G
if the distance between any pair of distinct vertices from P is greater than k. The k-packing number of G is the
maximum cardinality of any k-packing of G and is denoted by py(G). Clearly, 1-packings represent independent
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sets of G, and maximum 1-packings are maximum independent sets of G. A p(G)-set is a packing of cardinality
pr(G). Since we are interested only in 2-packings, from now on, we will use the terminology p(G), instead of
p2(@), and packing, instead of 2-packing. A natural question concerns finding an analogy to Gallai’s theorem
for maximum k-packings for £ > 2. We deal with this problem for k = 2.

For a longer period of time packings were considered as a natural lower bound for the domination number
of graphs (for definitions, terminology and more information on domination in graphs we suggest the books
[12,13]). One of the first results (and indeed very remarkable) of that type is from Meir and Moon [24], who
have shown that p(T) = v(T) for every tree T (using different notation). Efficient closed domination graphs
represent a class of graphs with p(G) = 7(G), where both maximum 2-packing sets and minimum dominating
sets coincide. In such a case, we call a minimum dominating set a 1-perfect code. The study of perfect codes in
graphs was initiated by Biggs [1]. Later it was intensively studied. We recommend [19] for further information
and references.

In the last decade, the packing number became more interesting, not only in connection with the domination
number. For instance, the relationship between the packing number and maximal packings of minimum cardinal-
ity, called also the lower packing number, is investigated in [27]. A connection (in the form of an upper bound)
between the packing number and the double domination is presented in [25]. Graphs for which their packing
number equals the packing number of their complement are described in [4]. Henning et al. [14] shows that the
domination number is bounded from above by the packing number multiplied with the maximum degree of a
graph.

A generalization of packing, called k-limited packing, is presented in [8]. Here every vertex can have at most k
neighbors in a k-limited packing set S. To achieve some bounds, a probabilistic approach to k-limited packings
was introduced in [7]. A further generalization of it is shown in [3]. It brings a dynamic approach concerning the
vertices of GG, where different vertices can have a different number of neighbors in a generalized limited packing.
As shown in [3], the problem of computing the packing number of graphs is NP-hard but polynomially solvable
for P,-tidy graphs.

Our goal is to continue finding several contributions on packings in connection with other topics in graphs.
In recent years, this has attracted several researchers’ attention who also tried to find the connections with the
parameters close to metric dimension. The metric dimension of graph G (introduced first in [11,28]) and its
large number of variants are due to their properties of uniquely recognizing (identifying or determining) vertices
or edges of G nowadays largely studied. Some of the most recent variants deal with uniquely identifying the
edges of a considered graph (which is in some way one of the ideas that motivated this contribution). The first
works on these recent topics are [17,18]. Another metric parameter that can be taken as a predecessor of the
present study concerns identification of vertices throughout neighborhoods (see [15]). We next describe all of
these related concepts.

Given graph G, a set S of vertices of G is an adjacency generator® for G if for any two different vertices
u,v € V(G)—9, there exists x € S such that |N(z)N{u,v}| = 1. An adjacency generator of minimum cardinality
is called an adjacency basis for G. Its cardinality is the adjacency dimension of G and is denoted by dim4(G).
These concepts were first introduced in [15] as a tool while studying some metric properties of the lexicographic
product of graphs. More results on the adjacency dimension of graphs can be found in [5, 6].

Given a vertex v € V(G) and an edge e = uvw € E(G), the distance between the vertex v and the edge
e is defined as d(e,v) = min{d(u,v),d(w,v)}. A vertex w € V(G) distinguishes two edges e1,ea € E(G) if
d(w,e1) # d(w,ez). A nonempty set S C V(G) is an edge metric generator for G if any two edges of G are
distinguished by some vertex of S. An edge metric generator with the smallest possible cardinality is called an
edge metric basis for G. Its cardinality is the edge metric dimension and is denoted by edim(G). This concept
was introduced in [18]. Some other studies on the edge metric dimension of graphs appeared in [10,20-22,26,30].
Moreover, for some extra information on these parameters, and several other works on the metric dimension of

1n fact, these sets were called adjacency resolving sets in [15], where the concept was first described.
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graphs and its variants, in particular for the ones identifying edges of graphs, we suggest the two recent surveys
[23,29].

