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COMPUTING SOME ROLE ASSIGNMENTS OF CARTESIAN PRODUCT OF
GRAPHS

Diane Castonguay, Elisangela Silva Dias ,
Fernanda Neiva Mesquita* and Julliano Rosa Nascimento

Abstract. In social networks, a role assignment is such that individuals play the same role, if they
relate in the same way to other individuals playing counterpart roles. When a smaller graph models the
social roles in a network, this gives rise to the decision problem called 𝑟-Role Assignment whether
it exists such an assignment of 𝑟 distinct roles to the vertices of the graph. This problem is known
to be NP-complete for any fixed 𝑟 ≥ 2. The Cartesian product of graphs is one of the most studied
operation on graphs and has numerous applications in diverse areas, such as Mathematics, Computer
Science, Chemistry and Biology. In this paper, we determine the computational complexity of 𝑟-Role
Assignment restricted to Cartesian product of graphs, for 𝑟 = 2, 3. In fact, we show that the Cartesian
product of graphs is always 2-role assignable, however the problem of 3-Role Assignment is still NP-
complete for this class.
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1. Introduction

Graphs have been used for centuries as a modeling tool in which vertices typically represent objects and
edges the relationship between them. The role assignments in graphs emerged from the concept of covering
introduced by Augluin in 1980 [1] and is a tool for networks of processors. Later on, based on graph models
for social networks, Everett and Borgatti [8] formalized this idea under the name of role coloring . In this sense,
𝑟-role assignment of a simple graph 𝐺 is an assignment of 𝑟 distinct roles to the vertices of 𝐺 which obeys the
rule that two vertices have the same role, if their neighbors have the same set of roles. Furthermore, such an
assignment defines a role graph, where vertices are the 𝑟 distinct roles and there is an edge between two roles
whenever there are two related vertices in the graph 𝐺 that correspond to those roles. Observe that, the role
graph is a graph that has no multiple edges, but allows loops since two neighbours in 𝐺 can have the same
role. Specifically, if the role graph has all possible relationships except loops, role assignment correspond to fall
coloring, introduced by Dunbar et al. [7] in 2000.

We define the problem 𝑟-Role Assignment as follows:
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*Corresponding author: fernandaneivamesquita@inf.ufg.br

c○ The authors. Published by EDP Sciences, ROADEF, SMAI 2022

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021192
https://www.rairo-ro.org
https://orcid.org/0000-0002-1132-1518
https://orcid.org/0000-0003-2010-4088
https://orcid.org/0000-0003-3002-5172
mailto:fernandaneivamesquita@inf.ufg.br
https://creativecommons.org/licenses/by/4.0


116 D. CASTONGUAY ET AL.

𝑟-Role Assignment
Instance: A simple graph 𝐺.
Question: Does 𝐺 admits a 𝑟-role assignment?

Various studies of role assignment point out applications. For example, in [16] the authors show that any
network represented by a graph, with minimum degree bounded by a suitable bound that depends on 𝑟, has a
𝑟-role assignment. Others applications may be found in social networks [8,17] and distributed computing [3,4].

In 2005, Fiala and Paulusma [9] showed that 𝑟-Role Assignment is NP-complete for fixed 𝑟 ≥ 3. Prior
to this work, in 2001, Roberts and Sheng [17] proved that 2-Role Assignment is NP-complete. However,
the problem of 𝑟-Role Assignment can be solved in polynomial time for trees [10] and for proper interval
graphs [13]. For chordal and split graphs, the following dichotomy for the complexity of 𝑟-Role Assignment
arises. While for chordal graph, the problem is solvable in linear time for 𝑟 = 2 and NP-complete for 𝑟 ≥ 3 [19];
for split graphs, the problem is trivial, with true answer, for 𝑟 = 2, solvable in polynomial time for 𝑟 = 3,
and NP-complete for any fixed 𝑟 ≥ 4 [6]. Some properties of role assignment has also been studied under some
graph operations, such as Cartesian product [21]. For complementary prism, which arised of complementary
product which is a generalization of Cartesian product, the 2-Role Assignment has answer true except for
the complementary prism of a path with three vertices [2].

In this work, we study the problem of 𝑟-Role Assignment of Cartesian product in the computational
complexity point of view. Cartesian product of graphs is one of the most studied operation on graphs. Introduced
by Sabidussi [18] in 1959, it has been applied in many areas since then, for example in space structures [14] and
interconnection networks [5]. The study of networks is a clear connection between Cartesian product and role
assignment. Whereas role assignment allows to study a network through a smaller graph, Cartesian product
is often used for modeling one. In that sense, the term Product Networks [20] has raised in the literature to
denominated Cartesian product.

