Scalarization and convergence in unified set optimization
RAIRO. Operations Research, Tome 55 (2021) no. 6, pp. 3603-3616

This paper deals with scalarization and stability aspects for a unified set optimization problem. We provide characterization for a unified preference relation and the corresponding unified minimal solution in terms of a generalized oriented distance function of the sup-inf type. We establish continuity of a function associated with the generalized oriented distance function and provide an existence result for the unified minimal solution. We establish Painlevé–Kuratowski convergence of minimal solutions of a family of scalar problems to the minimal solutions of the unified set optimization problem.

DOI : 10.1051/ro/2021169
Classification : 54C60, 90C26, 49J53
Keywords: Unified set optimization, nonlinear scalarization, oriented distance function, semicontinuity, Painlevé–Kuratowski convergence
@article{RO_2021__55_6_3603_0,
     author = {Khushboo and Lalitha, C. S.},
     title = {Scalarization and convergence in unified set optimization},
     journal = {RAIRO. Operations Research},
     pages = {3603--3616},
     year = {2021},
     publisher = {EDP-Sciences},
     volume = {55},
     number = {6},
     doi = {10.1051/ro/2021169},
     mrnumber = {4348668},
     language = {en},
     url = {https://www.numdam.org/articles/10.1051/ro/2021169/}
}
TY  - JOUR
AU  - Khushboo
AU  - Lalitha, C. S.
TI  - Scalarization and convergence in unified set optimization
JO  - RAIRO. Operations Research
PY  - 2021
SP  - 3603
EP  - 3616
VL  - 55
IS  - 6
PB  - EDP-Sciences
UR  - https://www.numdam.org/articles/10.1051/ro/2021169/
DO  - 10.1051/ro/2021169
LA  - en
ID  - RO_2021__55_6_3603_0
ER  - 
%0 Journal Article
%A Khushboo
%A Lalitha, C. S.
%T Scalarization and convergence in unified set optimization
%J RAIRO. Operations Research
%D 2021
%P 3603-3616
%V 55
%N 6
%I EDP-Sciences
%U https://www.numdam.org/articles/10.1051/ro/2021169/
%R 10.1051/ro/2021169
%G en
%F RO_2021__55_6_3603_0
Khushboo; Lalitha, C. S. Scalarization and convergence in unified set optimization. RAIRO. Operations Research, Tome 55 (2021) no. 6, pp. 3603-3616. doi: 10.1051/ro/2021169

[1] L. Q. Anh, T. Q. Duy, D. V. Hien, D. Kuroiwa and N. Petrot, Convergence of solutions to set optimization problems with the set less order relation. J. Optim. Theory Appl. 185 (2020) 416–432. | MR | DOI

[2] C. R. Chen, S. J. Li and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems. J. Global Optim. 45 (2009) 309–318. | MR | Zbl | DOI

[3] C. R. Chen, X. Zuo, F. Lu and S. J. Li, Vector equilibrium problems under improvement sets and linear scalarization with stability applications. Optim. Methods Softw. 31 (2016) 1240–1257. | MR | DOI

[4] J. Chen, Q. H. Ansari and J. C. Yao, Characterizations of set order relations and constrained set optimization problems via oriented distance function. optimization 66 (2017) 1741–1754. | MR | DOI

[5] M. Dhingra and C. S. Lalitha, Approximate solutions and scalarization in set-valued optimization. Optimization 66 (2017) 1793–1805. | MR | DOI

[6] F. Flores-Bazán and E. Hernández, A unified vector optimization problem: complete scalarizations and applications. Optimization 60 (2011) 1399–1419. | MR | Zbl | DOI

[7] F. Flores-Bazán, F. Flores-Bazán and S. Laengle, Characterizing efficiency on infinite-dimensional commodity spaces with ordering cones having possibly empty interior. J. Optim. Theory Appl. 164 (2015) 455–478. | MR | Zbl | DOI

[8] C. Gerth and P. Weidner, Nonconvex separation theorems and some applications in vector optimization. J. Optim. Theory Appl. 67 (1990) 297–320. | MR | Zbl | DOI

[9] C. Gutiérrez, E. Miglierina, E. Molho and V. Novo, Convergence of solutions of a set optimization problem in the image space. J. Optim. Theory Appl. 170 (2016) 358–371. | MR | DOI

[10] T. X. D. Ha, A Hausdorff-type distance, a directional derivative of a set-valued map and applications in set optimization. Optimization 67 (2018) 1031–1050. | MR | DOI

[11] Y. Han and N. J. Huang, Well-posedness and stability of solutions for set optimization problems. Optimization 66 (2017) 17–33. | MR | DOI

[12] Y. Han and N. J. Huang, Continuity and convexity of a nonlinear scalarizing function in set optimization problems with applications. J. Optim. Theory Appl. 177 (2018) 679–695. | MR | DOI