As a kind of a mix with respect to the last two parameters, we introduce the concept of incidence dimension
in graphs which arises from the two concepts above in some natural way of research evolution. We formally
define it in the next section. The definition is based on the existence of some properties of the complement of a
packing set. Then we present a connection between the incidence dimension and packing number of graphs. A
section about the complexity of the incidence dimension follows. We conclude this work with some additional
information about the incidence dimension.

We consider only finite, undirected and simple graphs. Let G be a graph with vertex set V(G) and edge set
E(G). For a fixed v € V(G), set {u € V(G) : uv € E(G)} represents the open neighborhood of v and is denoted
by N(v). The degree of v is d(v) = |N(v)|. The closed neighborhood of v € V(G) is N[v] = N(v) U {v}. The
distance d(u,v) between any two vertices u and v is the minimum number of edges on a path between them.
Given a set of vertices S of G, we use G — S to denote the graph obtained from G by removing all the vertices
of S and the edges incident with them. If S = {v} for some vertex v, then we simply write G —v. The subgraph
of G induced by D C V(G) will be denoted by G[D].

2. DEFINING THE INCIDENCE DIMENSION AND ITS CONNECTION WITH PACKING NUMBER

As mentioned in the introduction, we are interested in some properties of the complement of the packing sets
of graph G. The following result provides a motivation for the definition of the incidence dimension.

Proposition 2.1. If a set X C V(G) is a packing set of graph G, then the set S = V(G)\ X is a vertex cover
of G and for any two different edges e and f there exists x € S such that either x is incident with e or x is
incident with f.

Proof. First, let e = uv be an arbitrary edge of G. If {u,v} NS =, then u,v € X. Since d(u,v) = 1, this yields
a contradiction with X being a packing set of G. Thus, S is a vertex cover. (This also follows from the fact that
every packing is also a 1-packing and, with this, an independent set. Since the complements of independent sets
are vertex covers, the result follows.)

Take now two different arbitrary edges e, f € E(G). If e = uv and f = ab are not incident, then they are
distinguished by one endpoint of e which exists in S because S is a vertex cover. Otherwise they are incident in
one vertex, say in u = a. If {v,b} NS =, then v,b € X. This is a contradiction with X being a packing of G
as d(b,v) < 2. So at least one of v or b, say v, is in S and v is the desired vertex. O

With the second property of the above proposition, we are able to define the incidence dimension as follows.
For this, note that it is meaningful to demand a minimum cardinality set with this mentioned property in order
to retain the analogy with the relationship between independence number and vertex cover number.

Definition 2.2. Given two edges e, f € F(G) and a vertex x € V(G), we say that x (incidently) resolves or
distinguishes the pair e, f if either x € e or « € f (exactly one of these two edges is incident with z). A set S
of vertices of G is an incidence generator for G if for any two different edges e, f € E(G) there exists a vertex
x € S such that = incidently resolves the pair e, f. An incidence generator of minimum cardinality is called an
incidence basis for G, and its cardinality, denoted by dim;(G), is the incidence dimension of G.

From this, we can immediately see that we cannot expect such an elegant result as in the case of Gallai’s
theorem. Indeed, we can see that for K5, an empty set is an incidence generator of minimum cardinality since
there exists only one edge in K5, and we have dim;(K>) = 0. Clearly, this can be extended to any graph with
only one edge. However, as soon as there are two edges in G, we have dim;(K3) > 0.

The next observation is that if S is an incidence generator for GG, then there exists at most one edge with
both endpoints outside of S. Namely, two such edges would not be incidently resolved by S, a contradiction
with S being an incidence generator for G.
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FIGURE 1. Graph G and edge e for which it holds that p(G —e) > |P.(G)].

Before we state a deeper connection between the incidence dimension and the packing number of a graph,
we need some additional terminology.

Definition 2.3. Let ¢ = wv be an edge of graph G. The e-critical packing of G — e, denoted by P.(G), is a
maximum packing of the graph G — e with the following property.