Returning to the specific role assignment that correspond to fall coloring, Laskar and Lyle [15] showed that
the problem for 3 colors (or 3 roles) is NP-complete even when restricted to the class of bipartite graphs. They
also construct fall colourable graphs using Cartesian product.

This paper is organized as follows. In Section 2, we set notations and terminology. Concerning the problem of
𝑟-Role Assignment restricted to Cartesian product, we show in Section 3 that it is trivial, with true answer,
for 𝑟 = 2. In Section 4, we prove that it is NP-complete for 𝑟 = 3 and in Section 5, we conclude by conjecturing
that it is also NP-complete for 𝑟 ≥ 4.

2. Preliminaries

In this section, we state the graph terminology and notations used in this paper. All graphs considered are
undirected, finite, non-trivial and have no multiple edges. A graph 𝐺 is a pair (𝑉 (𝐺), 𝐸(𝐺)), where 𝑉 (𝐺) is the
set of vertices and 𝐸(𝐺) is the set of edges. The vertices 𝑢 and 𝑣 are adjacent or neighbors if they are joined by
an edge 𝑒, also denoted by 𝑢𝑣. In this case, 𝑢 and 𝑣 are incident to 𝑒 and 𝑒 is incident to 𝑢 and 𝑣. A loop is an
edge incident to only one vertex. The neighborhood of a vertex 𝑣, denoted by 𝑁𝐺(𝑣), is the set of all neighbors of
𝑣 in 𝐺. A simple graph is a graph without loops. In a simple graph 𝐺, the degree of a vertex 𝑣 is the cardinality
of 𝑁𝐺(𝑣). A vertex of degree zero is isolated. The neighborhood of a subset 𝑉 of 𝑉 (𝐺), denoted as 𝑁𝐺(𝑉 ), is
the union of the neighborhoods of the vertices of 𝑉 .

A path is a sequence of distinct vertices with an edge between each pair of consecutive vertices. For 𝑛 ≥ 2, we
denote a path on 𝑛 vertices by 𝑃𝑛 or by the sequence of vertices 𝑣1, . . . , 𝑣𝑛. For 𝑛 ≥ 3, a cycle graph, denoted
by 𝐶𝑛, is a connected simple graph on 𝑛 vertices all having a degree 2.

Given a simple graph 𝐺 and a graph 𝑅, possibly with loops, we set 1, . . . , 𝑟 the vertices of 𝑅, also called roles.
A 𝑅-role assignment of 𝐺 is a surjective vertex mapping 𝑝 : 𝑉 (𝐺) → 𝑉 (𝑅) such that 𝑝(𝑁𝐺(𝑣)) = 𝑁𝑅(𝑝(𝑣)) for
all 𝑣 ∈ 𝑉 (𝐺). A graph 𝐺 has a 𝑟-role assignment if it admits a 𝑅-role assignment for some graph 𝑅, called the
role graph, with |𝑉 (𝑅)| = 𝑟. From now on, all graphs (except maybe the role graph) are simple.
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For Cartesian product, we follow the terminology of Hammack et al. [12]. Let 𝐺 and 𝐻 be two graphs. The
Cartesian product of 𝐺 and 𝐻 is a graph, denoted as 𝐺�𝐻, whose vertex set is 𝑉 (𝐺)× 𝑉 (𝐻) and two vertices
(𝑢, 𝑣) and (𝑥, 𝑦) are adjacent precisely if 𝑢 = 𝑥 and 𝑣𝑦 ∈ 𝐸(𝐻), or 𝑢𝑥 ∈ 𝐸(𝐺) and 𝑣 = 𝑦.

Observe that if 𝐻 is a trivial graph, then 𝐺�𝐻 ≃ 𝐺 and the complexity of the problem 𝑟-Role Assignment
is already known. This is why we always consider 𝐺 and 𝐻 to be non-trivial graphs.

3. Cartesian product with 2-role assignment

In this section, we show that the Cartesian product of any two non-trivial graphs 𝐺 and 𝐻 has a 2-role
assignment.

Theorem 3.1. Let 𝐺 and 𝐻 be non-trivial graphs. Then 𝐺�𝐻 has a 2-role assignment.

