Computing some role assignments of Cartesian product of graphs
RAIRO. Operations Research, Tome 56 (2022) no. 1, pp. 115-121

In social networks, a role assignment is such that individuals play the same role, if they relate in the same way to other individuals playing counterpart roles. When a smaller graph models the social roles in a network, this gives rise to the decision problem called r-Role Assignment whether it exists such an assignment of r distinct roles to the vertices of the graph. This problem is known to be NP-complete for any fixed r ≥ 2. The Cartesian product of graphs is one of the most studied operation on graphs and has numerous applications in diverse areas, such as Mathematics, Computer Science, Chemistry and Biology. In this paper, we determine the computational complexity of r-Role Assignment restricted to Cartesian product of graphs, for r = 2, 3. In fact, we show that the Cartesian product of graphs is always 2-role assignable, however the problem of 3-Role Assignment is still NP-complete for this class.

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.1051/ro/2021192
Classification : 05C78, 05C76, 68Q25, 05C15
Keywords: Role assignment, Cartesian product, computational complexity
@article{RO_2022__56_1_115_0,
     author = {Castonguay, Diane and Silva Dias, Elisangela and Mesquita, Fernanda Neiva and Nascimento, Julliano Rosa},
     title = {Computing some role assignments of {Cartesian} product of graphs},
     journal = {RAIRO. Operations Research},
     pages = {115--121},
     year = {2022},
     publisher = {EDP-Sciences},
     volume = {56},
     number = {1},
     doi = {10.1051/ro/2021192},
     mrnumber = {4376293},
     zbl = {1483.91156},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021192/}
}
TY  - JOUR
AU  - Castonguay, Diane
AU  - Silva Dias, Elisangela
AU  - Mesquita, Fernanda Neiva
AU  - Nascimento, Julliano Rosa
TI  - Computing some role assignments of Cartesian product of graphs
JO  - RAIRO. Operations Research
PY  - 2022
SP  - 115
EP  - 121
VL  - 56
IS  - 1
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021192/
DO  - 10.1051/ro/2021192
LA  - en
ID  - RO_2022__56_1_115_0
ER  - 
%0 Journal Article
%A Castonguay, Diane
%A Silva Dias, Elisangela
%A Mesquita, Fernanda Neiva
%A Nascimento, Julliano Rosa
%T Computing some role assignments of Cartesian product of graphs
%J RAIRO. Operations Research
%D 2022
%P 115-121
%V 56
%N 1
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021192/
%R 10.1051/ro/2021192
%G en
%F RO_2022__56_1_115_0
Castonguay, Diane; Silva Dias, Elisangela; Mesquita, Fernanda Neiva; Nascimento, Julliano Rosa. Computing some role assignments of Cartesian product of graphs. RAIRO. Operations Research, Tome 56 (2022) no. 1, pp. 115-121. doi: 10.1051/ro/2021192

[1] D. Angluin, Local and global properties in networks of processors, In: Proc. 12th ACM Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing (1980) 82–93. | DOI

[2] D. Castonguay, E. S. Dias and F. N. Mesquita, Prismas complementares com 2-atribuiçao de papéis. Mat. Contemp. 46 (2018) 83–93. | MR | Zbl

[3] J. Chalopin, Y. Métivier and W. Zielonka, Election, naming and cellular edge local computations. In: International Conference on Graph Transformation (ICGT 2004) (EATCS Best Paper Award). Springer, Italy (2004) 242–256. | MR | Zbl

[4] J. Chalopin, Y. Métivier and W. Zielonka, Local computations in graphs: the case of cellular edge local computations. Fund. Inf. 74 (2006) 85–114. | MR | Zbl

[5] A. R. De Almeida, F. Protti and L. Markenzon, Matching preclusion number in cartesian product of graphs and its application to interconnection networks. ARS Comb. 112 (2013) 193–204. | MR | Zbl

[6] M. C. Dourado, Computing role assignments of split graphs. Theor. Comput. Sci. 635 (2016) 74–84. | MR | Zbl | DOI

[7] J. E. Dunbar, S. M. Hedetniemi, S. Hedetniemi, D. P. Jacobs, J. Knisely, R. Laskar and D. F. Rall, Fall colorings of graphs. J. Comb. Math. Comb. Comput. 33 (2000) 257–274. | MR | Zbl

[8] M.G. Everett and S. Borgatti, Role colouring a graph. Math. Soc. Sci. 21 (1991) 183–188. | MR | Zbl | DOI

[9] J. Fiala and D. Paulusma, A complete complexity classification of the role assignment problem. Theor. Comput. Sci. 349 (2005) 67–81. | MR | Zbl | DOI

[10] J. Fiala and D. Paulusma, Comparing universal covers in polynomial time. Theor. Comput. Syst. 46 (2010) 620–635. | MR | Zbl | DOI

[11] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman and Co., New York, USA (1979). | Zbl

[12] R. H. Hammack, W. Imrich and S. Klavžar, Handbook of Product Graphs. Vol. 2. CRC Press, Boca Raton (2011). | MR | Zbl | DOI

[13] P. Heggernes, P. Van ‘T Hof and D. Paulusma, Computing role assignments of proper interval graphs in polynomial time. J. Discrete Algorithms 14 (2012) 173–188. | MR | Zbl | DOI

[14] A. Kaveh and K. Koohestani, Graph products for configuration processing of space structures. Comput. Struct. 86 (2008) 1219–1231. | DOI

[15] R. Laskar and J. Lyle, Fall colouring of bipartite graphs and cartesian products of graphs. Discrete Appl. Math. 157 (2009) 330–338. | MR | Zbl | DOI

[16] A. Pekeč and F. S. Roberts, The role assignment model nearly fits most social networks. Math. Soc. Sci. 41 (2001) 275–293. | MR | Zbl | DOI

[17] F. S. Roberts and L. Sheng, How hard is it to determine if a graph has a 2-role assignment? Networks Int. J. 37 (2001) 67–73. | MR | Zbl

[18] G. Sabidussi, Graph multiplication. Math. Z. 72 (1959) 446–457. | MR | Zbl | DOI

[19] P. Van ‘T Hof, D. Paulusma and J. M. M. Van Rooij, Computing role assignments of chordal graphs. Theor. Comput. Sci. 411 (2010) 3601–3613. | MR | Zbl | DOI

[20] A. Youssef, Design and analysis of product networks. In: Proceedings Frontiers’ 95. The Fifth Symposium on the Frontiers of Massively Parallel Computation. IEEE (1995) 521–528.

[21] Y.-Q. Zhao, W.-L. Feng, H. Li and J.-M. Yang, k-role assignments under some graph operations. J. Hebei Univ. Sci. Technol. (2010).

Cité par Sources :