If |[{u,v} N P.(G)| < 2, then P.(G) is a packing of G. (2.1)

Notice that both u and v can be in P.(G), and (2.1) is trivially fulfilled. Clearly, P.(G) is not a packing of G
in such a case. However, by removing either v or v from P.(G), we obtain a packing of G. If u,v ¢ P.(G), the
set P.(G) is also a packing for G. If exactly one endpoint of e, say u, is inside P.(G), then Ng(v)NP.(G) = {u}
or else P.(G) is not a packing of G contradicting (2.1). Therefore we have

p(G) < |P.(G)| < p(G) + 1. (2.2)

Figure 1 shows an example of graph G, which for the drawn dashed edge has an e-critical packing smaller
than p(G — e). Black vertices represent the unique maximum packing of G — e, which does not fulfill (2.1) and
is therefore not e-critical. Hence, the cardinality of every e-critical packing is two.

Theorem 2.4. If G is a graph of order n and k 1is an integer defined as k = I%a()é) |P.(G)|, then dim;(G) =
ec
n — k. An incidence basis for the graph G is any set S = V(G) \ Pe(G) for which it holds that k = |P.(G)|.

Proof. Let e = uv and P = P.(G) such that k = |P.(G)|. We want to prove that S = V(G) \ P is an incidence
generator for G.

If [{u,v} N P| < 2, then P is also a packing of G by (2.1). Due to Proposition 2.1, S is an incidence generator
for G. Otherwise u,v € P. Hence, P is a packing of the graph G — e. Due to Proposition 2.1, S is an incidence
generator for G — e with the property that every edge of G — e has at least one endpoint in S. Since S is an
incidence generator for G — e, we have to consider only the pairs of edges where one edge is e. Take edge e and
an arbitrary edge f # e of G. Clearly, the edges e and f are distinguished by the endpoint of f that is in S. It
follows that S is an incidence generator for G and dim;(G) < n — k.

Now suppose that there exists an incidence generator S’ for G with cardinality |S’| = d’ < n — k. Since S’ is
an incidence generator for G, it follows that there exists at most one edge in G induced by P.(G) =V (G)\ S".
Suppose that such an edge e = wv exists. First, notice that in G — e there is no edge between two vertices of
P/(@G). Since S’ is an incidence generator for G, there do not exist two arbitrary vertices x,y € P.(G) such that
dg—_c(z,y) = 2. Thus, it follows that P/(G) is a packing for G — e and both u,v € P/(G). Since the cardinality
of P/(G) is n —d' > k, we obtain a contradiction with the maximality of P.(G). If there is no edge in the graph
induced by P.(G), then P.(G) is a packing of G by (2.1). Every packing of G is also a packing of G — e with
property (2.1) for an arbitrary edge e. Again, this is a contradiction with the maximality of P.(G). Therefore,
we deduce that there is no incidence generator with cardinality less than n — k. (I



INCIDENCE DIMENSION AND 2-PACKING NUMBER IN GRAPHS 203

A direct consequence of Theorem 2.4, together with (2.2), follows.
Corollary 2.5. For every graph G of order n it holds that n — p(G) — 1 < dim;(G) < n — p(G).

This yields a natural partition of graphs into two classes, those whose incidence dimension equals |V (G)| —
p(G) — 1 and those for which dim;(G) = |V(G)| — p(G). To show that graph G belongs to the first class, we
need to find an edge e such that |P.(G)| = p(G) + 1. For the second class, we need to show that for each edge
e, we have |P.(G)| = p(G).

We next derive exact results for the incidence dimension for some graph families, and we first consider a class
of graphs called edge-triangular. A graph is called edge-triangular if every edge of a graph is in at least one
3-cycle.

Proposition 2.6. Let S be any incidence generator for graph G. Then the graph G is edge-triangular if and
only if for every e = uwv € E(Q) it holds that |{u,v} NS| > 0.

Proof. Let G be an edge-triangular graph. Suppose there exists en edge ¢ = uv and an incidence generator S
for G such that [{u,v} N S| = 0. Since G is an edge-triangular graph, there exists a vertex w such that wvwu
is a triangle. Note that the vertex w has to be in S because e and uw have to be distinguished by at least one
endpoint. However, the edges uw and vw are not distinguished by any vertex from .S. This is a contradiction
with S being an incidence generator.

Conversely, suppose that the graph G is not edge-triangular. Thus, there exists an edge e = wv that is not
a part of a triangle. Consequently, the set S = V(G) \ {u,v} is an incidence generator for G, which means
{u,v} N S| =0. O

Proposition 2.6 implies the following corollary.