Proof. If 𝐺�𝐻 is disconnected, then according to Roberts and Sheng [17], 𝐺�𝐻 has a 2-role assignment. In
fact, since 𝐺 and 𝐻 are non-trivial graphs, 𝐺�𝐻 has no isolated vertex. Therefore, by assigning role 1 to every
vertex of one connected component and role 2 to the other vertices, we obtain a 2-role assignment, where the role
graph is the disjoint union of two vertices, both with loops. Then, suppose that 𝐺�𝐻 is connected, that is, both
𝐺 and 𝐻 are connected. Since 𝐻 is connected, there is a vertex ordering of 𝑉 (𝐻), denoted by 𝑣1, . . . , 𝑣𝑛, with
|𝑉 (𝐻)| = 𝑛 such that 𝑣𝑖+1 ∈ 𝑁𝐻({𝑣1, . . . , 𝑣𝑖}) for 𝑖 = 1, . . . , 𝑛− 1. We first define recursively ℓ : 𝑉 (𝐻) → {1, 2}
by:

ℓ(𝑣1) = 1.

ℓ(𝑣𝑖) = ℓ(𝑣𝑗) mod 2 + 1, where 𝑗 = min{𝑘 | 𝑣𝑖𝑣𝑘 ∈ 𝐸(𝐻)}, for 𝑖 = 2, . . . , 𝑛.

We note that in the definition of ℓ(𝑣𝑖), we have that 𝑗 ≤ 𝑖 − 1. We use ℓ to define a 2-role assignment 𝑝 of
𝐺�𝐻 by 𝑝(𝑢, 𝑣) = ℓ(𝑣) for all (𝑢, 𝑣) ∈ 𝑉 (𝐺�𝐻). We show that 𝑝 is a 𝑅-role assignment, where 𝑅 is the path
𝑃2 with loops on both roles. For this purpose, we will see that 𝑝(𝑁𝐺�𝐻((𝑢, 𝑣𝑖))) = {1, 2} for all 𝑢 ∈ 𝑉 (𝐺),
𝑖 = 1, . . . , 𝑛.

Let 𝑢 ∈ 𝑉 (𝐺). As 𝐺 is a non-trivial connected graph, there exists 𝑥 ∈ 𝑁𝐺(𝑢). We note that, for all 𝑖 = 1, . . . , 𝑛,
(𝑢, 𝑣𝑖) is a neighbor of (𝑥, 𝑣𝑖) in 𝐺�𝐻 and 𝑝((𝑢, 𝑣𝑖)) = ℓ(𝑣𝑖) = 𝑝((𝑥, 𝑣𝑖)). Therefore, all vertices of 𝐺�𝐻 have a
neighbor with the same role.

It remains to see that there is a neighbor of (𝑢, 𝑣𝑖) with different role. For 𝑖 = 1, 𝑝((𝑢, 𝑣1)) = 1. Since 𝑣2 ∈
𝑁𝐻(𝑣1), ℓ(𝑣2) = 2 and we obtain (𝑢, 𝑣2), a neighbor of (𝑢, 𝑣1), of role 2. For 𝑖 ≥ 2, there exists 𝑗 ∈ {1, . . . , 𝑖−1},
such that 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐻) and ℓ(𝑣𝑖) = ℓ(𝑣𝑗) mod 2 + 1. Clearly, ℓ(𝑣𝑖) ̸= ℓ(𝑣𝑗). Hence, (𝑢, 𝑣𝑗) is a neighbor of (𝑢, 𝑣𝑖)
in 𝐺�𝐻 such that 𝑝((𝑢, 𝑣𝑖)) ̸= 𝑝((𝑢, 𝑣𝑗)). �

4. Cartesian product with 3-role assignment

Inspired by the constructions presented by van ’t Hof et al. [19] and Dourado [6], we design a new construction
to prove that the decision problem related to finding a 3-role assignment for Cartesian product of two graphs
remains NP-complete. For this aim, we introduce the NP-complete problem of Hypergraph 2-Coloring, also
known as Set Splitting, see [11]. A hypergraph ℋ is a pair ℋ = (𝒱(ℋ),𝒮(ℋ)), where 𝒱(ℋ) is a set of vertices,
and 𝒮(ℋ) is a set of non-empty subsets of 𝒱(ℋ) called hyperedges. We consider hyperedges with at least two
elements.

A surjective mapping 𝑐 : 𝒱(ℋ) → {1, 2} is a 𝑘-Coloring, if every hyperedge in 𝒮(ℋ) contains at least two
vertices 𝑢 and 𝑣 with 𝑐(𝑢) ̸= 𝑐(𝑣). The Hypergraph 2-Coloring problem asks whether a given hypergraph
has a 2-coloring.