[13] E. Hernández and L. Rodríguez-Marín, Nonconvex scalarization in set optimization with set-valued maps. J. Math. Anal. Appl. 325 (2007) 1–18. | MR | Zbl | DOI

[14] J. B. Hiriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces. Math. Oper. Res. 4 (1979) 79–97. | MR | Zbl | DOI

[15] L. Huerga, B. Jiménez, V. Novo and A. Vílchez, Six set scalarizations based on the oriented distance: continuity, convexity and application to convex set optimization. Math. Methods Oper. Res. 93 (2021) 413–436. | MR | DOI

[16] K. Ike, M. Liu, Y. Ogata and T. Tanaka, Semicontinuity of the composition of set-valued map and scalarization function for sets. J. Appl. Numer. Optim. 1 (2019) 267–276.

[17] B. Jiménez, V. Novo and A. Vílchez, A set scalarization function based on the oriented distance and relations with other set scalarizations. Optimization 67 (2018) 2091–2116. | MR | DOI

[18] B. Jiménez, V. Novo and A. Vílchez, Characterization of set relations through extensions of the oriented distance. Math. Methods Oper. Res. 91 (2020) 89–115. | MR | DOI

[19] B. Jiménez, V. Novo and A. Vílchez, Six set scalarizations based on the oriented distance: properties and application to set optimization. Optimization 69 (2020) 437–470. | MR | DOI

[20] S. Kapoor and C. S. Lalitha, Stability and scalarization for a unified vector optimization problem. J. Optim. Theory Appl. 182 (2019) 1050–1067. | MR | DOI

[21] Karuna and C.S. Lalitha, External and internal stability in set optimization. optimization 68 (2019) 833–852. | MR | DOI

[22] A. Khan, C. Tammer and C. Zălinescu, Set-valued Optimization: An Introduction with Applications. Springer-Verlag, Berlin (2015). | MR | Zbl | DOI

[23] Khushboo and C.S. Lalitha, Scalarizations for a set optimization problem using generalized oriented distance function. Positivity 23 (2019) 1195–1213. | MR | DOI

[24] Khushboo and C. S. Lalitha, A unified minimal solution in set optimization. J. Global Optim. 74 (2019) 195–211. | MR | DOI

[25] E. Köbis and M. A. Köbis, The weighted set relation: characterizations in the convex case. J. Nonlinear Var. Anal. 5 (2021) 721–735.

[26] K. Kuratowski, Topology. Vol. II. New edition, revised and augmented. Translated from the French by A. Kirkor. Academic Press, New York-London; Państwowe Wydawnictwo Naukowe Polish Scientific Publishers, Warsaw (1968). | MR

[27] I. Kuwano, Some minimax theorems of set-valued maps and their applications. Nonlinear Anal. 109 (2014) 85–102. | MR | Zbl | DOI

[28] I. Kuwano and T. Tanaka, Continuity of cone-convex functions. Optim. Lett. 6 (2012) 1847–1853. | MR | Zbl | DOI

[29] I. Kuwano, T. Tanaka and S. Yamada, Inherited properties of nonlinear scalarizing functions for set-valued maps. In: Nonlinear Analysis and Convex Analysis. Yokohama Publ., Yokohama (2010) 161–177. | MR | Zbl

[30] C. S. Lalitha and P. Chatterjee, Stability and scalarization of weak efficient, efficient and Henig proper efficient sets using generalized quasiconvexities. J. Optim. Theory Appl. 155 (2012) 941–961. | MR | Zbl | DOI

[31] G. M. Lee, D. S. Kim, B. S. Lee and N. D. Yen, Vector variational inequality as a tool for studying vector optimization problems. Nonlinear Anal. 34 (1998) 745–765. | MR | Zbl | DOI

[32] J. Li and C. Tammer, Set optimization problems on ordered sets. Appl. Set-Valued Anal. Optim. 1 (2019) 77–94.

[33] P.-P. Liu, H.-Z. Wei, C.-R. Chen and S.-J. Li, Continuity of solutions for parametric set optimization problems via scalarization methods. J. Oper. Res. Soc. Chin. 9 (2021) 79–97. | MR | DOI

[34] A. M. Rubinov and R. N. Gasimov, Scalarization and nonlinear scalar duality for vector optimization with preferences that are not necessarily a pre-order relation. J. Global Optim. 29 (2004) 455–477. | MR | Zbl | DOI

[35] Y. D. Xu and S. J. Li, A new nonlinear scalarization function and applications. Optimization 65 (2016) 207–231. | MR | DOI

[36] A. Zaffaroni, Degrees of efficiency and degrees of minimality. SIAM J. Control Optim. 42 (2003) 1071–1086. | MR | Zbl | DOI

[37] W. Y. Zhang, S. J. Li and K. L. Teo, Well-posedness for set optimization problems. Nonlinear Anal. 71 (2009) 3769–3778. | MR | Zbl | DOI

Cité par Sources :