Corollary 2.7. Let G be an edge-triangular graph. The set S is an incidence generator for G if and only if
V(G)\ S is a packing of G.

Proof. Suppose that S is an incidence generator. Due to Proposition 2.6 there are no two vertices at distance 1
in V(G) \ S. Since S is an incidence generator, there are also not two vertices at distance 2 in V'\ S. It follows
that V/(G) \ S is a packing of G.

By Proposition 2.1, the converse holds for any graph G. O

Proposition 2.8. Let n,r and t be integers.
(i) If n > 3, then dim;(K,) =n — 1.
(i) Ifn >3, then dimy(P,) = H";”J.

)
(iii) If n > 4, then dim;(C,) = [Z].
(iv) If r,t > 1, then dim; (K, ) =7+t — 2.

Proof. (i) Clearly, K, is an edge-triangular graph. So, the result follows from Corollary 2.7, and the fact that
any set containing all but one vertex of any graph G is an incidence generator for G. Such an incident generator
is minimum because V(K,,) — {x, y} is not an incident generator for different z,y € V(K,,) as edges zw and yw
are not distinguished by V(K,,) — {z, y} for any w € V(K,,) — {z,y}.

(ii) Let V(P,) = {vo,v1,...,vn_1} such that v;v;y; € E(F,) for every i € {0,...,n — 2}. Consider the set
S'={v;:i>2and i=0ori=2 (mod 3)}. Note that any two edges of P, are incidently resolved by S’, and

so dimy(P,) < 9’| = [@J

On the other hand, let S be an incidence basis for P,. There could be at most one edge which is not incident
to any vertex of S. Also, if v; € S and i # 0,n — 1, then v;_1 € S or v;41 € S or both. Thus, at least two of any
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FIGURE 2. An example showing that the converse implication of Theorem 2.9 does not hold in
general.

three consecutive vertices v;, v;41, V42 are in S. According to these facts, dim;(P,) = |S| > LQ("T_HJ, which

completes the proof of (ii).

(iii) Let e = uv be any edge of C),. Clearly, C,, — e = P,,. It is well known, see [24], that p(T) = ~(T) for
every tree T and we have p(P,) = [2]. Moreover, there always exists a p(P,)-set P such that u,v € P. Hence,
|P.(Cy)| = [%]. On the other hand, p(Cy,) = | %]. If n # 3k, then |P.(Cy)| = p(Cy) + 1, and by Theorem 2.4,
we have dim;(Cy,) =n— [%] = | %*]. For n = 3k we have |P.(C,)| = p(Cy) = k for every edge e and, again by
Theorem 2.4, we have dim;(Cy,) =n — p(Cy,) =3k —k = 22 = | 2], So, we are done with the proof of (iii).

(iv) Clearly P.(K, ) = {u,v} for any edge e = uv of K, ;, while p(K,;) = 1. By Corollary 2.5 and a comment
after it we have dim; (K, ;) = r 4+ ¢ — 2, because all edges are symmetric to each other. O

Recall that AA B denotes the symmetric difference of the sets A and B.

Theorem 2.9. Let G be a graph. If dim;(G) = |V(G)| — p(G) — 1, then G[P1APy] is not an empty graph for
some maximum packings P; and Py of G.

Proof. Let G be a graph and let S be an incidence basis of G such that dim;(G) = |[V(G)| — p(G) — 1. Let
P =V(G) - S. Since |P| = p(G) + 1, P is not a packing for G. So, there exist two different vertices u,v € P,
such that 1 < d(u,v) < 2. If d(u,v) = 2, then the edges uw and wv, where w is a common neighbour of u and v,
are not resolved by S, a contradiction. Thus d(u,v) = 1. Let P, = V(G) — (SU{u}) and P, = V(G) — (SU{v}).
The cardinality of both packings is maximum possible, since |P;| = |P| = |V(G)|—((|[V(G)| — p(G) = 1)+ 1) =
p(G). Since u and v are adjacent it follows that G[PiAP] is not an empty graph and the proof is
completed. O

The converse implication of Theorem 2.9 does not hold in general, as we can see from the example in Figure 2.
Two different packings of G are presented by black vertices on the left and in the middle of Figure 2. On the
right side, there is a picture of G[P; A P,], which is clearly not an empty graph. However, the incidence dimension
of G is not equal to |V(G)| — p(G) — 1 because one can check that P.(G) = p(G) for every edge e € E(G) as
mentioned in a comment after Corollary 2.5.