Given a hypergraph ℋ, we require to construct a Cartesian product of two graphs that will serve as an
instance of 𝑟-Role Assignment. For this, we will consider 𝐺(ℋ)�𝑃2. The construction of 𝐺(ℋ), defined in
the sequel, is based on the incidence graph. The incidence graph 𝐼 = (𝑉 (𝐼), 𝐸(𝐼)) of a hypergraph ℋ is a bipar-
tite graph whose vertex set is 𝑉 (𝐼) = 𝒱(ℋ)∪𝒮(ℋ), and edge set 𝐸(𝐼) = {𝑣𝑆 | 𝑣 ∈ 𝒱(ℋ), 𝑆 ∈ 𝒮(ℋ) with 𝑣 ∈ 𝑆}.
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Figure 1. Part of a 3-role assignment, with 𝒱(ℋ) = {𝑣1, 𝑣2} and 𝒮(ℋ) = {𝑆1}, where 𝑆1 =
{𝑣1, 𝑣2}, of 𝐺(ℋ)�𝑃2 (𝑉 (𝐺(ℋ))′ is not shown).

Construction 1. Given a hypergraph ℋ with 𝒱(ℋ) = {𝑣1, . . . , 𝑣𝑛}, 𝑛 ≥ 2 and 𝒮(ℋ) = {𝑆1, . . . , 𝑆𝑚}, 𝑚 ≥ 1.
We construct a graph 𝐺(ℋ), arising from the incidence graph 𝐼 of ℋ:

– For 𝑖 = 1, . . . , 𝑛, we remove 𝑣𝑖 from 𝑉 (𝐼), as well as its incident edges from 𝐸(𝐼) and replace it by a copy of
a path on eight vertices denoted by 𝑧𝑖,1𝑦𝑖,1𝑣𝑖,1𝑤𝑖,1𝑤𝑖,2𝑣𝑖,2𝑦𝑖,2𝑧𝑖,2. We add two edges 𝑣𝑖,1𝑆𝑗 , 𝑣𝑖,2𝑆𝑗 , for every
edge 𝑣𝑖𝑆𝑗 ∈ 𝐸(𝐼);

– We add the subgraph 𝐹 , see Figure 1, and the edges 𝑏𝑣𝑖,1, 𝑏𝑣𝑖,2, for every 𝑖 ∈ {1, . . . , 𝑛}.
As we consider 𝐺(ℋ)�𝑃2, we use the following simplified notations. Considering that 𝑉 (𝑃2) = {𝑢1, 𝑢2}, we

identify 𝑥 with the vertex (𝑥, 𝑢1) and denote by 𝑥′ the vertex (𝑥, 𝑢2) for any 𝑥 ∈ 𝑉 (𝐺(ℋ)). We say that 𝑥′

is the corresponding vertex of 𝑥. Let 𝑋 ⊆ 𝑉 (𝐺(ℋ)), we identify 𝑋 with {(𝑥, 𝑣1) | 𝑥 ∈ 𝑋} and denote by 𝑋 ′

the set {(𝑥, 𝑣2) | 𝑥 ∈ 𝑋}. For short, we denote 𝑁(𝑥) = 𝑁𝐺(ℋ)�𝑃2(𝑥, 𝑣1) and 𝑁(𝑥′) = 𝑁𝐺(ℋ)�𝑃2(𝑥, 𝑣2) for any
𝑥 ∈ 𝑉 (𝐺(ℋ)).

Let 𝑅3 be the graph with vertex set {1, 2, 3} arising from the cycle 𝐶3 by the addition of a loop on role 2.
Theorem 4.1 presents a 𝑅3-role assignment for 𝐺(ℋ)�𝑃2 when a 2-coloring of ℋ is known.

Theorem 4.1. Let ℋ be a hypergraph and 𝐺(ℋ) the graph obtained from Construction 1. If ℋ has a 2-coloring,
then 𝐺(ℋ)�𝑃2 has a 𝑅3-role assignment.

Proof. Let 𝑐 : 𝑉 (ℋ) → {1, 3} be a 2-coloring of ℋ. To simplifies the definition of a role assignment, we introduce
the following subsets of 𝑉 (𝐺(ℋ)).