We next provide an exact result for the class of graphs with the unique maximum packing. Two characteri-
zations of trees with the unique maximum packing were presented recently in [2].

Theorem 2.10. If G is a graph with the unique mazimum packing P, then dim;(G) = |[V(G)| — p(G).

Proof. Let G be a graph and P its unique maximum packing. To prove that dim;(G) = |V(G)| — p(G), we will
use the contraposition of Theorem 2.9: If G[PLAPs] is an empty graph, then dim;(G) # |[V(G)| — p(G) — 1. Tt
follows that P, = P, = P, because P is a unique maximum packing of T. So, G[PiAP,] is an empty graph
for any maximum packings P; and P, and dim;(G) # |V(G)| — p(G) — 1. By Corollary 2.5 we conclude that
dim;(G) = [V(G)| = p(G). O
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3. COMPLEXITY OF THE PROBLEM

In this section, we consider the computational complexity of computing the incidence dimension of a graph.
We show that the problem of finding the incidence dimension of an arbitrary graph is NP-hard. For this, we
strongly rely on edge-triangular graphs. We consider the following decision problem.

INCIDENCE DIMENSION PROBLEM (IDIM problem for short)
INSTANCE: Graph G of order n > 3 and an integer 1 <r <n — 1.
QUESTION: Is dim;(G) < r?

To study the complexity of IDIM problem, we make a reduction from 3-SAT problem, which is one of the
most classical NP-complete problems known in the literature. For more information on 3-SAT problem and
reducibility of NP-complete problems in general, we suggest [9].

Theorem 3.1. IDIM problem is NP-complete.

Proof. For a set of vertices S guessed for the problem by a nondeterministic algorithm, one needs to iterate
through all pairs of edges and check that every pair is incidently resolved by a vertex from S. This can be done
in polynomial time, and therefore IDIM problem is in NP. We make a polynomial transformation of 3-SAT
problem to IDIM problem in the following way. Consider an arbitrary instance of 3-SAT problem, i.e., a finite
set U = {uq,...,u,} of Boolean variables and a collection C' = {cy,...,¢n} of clauses, each containing three
Boolean variables from U. We will construct graph G = (V, E) and set a positive integer r < |V| — 1, such
that dim;(G) < r if and only if C is satisfiable. The construction will be made up of several gadgets and edges
between them.

For each variable u; € U, 1 < i < n, we construct a truth-setting gadget X; = (Vi, E;), with V; =
{zi, yi, zi,w;, Ty, Fi} and E; = {;yi, 324, Yizi, Yiwi, ziw;, w; T;, w; F;, T; F; }, see Figure 3. Each truth-setting
gadget is connected to the rest of the graph only through nodes T; and F;, which are representing values TRUE
and FALSE, respectively.

Claim. Let u; be an arbitrary variable in U. Any incidence generator S must contain at least four vertices
from its truth-setting gadget. Moreover, if there are exactly four vertices from a truth-setting gadget in S, then
Yi, Wi,z € S and x; ¢ S.

Proof. Towards contradiction suppose that there exists an incidence generator S with less than four vertices
from the truth-setting gadget corresponding to wu;. It follows that there exists a set of three vertices W; =
{v1,v2,v3} C V; that are not in S. Make a partition of V; into two sets V; = {z;,v:, z; } U{w;, T;, F;}. There are
at least two vertices from W, in one of the partition sets. Since each partition set forms a triangle, it follows
that there is an edge lying outside S, a contradiction with Proposition 2.6.