𝐴1 = {𝑣𝑖,1, 𝑣𝑖,2 | 𝑣𝑖 ∈ 𝒱(ℋ), 𝑐(𝑣𝑖) = 1} ∪ {𝑧𝑖,1, 𝑧𝑖,2, 𝑤𝑖,2 | 𝑣𝑖 ∈ 𝒱(ℋ), 𝑐(𝑣𝑖) = 3} ∪ {𝑎, 𝑐1, 𝑑1}.
𝐴2 = {𝑦𝑖,1, 𝑦𝑖,2, 𝑤𝑖,1 | 𝑣𝑖 ∈ 𝒱(ℋ)} ∪ 𝒮(ℋ) ∪ {𝑏, 𝑐2, 𝑑2}.
𝐴3 = {𝑣𝑖,1, 𝑣𝑖,2 | 𝑣𝑖 ∈ 𝒱(ℋ), 𝑐(𝑣𝑖) = 3} ∪ {𝑧𝑖,1, 𝑧𝑖,2, 𝑤𝑖,2 | 𝑣𝑖 ∈ 𝒱(ℋ), 𝑐(𝑣𝑖) = 1} ∪ {𝑐3, 𝑑3}.

We define a role assignment 𝑝 : 𝑉 (𝐺(ℋ)�𝑃2) → {1, 2, 3} as follows. For every 𝑥 ∈ 𝑉 (𝐺(ℋ)), 𝑝(𝑥) = 𝑖, if
𝑥 ∈ 𝐴𝑖 and:

𝑝(𝑥′) =

⎧⎪⎨⎪⎩
1, if 𝑥 ∈ 𝐴3;
2, if 𝑥 ∈ 𝐴2;
3, if 𝑥 ∈ 𝐴1.

See an example in Figure 1, in which the vertices in black, white and gray receive roles 1, 2 and 3, respectively.
It is easy to see that 𝑝 is a 𝑅3-role assignment of 𝐺(ℋ)�𝑃2. �

Observe that, if the graph 𝐺 is connected, then the role graph 𝑅 of any role assignment of 𝐺 is also connected.
We show in the following lemma, that 𝑅3 is the unique role graph for a 3-role assignment of 𝐺(ℋ)�𝑃2.
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Lemma 4.2. Let ℋ be a hypergraph and 𝐺(ℋ) the graph obtained from Construction 1. If 𝐺(ℋ)�𝑃2 has a
𝑅-role assignment with |𝑉 (𝑅)| = 3, then 𝑅 ≃ 𝑅3.

Proof. Let 𝑝 : 𝑉 (𝐺(ℋ)�𝑃2) → 𝑉 (𝑅) be a 3-role assignment for 𝐺(ℋ)�𝑃2 with 𝑉 (𝑅) = {1, 2, 3}. Since 𝐺(ℋ)�𝑃2

is connected, so 𝑅 is. Hence, we may assume that 1, 3 ∈ 𝑁𝑅(2). We show that 𝑅 ≃ 𝑅3.
First, suppose that 𝑝(𝑏), 𝑝(𝑏′) ∈ {1, 3}. We note that if 𝑝(𝑎) ∈ {1, 3}, then 𝑝(𝑎′) = 2. Therefore, by symmetry,

we may assume that 𝑝(𝑎) = 2. Hence, {𝑝(𝑎′), 𝑝(𝑏)} = {1, 3} and 𝑁𝑅(2) = {1, 3}. Without lost of generality,
we suppose that 𝑝(𝑎′) = 1 and 𝑝(𝑏) = 3. If 𝑝(𝑏′) = 1, then 3 ∈ 𝑁𝑅(1), but 𝑁𝑅(1) = 𝑝(𝑁(𝑎′)) = {1, 2}, a
contradiction. Hence, 𝑝(𝑏′) = 3. Since, 𝑁𝑅(1) = {2, 3}, 𝑁𝑅(2) = {1, 3} and 𝑁𝑅(3) = {1, 2, 3}, we have that
𝑅 ≃ 𝑅3.

From now on, 𝑝(𝑏) = 2 or 𝑝(𝑏′) = 2. By symmetry, suppose that 𝑝(𝑏) = 2. Its important remember that
𝑝(𝑎) ̸= 2, otherwise since the degree of 𝑎 in 𝐺(ℋ)�𝑃2 is 2, 𝑎 does not have enough neighbors to assign the roles
1, 2, 3. Up to analyze each possibility of roles for 𝑎 and 𝑎′, we divide the proof in the following cases:

Case 1. 𝑝(𝑎) = 1 and 𝑝(𝑎′) = 1,
Case 2. 𝑝(𝑎) = 1 and 𝑝(𝑎′) = 2 and
Case 3. 𝑝(𝑎) = 1 and 𝑝(𝑎′) = 3.

We remark that the case 𝑝(𝑎) = 3 and 𝑝(𝑎′) = 1 is similar to Case 3, given that 𝑝(𝑏′) = 2. On the other hand,
the case 𝑝(𝑎) = 3 and 𝑝(𝑎′) = 2 is equivalent to the Case 2 by interchanging the roles 1 and 3. The same occurs
in the case that 𝑝(𝑎) = 3 and 𝑝(𝑎′) = 3, that is equivalent to Case 1. In Case 3, we obtain 𝑝(𝑏) = 𝑝(𝑏′) = 2 and
𝑅 = 𝑅3 as desired. We show contradictions in Cases 1 and 2.

Case 1. 𝑝(𝑎) = 1 and 𝑝(𝑎′) = 1.

We have that 𝑝(𝑏) = 𝑝(𝑏′) = 2, 𝑁𝑅(1) = {1, 2} and 𝑁𝑅(2) = {1, 2, 3}. Two possibilities exist depending if
there is a loop on role 3 or not.

First, consider that there is a loop on role 3. Observe that 𝑅 is the path 𝑃3 with loops on all roles. We show
contradictions in the roles of 𝑐1, 𝑐2, 𝑐3 and their corresponding vertices. We consider the possible roles for 𝑐1.

If 𝑝(𝑐1) = 1, since there is a loop on role 1, we have two possibilities: 1 ∈ 𝑝({𝑐2, 𝑐3}) or 𝑝(𝑐′1) = 1. If
1 ∈ 𝑝({𝑐2, 𝑐3}), we may assume that 𝑝(𝑐2) = 1. Since 𝑝(𝑁(𝑐3)) = {1, 𝑝(𝑐′3)} and |𝑁𝑅(2)| = 3, we have that
𝑝(𝑐3) = 1 and 𝑝(𝑐′2) = 2. Hence, every neighbor of 𝑐′2 is adjacent to a vertex with role 1, a contradiction since
3 ∈ 𝑁𝑅(2), but 3 ̸∈ 𝑁𝑅(1).

Notice that, with similar arguments used for 𝑝(𝑐1) = 1, we may find a contradiction for 𝑝(𝑐1) = 3. Thus,
remains to consider 𝑝(𝑐1) = 2. By symmetry, we may assume that 𝑝(𝑐′1) = 2. Since 𝑁𝑅(2) = {1, 2, 3}, we have
{𝑝(𝑐2), 𝑝(𝑐3)} = {1, 3}, a contradiction, because 1 ̸∈ 𝑁𝑅(3).

Next, consider that there is no loop on role 3. Observe that 𝑅 is the path 𝑃3 with loop on roles 1 and 2. We
show contradictions in the roles of 𝑑1, 𝑑2, 𝑑3 and their corresponding vertices. We consider the possible roles for
𝑑1.

We begin by role 3, that is 𝑝(𝑑1) = 3. Since 𝑁𝑅(3) = {2}, we have that 𝑝(𝑑2) = 2 and 𝑝(𝑑′1) = 2. Looking at
the roles of the neighborhood of 𝑑′1, we obtain that 𝑝(𝑑′2) = 1. On the other hand, 𝑑2 must have a neighbor of
role 2, which must be 𝑑3. But, 𝑝(𝑁(𝑑3)) = {2, 𝑝(𝑑′3)} and |𝑁𝑅(2)| = 3, a contradiction. Thus, we may assume
that 3 ̸∈ 𝑝({𝑑1, 𝑑3, 𝑑

′
1, 𝑑

′
3}).

If 𝑝(𝑑1) = 2, since 𝑝(𝑑′1) ̸= 3, we get that 𝑝(𝑑2) = 3 and 𝑝(𝑑′1) = 1. Recall that 𝑁𝑅(3) = {2}, then 𝑝(𝑑′2) = 2.
This implies that 𝑝(𝑁(𝑑′1)) = {2}, a contradiction, since 𝑁𝑅(1) = {1, 2}. We conclude that 𝑝({𝑑1, 𝑑3, 𝑑

′
1, 𝑑

′
3}) =

{1}. Considering that 𝑝(𝑁(𝑑2)) = {1, 𝑝(𝑑′2)}, 𝑁𝑅(1) = {1, 2} and |𝑁𝑅(2)| = 3, we obtain that 𝑝(𝑑2) = 1.
Similarly, 𝑝(𝑑′2) = 1, a contradiction.