Suppose now that exactly four vertices from a truth-setting gadget are in S. If w; ¢ S, then T}, F},y;,2; € S
because otherwise we have a contradiction with Proposition 2.6. But then x; ¢ S and edges w;z; and z;z; are
not distinguished by S, a contradiction. Hence, w; € S. If y; ¢ S (resp. z; ¢ S), then x; € S and z; € S (resp.
y; € S) to fulfill Proposition 2.6. Clearly, exactly one of T; and F; is in S. If T; € S, then edges Fyw; and y;w;
(resp. z;w;) are not distinguished by S, a contradiction. Similar, if F; € S, then edges T;w; and y;w; (resp. z;w;)
are not distinguished by S, a contradiction again. Thus, y;, z; € S. If in addition x; € S, then for the triangle

w;T; F;w; we have a contradiction with Proposition 2.6. Therefore, x; ¢ S. O

For each clause c; = y]l \Y y]2 \Y y?, 1 < j < my, where yf is a literal in the clause cj,

we construct a satisfaction testing gadget Y; = (V],E), Wlth Vi o= {a}, b} c ,af 7627 2, a3, b3, ¢3

and E = {alb},alch,blel, a?b?,a%c?, b2c%, a3b?,a 3 36363, ka2, a2a?, adal bLb? b2bg b'”zb1 2 37 Jc ’ (s]ee
i = JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ’JJ

Fig. 4). Notice that the satisfaction testing gadget is isomorphic to the Cartesian product C30Cs5.
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FIGURE 3. The truth-setting gadget for variable u;.

FIGURE 4. The satisfaction testing gadget for clause c;.

Claim. 1f ¢; is an arbitrary clause in C' and Y; = (V, E7) its satisfaction testing gadget, then any incidence
generator must contain at least 8 vertices from Vj' .

Proof. Towards a contradiction, suppose there exists an incidence generator S with less than 8 vertices from
the satisfaction testing gadget corresponding to c;. It follows that there exist two vertices z,y € Vj’ that are
not in S. Since the diameter of C3[JC}5 is 2, the vertices x and y are either at a distance one or two. Every
edge of Yj is a part of some triangle, and so x and y cannot be at a distance one, due to Proposition 2.6. Thus,
there is a vertex z such that the edges xz and zy exist. But those two edges are not resolved by any endpoint, a
contradiction. O

We also add some edges to connect the truth-setting gadgets with corresponding satisfaction testing gadgets.
If a variable u; occurs as a literal yf in a clause ¢; = yjl \Y y]2 \Y, yg?, then we add the following edges. If yf is a
positive literal, then we add the edges Fibé? and Fic;?. If a variable yf is a negative literal in a clause c;, then
we add the edges Tibf and T, 1(:;“ For each clause c; € C, denote those six added edges with E;’ . We call them
commaunication edges. Figure 5 shows the edges that were added corresponding to the clause ¢; = (W1 Vaz Vug),
where u; and ws represent the negative literal corresponding to the variables u; and us, respectively.

The construction of IDIM instance is then completed by setting r = 4n + 8m and G = (V, E), where

o (0) (0
i=1 j=1

and
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FIGURE 5. The subgraph associated to the clause ¢; = (7 V w2 V us).

One can execute the described construction in polynomial time. Notice also that G is edge-triangular.
If we show that C is satisfiable if and only if G has an incidence dimension less or equal than r, the proof of
NP-completeness is completed. From Claims 3 and 3 we get the following corollary.

Corollary 3.2. The incidence dimension of G constructed above is at least r = 4n + 8m.
The following lemmas together with Corollary 3.2 complete the proof for IDIM problem being NP-complete.
Lemma 3.3. If C is satisfiable, then dim;(G) = r.

Proof. We construct an incidence generator S of size r based on a truth assignment of elements from the set
U that satisfies the collection of clauses C. Let ¢t : U — {TRUE,FALSE} be a truth assignment that satisfies the
collection of clauses C. For each clause ¢; = yjl \% yj2 vV y?, from C, put into S the vertices b?, c? for k € {1,2,3}.
Since the collection of clauses C' is satisfiable, there exists a literal yf, k € {1,2,3}, that satisfies ¢;. Fix one
such k and put into S the other two vertices af for £ € {1,2,3}\ {k}.

For each Boolean variable u; € U, put into S the vertices {y;, z;, w; }. Also add to the set S, the vertex F; if
t(u;) = TRUE, or the vertex T; if ¢(u;) = FALSE. The cardinality of the constructed set S is clearly r = 4n + 8m.