Case 2. 𝑝(𝑎) = 1 and 𝑝(𝑎′) = 2.

Recall that 𝑝(𝑏) = 2. We have that 𝑝(𝑏′) = 3, 𝑁𝑅(1) = {2} and 𝑁𝑅(2) = {1, 3}. Observe that 𝑅 is the path 𝑃3

with a possible loop on role 3. We show contradictions in the roles of 𝑐1, 𝑐2, 𝑐3 and their corresponding vertices.
We consider the possible roles for 𝑐1. Recall that, since there is no loop on role 2, 𝑝(𝑐1) ̸= 2.
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If 𝑝(𝑐1) = 1, as 𝑁𝑅(1) = {2}, then 𝑝(𝑐2) = 𝑝(𝑐3) = 2, a contradiction to the fact that there is no loop on role
2. Thus, 𝑝(𝑐1) = 3. Given that 𝑁𝑅(3) = {2, 3} and 2 ̸∈ 𝑁𝑅(2), we may suppose that 𝑝(𝑐2) = 3. We know that
𝑝(𝑐3) ∈ {2, 3}. If 𝑝(𝑐3) = 2, then 𝑝(𝑐′3) = 1, and we conclude that 𝑝(𝑐′1) = 𝑝(𝑐′2) = 2, a contradiction. Hence,
𝑝(𝑐3) = 3 and this leads to 𝑝(𝑐′2) = 𝑝(𝑐′3) = 2, a contradiction. �

Next, we show that one can obtain a 2-coloring for ℋ when a 3-role assignment for 𝐺(ℋ)�𝑃2 is known.

Theorem 4.3. Let ℋ be a hypergraph and 𝐺(ℋ) the graph obtained from Construction 1. If 𝐺(ℋ)�𝑃2 has a
3-role assignment, then ℋ has a 2-coloring.

Proof. Let 𝑝 be a 𝑅-role assignment for 𝐺(ℋ)�𝑃2, with |𝑉 (𝑅)| = 3. By Lemma 4.2, we may assume that
𝑅 = 𝑅3. Observe that |𝑁𝑅(2)| = 3, this implies that the vertices of degree 2, in 𝐺(ℋ)�𝑃2, cannot have role
2. Let 𝑥 ∈ 𝑉 (𝐺(ℋ))�𝑃2, such that 𝑁(𝑥) = {𝑥′, 𝑦} for some 𝑦 ∈ 𝑉 (𝐺(ℋ)). Thus, 𝑥 and 𝑥′ cannot have role 2,
that is 𝑝(𝑥), 𝑝(𝑥′) ∈ {1, 3}. Since, 2 ∈ 𝑁𝑅(1) ∩𝑁𝑅(3) and 𝑝(𝑥) ̸= 𝑝(𝑥′), we obtain that 𝑝(𝑦) = 𝑝(𝑦′) = 2.

Let 𝑖 ∈ {1, . . . , 𝑛}. By the above, 𝑝({𝑦𝑖,1, 𝑦𝑖,2, 𝑦
′
𝑖,1, 𝑦

′
𝑖,2}) = {2}. Since 𝑁𝑅(2) = {1, 2, 3}, we obtain that

𝑝(𝑣𝑖,1), 𝑝(𝑣𝑖,2), 𝑝(𝑣′𝑖,1), 𝑝(𝑣′𝑖,2) ∈ {1, 3}. First, we show that 𝑝(𝑣𝑖,1) = 𝑝(𝑣𝑖,2). Suppose, by contradiction, 𝑝(𝑣𝑖,1) = 1
and 𝑝(𝑣𝑖,2) = 3. Recall that there is no loop on roles 1 and 3, therefore 𝑝(𝑣′𝑖,1) = 3 and 𝑝(𝑣′𝑖,2) = 1. If 𝑝(𝑤𝑖,1) ̸= 2,
then 2 ∈ {𝑝(𝑤𝑖,2), 𝑝(𝑤′𝑖,1)}. Thus, by symmetry, we may assume that 𝑝(𝑤𝑖,1) = 2.

Notice that |𝑁(𝑤𝑖,1)| = 3 and 𝑝(𝑣𝑖,1) = 1, hence 𝑝({𝑤𝑖,2, 𝑤
′
𝑖,1}) = {2, 3}. Since 𝑝(𝑤𝑖,2) ∈ 𝑁𝑅(2) ∩ 𝑁𝑅(3) =

{1, 2}, we get 𝑝(𝑤𝑖,2) = 2 and 𝑝(𝑤′𝑖,1) = 3, a contradiction to the fact that there is no loop on role 3. We conclude
by symmetry that 𝑝(𝑣𝑖,1) = 𝑝(𝑣𝑖,2) and 𝑝(𝑣′𝑖,1) = 𝑝(𝑣′𝑖,2), for 𝑖 = 1, . . . , 𝑛.

Now, let 𝑗 ∈ {1, . . . ,𝑚}. We show that 𝑝(𝑆𝑗) = 𝑝(𝑆′𝑗) = 2. Suppose by contradiction that 𝑝(𝑆𝑗) ̸= 2. Since
𝑝(𝑁𝐺(ℋ)(𝑆𝑗)) ⊆ {1, 3}, we have that 𝑝(𝑆′𝑗) = 2, which leads to a contradiction, given that 𝑝(𝑁(𝑆′𝑗)) ⊆ {1, 3}.
Hence, we obtain that 𝑝(𝑆𝑗) = 𝑝(𝑆′𝑗) = 2, for 𝑗 = 1, . . . ,𝑚.

Finally, we define a mapping 𝑐 : 𝑉 (ℋ) → {1, 3} given by 𝑐(𝑣𝑖) = 𝑝(𝑣𝑖,1). We show that 𝑐 is a 2-coloring for ℋ.
Let 𝑆𝑗 ∈ 𝒮(ℋ). Recall that 𝑆𝑗 represents a vertex in 𝑉 (𝐺(ℋ)), and consequently in 𝑉 (𝐺(ℋ)�𝑃2). We have that
𝑁(𝑆𝑗) = {𝑣𝑖,1, 𝑣𝑖,2 | 𝑣𝑖 ∈ 𝑆𝑗 (in ℋ)} ∪ {𝑆′𝑗}. Since 𝑝(𝑆𝑗) = 𝑝(𝑆′𝑗) = 2, for 𝑗 = 1, . . . ,𝑚, 𝑝(𝑣𝑖,1) = 𝑝(𝑣𝑖,2) ∈ {1, 3},
for 𝑖 = 1, . . . , 𝑛, and 𝑝 is a 𝑅3-role assignment, there exist 𝑠, 𝑡 ∈ {1, . . . , 𝑛}, such that 𝑣𝑠,1, 𝑣𝑡,1 ∈ 𝑁(𝑆𝑗),
𝑝(𝑣𝑠,1) = 1, and 𝑝(𝑣𝑡,1) = 3. This implies that 𝑐(𝑣𝑠) = 1 and 𝑐(𝑣𝑡) = 3 with 𝑣𝑠, 𝑣𝑡 ∈ 𝑆𝑗 (in ℋ), which defines a
2-coloring for ℋ. �

The above results imply directly in the NP-completeness of 3-Role Assignment.

Theorem 4.4. The problem 3-Role Assignment is NP-complete even when restricted to the Cartesian product
of two non-trivial graphs.

Proof. The problem is clearly in NP (cf. [17]). To show the NP-hardness, we use a reduction from the NP-complete
problem Hypergraph 2-Coloring [11]. Given a hypergraph ℋ, we construct the graph 𝐺(ℋ) according to
Construction 1, which is used to compute 𝐺(ℋ)�𝑃2. It is easy to see that 𝐺(ℋ)�𝑃2 may be obtained in
polynomial time. By Theorems 4.1 and 4.3, we obtain that ℋ has 2-coloring if and only if 𝐺(ℋ)�𝑃2 has a 3-role
assignment, and the proof is complete. �

5. Conclusion

In this paper, we have shown that the problem 𝑟-Role Assignment restricted to Cartesian product is
trivial, with true answer, for 𝑟 = 2 and NP-complete for 𝑟 = 3. As we have seen in Introduction, the known
literature results have reported that when 𝑟-Role Assignment is NP-complete for some 𝑟, the problem
remains NP-complete for any integer greater than 𝑟. Then, the following conjecture rise naturally:

Conjecture. For 𝑟 ≥ 4, the problem 𝑟-Role Assignment is NP-complete even when restricted to the
Cartesian product of two non-trivial graphs.
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As future works, we suggest to determine the computational complexity of 𝑟-Role Assignment restricted
to other graph products.
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