We now take a look at the set X = V(G) \ S. For each u; € U there are x; and exactly one of the vertices
from the set {7}, F;} in X. The distance between these two vertices is three. For each ¢; € C exactly one of the
vertices a;, a?, a? is in X. The vertex that is in X corresponds to the variable that satisfies c;. It follows that
this vertex is at a distance three or more from all the other vertices in X. All other possible pairs of vertices
in X are also at a distance greater or equal to three. It follows that X is a packing of G. From Corollary 2.7
follows that S is an incidence generator for G since G is edge-triangular. Clearly, |S| = r and we are done by

Corollary 3.2. a

Lemma 3.4. If dim;(G) = r, then the collection of clauses C is satisfiable.
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Proof. Let S be an arbitrary incidence generator for G of cardinality r. The set S must contain at least eight
vertices from each satisfaction testing gadget and at least four vertices from each truth-setting gadget due to
Claims 3 and 3. Since |S| = r = 8m + 4n, it follows that in S there are exactly four vertices from each truth-
setting component and exactly eight vertices from each satisfaction testing component. Since the graph G is
edge-triangular, and together with Corollary 2.7, it follows that X = V(G) \ S is a packing for G. Moreover,

for each ¢ € {1,...,n} it holds that z; € X and exactly one of the vertices T;, F; is in X, by Claim 3. For each
Jj € {1,...,m} exactly one of the vertices a;,a?,a? is in X because b; and cé, i € {1,2,3}, are in a common
triangle with either T, or Iy where u; belongs to the clause c;.

We now define a function that satisfies all clauses from C. For an arbitrary i € {1,...,n},letv; € {T;, F;}nX.
Let t : U — {TRUE,FALSE} be as follows:

_ [TRUE, v;=T;
tui) = {FALSE, v; = F.

We need to show that t is a satisfying truth assignment for C. Let ¢; = y]1 \% yj2 \% yf € C be an arbitrary clause

and denote the corresponding boolean variables with w;, , u;,, u;,, respectively. To show that at least one of its
literals has value TRUE, take the vertex from Vj’ that belongs to X. There is exactly one of the vertices a]l, a?, a?
in X. Let a?, k € {1,2,3}, be the vertex that is in X. The communication edges are added in such a way that
a¥ can be in X (packing set) only if uj, occurs in ¢; as:

— a positive literal and v;, =T}, ;

— a negative literal and v;, = Fj,.

In both cases, c; is satisfied by the literal corresponding to the variable u;, . It finally follows that C'is satisfiable,

which completes the proof of this lemma. a
Lemmas 3.3 and 3.4 show that the above construction is a polynomial transformation from 3-SAT to IDIM
problem. Therefore, the proof of Theorem 3.1 is completed. (]

The proof of Theorem 3.1 yields the following result.

Corollary 3.5. The problem of finding the incidence dimension of a graph is NP-hard.

4. SOME FINAL REMARKS ON dim;(G)

Given any graph G, it is easy to see that the set V(G) minus one arbitrary vertex is an incident generator
for G. On the other hand, given an incidence basis for G, for all but probably one edge in E(G), at least one of
its endpoints belongs to S. Moreover, for any three edges incident with the same vertex, at least two different
endpoints of two different edges must be in S too. In consequence, the following bounds are easy to deduce.

Remark 4.1. If G is a connected graph of order n with at least two edges, then
n .
{§J < dim;(G) <n-—1.

The lower bound of Remark 4.1 is achieved for a path P,, n € {3,4,5,6,8}, a cycle Cy, a star K1 3, and some
graphs obtained by attaching a pendant vertex or an edge to some vertices of previously mentioned examples.
While it is not clear if this list is complete, we can entirely describe all graphs achieving the upper bound of
Remark 4.1.

Proposition 4.2. Let G be a connected graph of order n with at least two edges. Then dim;(G) =n—1 if and
only if any two vertices of G have a common neighbor.
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Proof. If there are two different vertices x,y € V(G) such that they do not have a common neighbor, then it
is not difficult to see that the set V(G) — {z,y} is an incidence generator for G. Thus, to have an incidence
generator of order n — 1, it is required that any two different vertices of G have a common neighbor and vice
versa. 0

Now, concerning the bounds of Remark 4.1, we next study the existence of graphs G of order n and incidence
dimension r for any r,n such that L%J <r<n-1.

Proposition 4.3. For any integers r,n with 2 < L%J <r < n—1 there exists graph G of order n such that
dlmI(G) =T.

Proof. If r = 2, then n € {4,5}. In such a case paths Py and Ps, respectively, satisfy the requirements. Hence,
from now on we may assume r > 3.
Consider n is odd and r = L%J <n —1. Let G, ,, be the graph obtained as follows.

— We begin with a complete graph K, with vertex set V = {uy,...,u.}.
— Add r + 1 vertices w, vy, ..., U
— Add the edges w;v; for every i € {1,...,r} and the edge wv;.

Clearly, G, has order 2r +1 = n. It is not difficult to see that V' is an incidence generator for G, , and so,
dim;(G,.,) < r. Now, suppose dim; (G, ) < r and let S be an incidence basis for G, ,. That means that there
is at least one vertex u; € V, such that u; ¢ S. If there exists some other vertex u; € V, i # j, such that
u; ¢ S, then there are two edges ujug, u;ug, with k # 4,j (since » > 3), such that they are not incidently
resolved by S, a contradiction. Thus, V — {u;} C S, which means |S| =r—1and S =V — {u;}. But, in such a
case, the edges wv; and u;v; are not incidently resolved by S, which is a contradiction again. As a consequence,
dim;(Gyp) =r.

We next consider (n is even and r = [2| <n—1) or |%| <r <n—1. Let G, be the graph obtained as
follows.

— We begin with a complete graph K, with vertex set V = {uy,...,u.}.

— Add n — r vertices v1,...,Vp_.

— Add the edges u;v; for every i € {1,...,n —r —1}.

— Add the edges v, _,u; for every i € {n —r,...,r}.

— Add the edge v1vy (notice that such two vertices always exist because r < n — 1).

Clearly the order of G, is n and we can easily notice that V' is an incidence generator for G; , and so,
dim;(G,.,,) < r. Hence, suppose dim;(G7.,,) < r and let S” be an incidence basis for G7.,,. In consequence,
there is at least one vertex u; € V such that u; ¢ S’. A similar procedure as earlier leads to the fact that
dim;(G,.,,) = r — 1 and that S" =V — {u;}. However, in this case there is an edge u;v; for some I € {1,...,7}
such that the edges viv and ujv; are not incidently resolved by S’, a contradiction. Therefore, dim;(Gj. ,,) = 7.

We finally consider the situation » = n — 1, which is straightforward to realize by just taking the complete

graph K, which completes the proof. ([l

It is natural to think that the incidence dimension is related to (edge or adjacency) dimension of graphs.
Accordingly, we conclude this work by comparing dim;(G) with dim.(G) and dimy4 (G).

Proposition 4.4. For any graph G without isolated vertices, dim;(G) > max{dim(G), dim¢(G)}.

Proof. Let S be an incidence basis for G. Consider two different vertices z,y € V(G) — S. If N(z) NS = 0 and
N(y)NS = 0, then since G has no isolated vertices, there are at least two edges zz’ and yy’ such that z/,y' ¢ S.
Thus, xz’ and yy' are not incidently resolved by any vertex of S, which is a contradiction. So N(z) NS # @) or
N(y) NS # 0. Now, suppose N(z) NS = N(y) N S. Hence, there exists a vertex w € S such that the edges zw
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and yw are not incidently resolved by any vertex of S, a contradiction again. Thus, N(z) NS # N(y) N S and,
as a consequence, S is an adjacency generator for G and dim;(G) > dima(G).

Now, since any two edges e, es are incident to at least two different vertices x,y, and at least one of x,y
must be in 9, it is clear that the edges eq, es are distinguished by z or y. So, S is also an edge metric generator
for G, and dim;(G) > dim.(G), which completes the proof. O

From [15] we know that dim4 (K, ;) =+t — 2. Also, from [18], we have dim.(K, ;) = r + ¢t — 2. Now, from
Proposition 2.8 (iv), we observe that the bound of Proposition 4.4 is tight. In such a case, we have equality
dimy (K, ;) = dimy (K, ;) = dim(K, ;). An interesting problem is then to characterize the families of graphs
for which the bound of Proposition 4.4 is achieved, and moreover, finding whether the situations dim; (K, ;) =
dimg (K, ) # dime (K, ), dimp (K, ) = dime (K, ) # dima(Ky¢) or dimy (K, ;) = dima (K, ) = dime (K, )
happen.
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